1
|
Ishikawa K. Spinocerebellar ataxia type 31 (SCA31). J Hum Genet 2023; 68:153-156. [PMID: 36319738 PMCID: PMC9968654 DOI: 10.1038/s10038-022-01091-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/22/2022] [Accepted: 10/03/2022] [Indexed: 02/28/2023]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is one of the most common forms of autosomal-dominant cerebellar ataxia in Japan. SCA31 has a strong founder effect, which is consistent with the fact that this disease is basically absent in other ethnicities. After searching the entire founder region of a 2-megabase (Mb), we finally identified a 2.5 to 3.8 kb-long complex penta-nucleotide repeat containing (TGGAA)n, (TAGAA)n, (TAAAA)n and (TAAAATAGAA)n as the only genetic change segregating SCA31 individuals from normal people. Furthermore, (TGGAA)n was isolated as the only repeat explaining the pathogenesis because other repeats were encountered in control Japanese. From the genomic point of view, the complex penta-nucleotide repeat lies in an intronic segment shared by two genes, BEAN1 (brain expressed, associated with Nedd4) and TK2 (thymidine kinase 2) transcribed in mutually opposite directions. While TK2 is ubiquitously expressed, BEAN1 is transcribed only in the brain. Thus, the complex repeat is bi-directionally transcribed exclusively in the brain, as two independent non-coding repeats. Furthermore, the complex repeat containing (UGGAA)n was found to form abnormal RNA structures, called RNA foci, in cerebellar Purkinje cell nuclei of SCA31 patients' brains. Subsequent investigation by over-expressing (UGGAA)n in Drosophila revealed that the RNA containing (UGGAA)n exerts toxicity in a length- and expression level-dependent manner, whereas its toxicity could be dampened by (UGGAA)n-binding proteins, TDP-43, FUS and hnRNP A2/B1. It seems rational to formulate a treatment strategy through enhancing the role of RNA-binding proteins against (UGGAA)n-toxicity in SCA31.
Collapse
Affiliation(s)
- Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
2
|
Saucier J, Al-Qadi M, Amor MB, Ishikawa K, Chamard-Witkowski L. Spinocerebellar ataxia type 31: A clinical and radiological literature review. J Neurol Sci 2023; 444:120527. [PMID: 36563608 DOI: 10.1016/j.jns.2022.120527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant disease, classified amongst pure cerebellar ataxias (ADCA type 3). While SCA31 is the third most prevalent autosomal dominant ataxia in Japan, it is extremely rare in other countries. A literature review was conducted on PubMed, where we included all case reports and studies describing the clinical presentation of original SCA31 cases. The clinical and radiological features of 374 patients issued from 25 studies were collected. This review revealed that the average age of onset was 59.1 ± 3.3 years, with symptoms of slowly progressing ataxia and dysarthria. Other common clinical features were oculomotor dysfunction (38.8%), dysphagia (22.1%), hypoacousia (23.3%), vibratory hypoesthesia (24.3%), and dysreflexia (41.6%). Unfrequently, abnormal movements (7.4%), extrapyramidal symptoms (4.5%) and cognitive impairment (6.9%) may be observed. Upon radiological examination, clinicians can expect a high prevalence of cerebellar atrophy (78.7%), occasionally accompanied by brainstem (9.1%) and cortical (9.1%) atrophy. Although SCA31 is described as a slowly progressive pure cerebellar syndrome characterized by cerebellar signs such as ataxia, dysarthria and oculomotor dysfunction, this study evaluated a high prevalence of extracerebellar manifestations. Extracerebellar signs were observed in 52.5% of patients, primarily consisting of dysreflexia, vibratory hypoesthesia and hypoacousia. Nonetheless, we must consider the old age and longstanding disease course of patients as a confounding factor for extracerebellar sign development, as some may not be directly attributable to SCA31. Clinicians should consider SCA31 in patients with a hereditary, pure cerebellar syndrome and in patients with extracerebellar signs.
Collapse
Affiliation(s)
- Jacob Saucier
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada..
| | - Mohammad Al-Qadi
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Mouna Ben Amor
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Genetic Medicine, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Kinya Ishikawa
- The Center for Personalized Medecine for Healthy Aging, Tokyo, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, 113-8519 Tokyo, Japan
| | - Ludivine Chamard-Witkowski
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Neurology, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
3
|
Thymidine Kinase 2 and Mitochondrial Protein COX I in the Cerebellum of Patients with Spinocerebellar Ataxia Type 31 Caused by Penta-nucleotide Repeats (TTCCA) n. CEREBELLUM (LONDON, ENGLAND) 2023; 22:70-84. [PMID: 35084690 PMCID: PMC9883315 DOI: 10.1007/s12311-021-01364-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 02/01/2023]
Abstract
Spinocerebellar ataxia type 31 (SCA31), an autosomal-dominant neurodegenerative disorder characterized by progressive cerebellar ataxia with Purkinje cell degeneration, is caused by a heterozygous 2.5-3.8 kilobase penta-nucleotide repeat of (TTCCA)n in intron 11 of the thymidine kinase 2 (TK2) gene. TK2 is an essential mitochondrial pyrimidine-deoxyribonucleoside kinase. Bi-allelic loss-of-function mutations of TK2 lead to mitochondrial DNA depletion syndrome (MDS) in humans through severe (~ 70%) reduction of mitochondrial electron-transport-chain activity, and tk2 knockout mice show Purkinje cell degeneration and ataxia through severe mitochondrial cytochrome-c oxidase subunit I (COX I) protein reduction. To clarify whether TK2 function is altered in SCA31, we investigated TK2 and COX I expression in human postmortem SCA31 cerebellum. We confirmed that canonical TK2 mRNA is transcribed from exons far upstream of the repeat site, and demonstrated that an extended version of TK2 mRNA ("TK2-EXT"), transcribed from exons spanning the repeat site, is expressed in human cerebellum. While canonical TK2 was conserved among vertebrates, TK2-EXT was specific to primates. Reverse transcription-PCR demonstrated that both TK2 mRNAs were preserved in SCA31 cerebella compared with control cerebella. The TK2 proteins, assessed with three different antibodies including our original polyclonal antibody against TK2-EXT, were detected as ~ 26 kilodalton proteins on western blot; their levels were similar in SCA31 and control cerebella. COX I protein level was preserved in SCA31 compared to nuclear DNA-encoded protein. We conclude that the expression and function of TK2 are preserved in SCA31, suggesting a mechanism distinct from that of MDS.
Collapse
|
4
|
Younger DS. Neurogenetic motor disorders. HANDBOOK OF CLINICAL NEUROLOGY 2023; 195:183-250. [PMID: 37562870 DOI: 10.1016/b978-0-323-98818-6.00003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Advances in the field of neurogenetics have practical applications in rapid diagnosis on blood and body fluids to extract DNA, obviating the need for invasive investigations. The ability to obtain a presymptomatic diagnosis through genetic screening and biomarkers can be a guide to life-saving disease-modifying therapy or enzyme replacement therapy to compensate for the deficient disease-causing enzyme. The benefits of a comprehensive neurogenetic evaluation extend to family members in whom identification of the causal gene defect ensures carrier detection and at-risk counseling for future generations. This chapter explores the many facets of the neurogenetic evaluation in adult and pediatric motor disorders as a primer for later chapters in this volume and a roadmap for the future applications of genetics in neurology.
Collapse
Affiliation(s)
- David S Younger
- Department of Clinical Medicine and Neuroscience, CUNY School of Medicine, New York, NY, United States; Department of Medicine, Section of Internal Medicine and Neurology, White Plains Hospital, White Plains, NY, United States.
| |
Collapse
|
5
|
Zhang N, Ashizawa T. Mechanistic and Therapeutic Insights into Ataxic Disorders with Pentanucleotide Expansions. Cells 2022; 11:1567. [PMID: 35563872 PMCID: PMC9099484 DOI: 10.3390/cells11091567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/01/2023] Open
Abstract
Pentanucleotide expansion diseases constitute a special class of neurodegeneration. The repeat expansions occur in non-coding regions, have likely arisen from Alu elements, and often result in autosomal dominant or recessive phenotypes with underlying cerebellar neuropathology. When transcribed (potentially bidirectionally), the expanded RNA forms complex secondary and tertiary structures that can give rise to RNA-mediated toxicity, including protein sequestration, pentapeptide synthesis, and mRNA dysregulation. Since several of these diseases have recently been discovered, our understanding of their pathological mechanisms is limited, and their therapeutic interventions underexplored. This review aims to highlight new in vitro and in vivo insights into these incurable diseases.
Collapse
Affiliation(s)
- Nan Zhang
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| | - Tetsuo Ashizawa
- Neuroscience Research Program, Department of Neurology, Houston Methodist Research Institute, Weil Cornell Medical College, Houston, TX 77030, USA;
| |
Collapse
|
6
|
Gall-Duncan T, Sato N, Yuen RKC, Pearson CE. Advancing genomic technologies and clinical awareness accelerates discovery of disease-associated tandem repeat sequences. Genome Res 2022; 32:1-27. [PMID: 34965938 PMCID: PMC8744678 DOI: 10.1101/gr.269530.120] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/29/2021] [Indexed: 11/25/2022]
Abstract
Expansions of gene-specific DNA tandem repeats (TRs), first described in 1991 as a disease-causing mutation in humans, are now known to cause >60 phenotypes, not just disease, and not only in humans. TRs are a common form of genetic variation with biological consequences, observed, so far, in humans, dogs, plants, oysters, and yeast. Repeat diseases show atypical clinical features, genetic anticipation, and multiple and partially penetrant phenotypes among family members. Discovery of disease-causing repeat expansion loci accelerated through technological advances in DNA sequencing and computational analyses. Between 2019 and 2021, 17 new disease-causing TR expansions were reported, totaling 63 TR loci (>69 diseases), with a likelihood of more discoveries, and in more organisms. Recent and historical lessons reveal that properly assessed clinical presentations, coupled with genetic and biological awareness, can guide discovery of disease-causing unstable TRs. We highlight critical but underrecognized aspects of TR mutations. Repeat motifs may not be present in current reference genomes but will be in forthcoming gapless long-read references. Repeat motif size can be a single nucleotide to kilobases/unit. At a given locus, repeat motif sequence purity can vary with consequence. Pathogenic repeats can be "insertions" within nonpathogenic TRs. Expansions, contractions, and somatic length variations of TRs can have clinical/biological consequences. TR instabilities occur in humans and other organisms. TRs can be epigenetically modified and/or chromosomal fragile sites. We discuss the expanding field of disease-associated TR instabilities, highlighting prospects, clinical and genetic clues, tools, and challenges for further discoveries of disease-causing TR instabilities and understanding their biological and pathological impacts-a vista that is about to expand.
Collapse
Affiliation(s)
- Terence Gall-Duncan
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nozomu Sato
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
| | - Ryan K C Yuen
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Christopher E Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario M5G 1L7, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
7
|
Ishiguro T, Nagai Y, Ishikawa K. Insight Into Spinocerebellar Ataxia Type 31 (SCA31) From Drosophila Model. Front Neurosci 2021; 15:648133. [PMID: 34113230 PMCID: PMC8185138 DOI: 10.3389/fnins.2021.648133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 31 (SCA31) is a progressive neurodegenerative disease characterized by degeneration of Purkinje cells in the cerebellum. Its genetic cause is a 2.5- to 3.8-kb-long complex pentanucleotide repeat insertion containing (TGGAA)n, (TAGAA)n, (TAAAA)n, and (TAAAATAGAA)n located in an intron shared by two different genes: brain expressed associated with NEDD4-1 (BEAN1) and thymidine kinase 2 (TK2). Among these repeat sequences, (TGGAA)n repeat was the only sequence segregating with SCA31, which strongly suggests its pathogenicity. In SCA31 patient brains, the mutant BEAN1 transcript containing expanded UGGAA repeats (UGGAAexp) was found to form abnormal RNA structures called RNA foci in cerebellar Purkinje cell nuclei. In addition, the deposition of pentapeptide repeat (PPR) proteins, poly(Trp-Asn-Gly-Met-Glu), translated from UGGAAexp RNA, was detected in the cytoplasm of Purkinje cells. To uncover the pathogenesis of UGGAAexp in SCA31, we generated Drosophila models of SCA31 expressing UGGAAexp RNA. The toxicity of UGGAAexp depended on its length and expression level, which was accompanied by the accumulation of RNA foci and translation of repeat-associated PPR proteins in Drosophila, consistent with the observation in SCA31 patient brains. We also revealed that TDP-43, FUS, and hnRNPA2B1, motor neuron disease–linked RNA-binding proteins bound to UGGAAexp RNA, act as RNA chaperones to regulate the formation of RNA foci and repeat-associated translation. Further research on the role of RNA-binding proteins as RNA chaperones may also provide a novel therapeutic strategy for other microsatellite repeat expansion diseases besides SCA31.
Collapse
Affiliation(s)
- Taro Ishiguro
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo City, Japan.,Department of Personalized Genomic Medicine for Health, Graduate School, Tokyo Medical and Dental University, Bunkyo City, Japan
| |
Collapse
|
8
|
Norioka R, Sugaya K, Murayama A, Kawazoe T, Tobisawa S, Kawata A, Takahashi K. Midbrain atrophy related to parkinsonism in a non-coding repeat expansion disorder: five cases of spinocerebellar ataxia type 31 with nigrostriatal dopaminergic dysfunction. CEREBELLUM & ATAXIAS 2021; 8:11. [PMID: 33785066 PMCID: PMC8010976 DOI: 10.1186/s40673-021-00134-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Background Spinocerebellar ataxia type 31 (SCA31) is caused by non-coding pentanucleotide repeat expansions in the BEAN1 gene. Clinically, SCA31 is characterized by late adult-onset, pure cerebellar ataxia. To explore the association between parkinsonism and SCA31, five patients with SCA31 with concomitant nigrostriatal dopaminergic dysfunction (NSDD) development, including three cases of L-DOPA responsive parkinsonism, were analyzed. Methods To assess regional brain atrophy, cross-sectional and longitudinal imaging analyses were retrospectively performed using magnetic resonance imaging (MRI) planimetry. The midbrain-to-pons (M/P) area ratio and cerebellar area were measured on midsagittal T1-weighted MRI in five patients with SCA31 with concomitant NSDD (NSDD(+)), 14 patients with SCA31 without NSDD (NSDD(−)), 32 patients with Parkinson’s disease (PD), and 15 patients with progressive supranuclear palsy (PSP). Longitudinal changes in the M/P area ratio were assessed by serial MRI of NSDD(+) (n = 5) and NSDD(−) (n = 9). Results The clinical characteristics assessed in the five patients with NSDD were as follows: the mean age at NSDD onset (72.0 ± 10.8 years), prominence of bradykinesia/akinesia (5/5), rigidity (4/5), tremor (2/5), dysautonomia (0/5), vertical gaze limitation (1/5), and abnormalities on 123I-ioflupane dopamine transporter scintigraphy (3/3) and 3-Tesla neuromelanin MRI (4/4). A clear reduction in the midbrain area and the M/P area ratio was observed in the NSDD(+) group (p < 0.05) while there was no significant difference in disease duration or in the pons area among the NSDD(+), NSDD(−), and PD groups. There was also a significant difference in the midbrain and pons area between NSDD(+) and PSP (p < 0.05). Thus, mild but significant midbrain atrophy was observed in NSDD(+). A faster rate of decline in the midbrain area and the M/P area ratio was evident in NSDD(+) (p < 0.05). Conclusion The clinical characteristics of the five patients with SCA31 with concomitant NSDD, together with the topographical pattern of atrophy, were inconsistent with PD, PSP, and multiple system atrophy, suggesting that SCA31 may manifest NSDD in association with the pathomechanisms underlying SCA31. Supplementary Information The online version contains supplementary material available at 10.1186/s40673-021-00134-4.
Collapse
Affiliation(s)
- Ryohei Norioka
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan.
| | - Aki Murayama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Shinsuke Tobisawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Akihiro Kawata
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo, 183-0042, Japan
| |
Collapse
|
9
|
Toru S, Ishida S, Uchihara T, Hirokawa K, Kitagawa M, Ishikawa K. Comorbid argyrophilic grain disease in an 87-year-old male with spinocerebellar ataxia type 31 with dementia: a case report. BMC Neurol 2020; 20:136. [PMID: 32293309 PMCID: PMC7158122 DOI: 10.1186/s12883-020-01723-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinocerebellar ataxia type 31 (SCA31) is not usually associated with dementia, and autopsy in a patient with both conditions is very rare. Case presentation An 87-year-old male patient presented with ataxia and progressive dementia. Genetic testing led to a diagnosis of SCA31. Fifteen years after his initial symptoms of hearing loss and difficulty walking, he died of aspiration pneumonia. A pathological analysis showed cerebellar degeneration consistent with SCA31 and abundant argyrophilic grains in the hippocampal formation and amygdala that could explain his dementia. Conclusions This is the first autopsy report on comorbid argyrophilic grain disease with SCA31.
Collapse
Affiliation(s)
- Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, 4-59-16 Chuo, Nakano-ku, Tokyo, 164-8607, Japan.
| | - Shoko Ishida
- Department of Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Toshiki Uchihara
- Department of Neurology, Nitobe Memorial Nakano General Hospital, 4-59-16 Chuo, Nakano-ku, Tokyo, 164-8607, Japan
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, 4-59-16 Chuo, Nakano-ku, Tokyo, 164-8607, Japan
| | - Masanobu Kitagawa
- Department of Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kinya Ishikawa
- Department of Neurology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
10
|
Bando K, Honda T, Ishikawa K, Takahashi Y, Mizusawa H, Hanakawa T. Impaired Adaptive Motor Learning Is Correlated With Cerebellar Hemispheric Gray Matter Atrophy in Spinocerebellar Ataxia Patients: A Voxel-Based Morphometry Study. Front Neurol 2019; 10:1183. [PMID: 31803128 PMCID: PMC6871609 DOI: 10.3389/fneur.2019.01183] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 10/24/2019] [Indexed: 11/13/2022] Open
Abstract
Objective: To evaluate the degree to which recently proposed parameters measured via a prism adaptation task are correlated with changes in cerebellar structure, specifically gray matter volume (GMV), in patients with spinocerebellar degeneration (SCD). Methods: We performed whole-brain voxel-based morphometry (VBM) analysis on 3-dimensional T1-weighted images obtained from 23 patients with SCD [Spinocerebellar ataxia type 6 (SCA6), 31 (SCA31), 3/Machado-Joseph disease (SCA3/MJD), and sporadic cortical cerebellar atrophy (CCA)] and 21 sex- and age-matched healthy controls (HC group). We quantified a composite index representing adaptive motor learning abilities in a hand-reaching task with prism adaptation. After controlling for age, sex, and total intracranial volume, we analyzed group-wise differences in GMV and regional GMV correlations with the adaptive learning index. Results: Compared with the HC group, the SCD group showed reduced adaptive learning abilities and smaller GMV widely in the lobules IV-VIII in the bilateral cerebellar hemispheres. In the SCD group, the adaptive learning index was correlated with cerebellar hemispheric atrophy in the right lobule VI, the left Crus I. Additionally, GMV of the left supramarginal gyrus showed a correlation with the adaptive learning index in the SCD group, while the supramarginal region did not accompany reduction of GMV. Conclusions: This study indicated that a composite index derived from a prism adaptation task was correlated with GMV of the lateral cerebellum and the supramarginal gyrus in patients with SCD. This study should contribute to the development of objective biomarkers for disease severity and progression in SCD.
Collapse
Affiliation(s)
- Kyota Bando
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takeru Honda
- Motor Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yuji Takahashi
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hidehiro Mizusawa
- National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Takashi Hanakawa
- Department of Advanced Neuroimaging, Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, Tokyo, Japan.,Department of NCNP Brain Physiology and Pathology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Integrated Neuroanatomy and Neuroimaging, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Ishikawa K, Nagai Y. Molecular Mechanisms and Future Therapeutics for Spinocerebellar Ataxia Type 31 (SCA31). Neurotherapeutics 2019; 16:1106-1114. [PMID: 31755042 PMCID: PMC6985187 DOI: 10.1007/s13311-019-00804-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Spinocerebellar ataxia type 31 (SCA31) is one of the autosomal-dominant neurodegenerative disorders that shows progressive cerebellar ataxia as a cardinal symptom. This disease is caused by a 2.5- to 3.8-kb-long complex pentanucleotide repeat containing (TGGAA)n, (TAGAA)n, (TAAAA)n, and (TAAAATAGAA)n in an intron of the gene called BEAN1 (brain expressed, associated with Nedd4). By comparing various pentanucleotide repeats in this particular locus among control Japanese and Caucasian populations, it was found that (TGGAA)n was the only sequence segregating with SCA31, strongly suggesting the pathogenicity of (TGGAA)n. The complex repeat also lies in an intron of another gene, TK2 (thymidine kinase 2), which is transcribed in the opposite direction, indicating that the complex repeat is bi-directionally transcribed as noncoding repeats. In SCA31 human brains, (UGGAA)n, the BEAN1 transcript of SCA31 mutation was found to form abnormal RNA structures called RNA foci in cerebellar Purkinje cell nuclei. Subsequent RNA pulldown analysis disclosed that (UGGAA)n binds to RNA-binding proteins TDP-43, FUS, and hnRNP A2/B1. In fact, TDP-43 was found to co-localize with RNA foci in human SCA31 Purkinje cells. To dissect the pathogenesis of (UGGAA)n in SCA31, we generated transgenic fly models of SCA31 by overexpressing SCA31 complex pentanucleotide repeats in Drosophila. We found that the toxicity of (UGGAA)n is length- and expression level-dependent, and it was dampened by co-expressing TDP-43, FUS, and hnRNP A2/B1. Further investigation revealed that TDP-43 ameliorates (UGGAA)n toxicity by directly fixing the abnormal structure of (UGGAA)n. This led us to propose that TDP-43 acts as an RNA chaperone against toxic (UGGAA)n. Further research on the role of RNA-binding proteins as RNA chaperones may provide a novel therapeutic strategy for SCA31.
Collapse
Affiliation(s)
- Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
12
|
Taki M, Nakamura T, Matsuura H, Hasegawa T, Sakaguchi H, Morita K, Ishii R, Mizuta I, Kasai T, Mizuno T, Hirano S. Cerebellar ataxia with neuropathy and vestibular areflexia syndrome (CANVAS). Auris Nasus Larynx 2018; 45:866-870. [DOI: 10.1016/j.anl.2017.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/28/2022]
|
13
|
Sakai K, Ishida C, Kato-Motozaki Y, Tagami A, Komai K, Yamada M. Somatic sprouts of the Purkinje cells in a patient with multiple system atrophy. Neuropathology 2018; 38:407-410. [PMID: 29575082 DOI: 10.1111/neup.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/20/2018] [Accepted: 02/17/2018] [Indexed: 11/30/2022]
Abstract
We describe the post mortem case of a 71-year-old Japanese woman diagnosed as having multiple system atrophy (MSA), showing somatic sprouting formation of Purkinje cells. The patient had suffered from frequent falling episodes and clumsiness of the left hand since the age of 67 years. Orthostatic hypotension and parkinsonism subsequently emerged. Typical neuropathological features of MSA, including degeneration of the striatum, pontine base and cerebellum with abundance of phosphorylated α-synuclein-positive neuronal and glial cytoplasmic and nuclear inclusions in the brain, were observed. In addition to gliosis of the cerebellar white matter and notable loss of Purkinje cells, several Purkinje cells showed somatic sprouting. Somatic sprouting of Purkinje cells has been demonstrated in several specific conditions, such as developing brains and several neurodegenerative disorders, including Menkes kinky hair disease, familial spinocerebellar ataxia, acute encephalopathy linked to familial hemiplegic migraine, and Huntington's disease; however, no MSA cases have been reported with sprouting from the soma of Purkinje cells. Axonal damage caused by oligodendroglial dysfunction could be crucial in the development of Purkinje cell loss in MSA. Moreover, no apparent α-synuclein accumulation has been described in the Purkinje cells of MSA. We propose that MSA is another degenerative disorder associated with somatic sprouts of Purkinje cells.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Chiho Ishida
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Yuko Kato-Motozaki
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Atsuro Tagami
- Department of Internal Medicine, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Kiyonobu Komai
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| |
Collapse
|
14
|
|
15
|
Hashimoto T, Muralidharan A, Yoshida K, Goto T, Yako T, Baker KB, Vitek JL. Neuronal activity and outcomes from thalamic surgery for spinocerebellar ataxia. Ann Clin Transl Neurol 2018; 5:52-63. [PMID: 29376092 PMCID: PMC5771317 DOI: 10.1002/acn3.508] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/30/2017] [Accepted: 10/31/2017] [Indexed: 11/11/2022] Open
Abstract
Objectives We investigated the effects of deep brain stimulation (DBS) or lesions of the ventral intermediate nucleus (Vim) of the thalamus for spinocerebellar ataxia (SCA) and examined the pathophysiological role of neuronal activity of the Vim underlying ataxia. Methods Five patients with SCA with cortical atrophy (ages 60-69 years; 2 sporadic and three familial SCA) and five patients with essential tremor (ET) (ages 57-71 years) were treated with Vim surgery. Intraoperatively, we recorded neuronal activity from single neurons in the Vim thalamus while patients were at rest and compared the physiological properties of those neurons between patients with SCA and those with ET. Results Postsurgery mean scores for the Fahn-Tolosa-Marin Tremor Scale were improved from 78 to 44 in SCA patients and from 54 to 21 in ET patients. Stronger stimulation was necessary to optimize outcomes in SCA as compared to ET patients. We analyzed 68 Vim neurons in SCA and 60 Vim neurons in ET. Mean discharge rates, burst characteristics, and oscillatory activity were similar for both patient groups, however, we observed that the ratio of cells responding to passive manipulation was significantly smaller (P = 0.0001) in SCA (22%) than in ET (71%). Interpretation Thalamic surgery led to a significant improvement in tremor in SCA patients. One potential mechanism underlying ataxia in SCA may be disruption of cerebellar sensory feedback, which modulates motor commands in the cerebello-thalamo-cortical network.
Collapse
Affiliation(s)
| | - Abirami Muralidharan
- Neuromodulation Research CenterDepartment of NeurologyUniversity of MinnesotaMinneapolisMinnesota
| | - Kunihiro Yoshida
- Department of Brain Disease ResearchShinshu University School of MedicineMatsumotoJapan
| | - Tetsuya Goto
- Department of NeurosurgeryShinshu University School of MedicineMatsumotoJapan
| | - Takehiro Yako
- Department of NeurosurgeryAizawa HospitalMatsumotoJapan
| | | | - Jerrold L. Vitek
- Neuromodulation Research CenterDepartment of NeurologyUniversity of MinnesotaMinneapolisMinnesota
| |
Collapse
|
16
|
Miyake N, Fukai R, Ohba C, Chihara T, Miura M, Shimizu H, Kakita A, Imagawa E, Shiina M, Ogata K, Okuno-Yuguchi J, Fueki N, Ogiso Y, Suzumura H, Watabe Y, Imataka G, Leong HY, Fattal-Valevski A, Kramer U, Miyatake S, Kato M, Okamoto N, Sato Y, Mitsuhashi S, Nishino I, Kaneko N, Nishiyama A, Tamura T, Mizuguchi T, Nakashima M, Tanaka F, Saitsu H, Matsumoto N. Biallelic TBCD Mutations Cause Early-Onset Neurodegenerative Encephalopathy. Am J Hum Genet 2016; 99:950-961. [PMID: 27666374 DOI: 10.1016/j.ajhg.2016.08.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023] Open
Abstract
We describe four families with affected siblings showing unique clinical features: early-onset (before 1 year of age) progressive diffuse brain atrophy with regression, postnatal microcephaly, postnatal growth retardation, muscle weakness/atrophy, and respiratory failure. By whole-exome sequencing, we identified biallelic TBCD mutations in eight affected individuals from the four families. TBCD encodes TBCD (tubulin folding co-factor D), which is one of five tubulin-specific chaperones playing a pivotal role in microtubule assembly in all cells. A total of seven mutations were found: five missense mutations, one nonsense, and one splice site mutation resulting in a frameshift. In vitro cell experiments revealed the impaired binding between most mutant TBCD proteins and ARL2, TBCE, and β-tubulin. The in vivo experiments using olfactory projection neurons in Drosophila melanogaster indicated that the TBCD mutations caused loss of function. The wide range of clinical severity seen in this neurodegenerative encephalopathy may result from the residual function of mutant TBCD proteins. Furthermore, the autopsied brain from one deceased individual showed characteristic neurodegenerative findings: cactus and somatic sprout formations in the residual Purkinje cells in the cerebellum, which are also seen in some diseases associated with mitochondrial impairment. Defects of microtubule formation caused by TBCD mutations may underlie the pathomechanism of this neurodegenerative encephalopathy.
Collapse
|
17
|
Sakai K, Ishida C, Morinaga A, Takahashi K, Yamada M. Case Study: Somatic Sprouts and Halo-Like Amorphous Materials of the Purkinje Cells in Huntington's Disease. THE CEREBELLUM 2016; 14:707-10. [PMID: 25962893 DOI: 10.1007/s12311-015-0678-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We described a 63-year-old Japanese female with genetically confirmed Huntington's disease who showed unusual pathological findings in the cerebellum. This case exhibited typical neuropathological features as Huntington's disease, including severe degeneration of the neostriatum and widespread occurrence of ubiquitin and expanded polyglutamine-positive neuronal intranuclear and intracytoplasmic inclusions. The cerebellum was macroscopically unremarkable; however, somatic sprouts and halo-like amorphous materials of Purkinje cell with a large amount of torpedoes were noteworthy. Furthermore, the Purkinje cells were found to have granular cytoplasmic inclusions. Somatic sprouting is a form of degenerated Purkinje cell exhibited in several specific conditions. Although this finding usually appeared in developmental brains, several neurodegenerative disorders, including Menkes kinky hair disease, familial spinocerebellar ataxia, acute encephalopathy linked to familial hemiplegic migraine, and several other conditions, have been reported showing sprouting from the soma of Purkinje cell. We propose that Huntington's disease is another degenerative condition associated with these distinct neuropathological findings of Purkinje cell. Abnormally accumulated huntingtin protein in the cytoplasm could be related to the development of these structures.
Collapse
Affiliation(s)
- Kenji Sakai
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.
| | - Chiho Ishida
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Akiyoshi Morinaga
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan.,Department of Neurology, National Hospital Organization Nanao Hospital, Nanao, Japan
| | - Kazuya Takahashi
- Department of Neurology, National Hospital Organization Iou Hospital, Kanazawa, Japan
| | - Masahito Yamada
- Department of Neurology and Neurobiology of Aging, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| |
Collapse
|
18
|
Ishikawa K, Mizusawa H. The chromosome 16q-linked autosomal dominant cerebellar ataxia (16q-ADCA): A newly identified degenerative ataxia in Japan showing peculiar morphological changes of the Purkinje cell: The 50th Anniversary of Japanese Society of Neuropathology. Neuropathology 2016; 30:490-4. [PMID: 20667009 DOI: 10.1111/j.1440-1789.2010.01142.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chromosome 16q22.1-linked autosomal-dominant cerebellar ataxia (16q-ADCA) is a form of spinocerebellar ataxia (SCA) common in Japan. It is clinically characterized by late-onset purely cerebellar ataxia. The neuropathologic hallmark of 16q-ADCA is degeneration of Purkinje cells accompanied by an eosinophilic structure which we named "halo-like amorphous materials". By immunohistochemistry and electron microscopy, the structure has been so far found to contain two components: the somatic sprouts from the Purkinje cells and presynaptic terminals of unknown origin. As far as we are aware, this peculiar morphological change of Purkinje cells has not been previously described. Further investigations may disclose unique pathological processes in SCA.
Collapse
Affiliation(s)
- Kinya Ishikawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Sciences, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
19
|
Ohmori H, Hara A, Ishikawa K, Mizusawa H, Ando Y. Clinical characteristics of combined cases of spinocerebellar ataxia types 6 and 31. J Neurogenet 2015; 29:80-4. [PMID: 26004545 DOI: 10.3109/01677063.2015.1054992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study reports the first family in which spinocerebellar ataxia type 6 (SCA6) and spinocerebellar ataxia type 31 (SCA31) mutations were seen. An index patient first presented to our hospital due to gait and speech disturbances. Subsequent clinical investigation of this patient and her family members revealed consistent pure cerebellar ataxia transmitted in an autosomal-dominant manner. Genetic examination unexpectedly demonstrated that two of the five affected individuals had expansions of SCA6 and SCA31, while two others had SCA31 alone and the remaining had SCA6. Clinical manifestations were more severe in individuals with combined mutations relative to those with single mutation, suggesting that the SCA6 and SCA31 mutations have a cumulative pathogenic effect.
Collapse
Affiliation(s)
- Hiroyuki Ohmori
- a Department of Neurology , Yamaga Chuo Hospital , Yamaga City, Kumamoto , Japan
| | - Akio Hara
- a Department of Neurology , Yamaga Chuo Hospital , Yamaga City, Kumamoto , Japan
| | - Kinya Ishikawa
- b Department of Neurology and Neurological Science , Tokyo Medical and Dental University , Tokyo , Japan
| | - Hidehiro Mizusawa
- b Department of Neurology and Neurological Science , Tokyo Medical and Dental University , Tokyo , Japan
| | - Yukio Ando
- c Department of Neurology , Graduate School of Medical Sciences, Kumamoto University , Kumamoto , Japan
| |
Collapse
|
20
|
Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement. PLoS One 2015; 10:e0119376. [PMID: 25785588 PMCID: PMC4364988 DOI: 10.1371/journal.pone.0119376] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/30/2015] [Indexed: 12/01/2022] Open
Abstract
The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our paradigm, the participant wearing prism-equipped goggles touches their index finger to the target presented on a touchscreen in every trial. The whole test consisted of three consecutive sessions: (1) 50 trials with normal vision (BASELINE), (2) 100 trials wearing the prism that shifts the visual field 25° rightward (PRISM), and (3) 50 trials without the prism (REMOVAL). In healthy subjects, the prism-induced finger-touch error, i.e., the distance between touch and target positions, was decreased gradually by motor learning through repetition of trials. We found that such motor learning could be quantified using the “adaptability index (AI)”, which was calculated by multiplying each probability of [acquisition in the last 10 trials of PRISM], [retention in the initial five trials of REMOVAL], and [extinction in the last 10 trials of REMOVAL]. The AI of cerebellar patients less than 70 years old (mean, 0.227; n = 62) was lower than that of age-matched healthy subjects (0.867, n = 21; p < 0.0001). While AI did not correlate with the magnitude of dysmetria in ataxic patients, it declined in parallel with disease progression, suggesting a close correlation between the impaired cerebellar motor leaning and the dysmetria. Furthermore, AI decreased with aging in the healthy subjects over 70 years old compared with that in the healthy subjects less than 70 years old. We suggest that our paradigm of prism adaptation may allow us to quantitatively assess cerebellar motor learning in both normal and diseased conditions.
Collapse
|
21
|
Rare frequency of downbeat positioning nystagmus in spinocerebellar ataxia type 31. J Neurol Sci 2015; 350:90-2. [DOI: 10.1016/j.jns.2014.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 11/22/2022]
|
22
|
The 3-second rule in hereditary pure cerebellar ataxia: a synchronized tapping study. PLoS One 2015; 10:e0118592. [PMID: 25706752 PMCID: PMC4337906 DOI: 10.1371/journal.pone.0118592] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/21/2015] [Indexed: 11/19/2022] Open
Abstract
The '3-second rule' has been proposed based on miscellaneous observations that a time period of around 3 seconds constitutes the fundamental unit of time related to the neuro-cognitive machinery in normal humans. The aim of paper was to investigate the temporal processing in patients with spinocerebellar ataxia type 6 (SCA6) and SCA31, pure cerebellar types of spinocerebellar degeneration, using a synchronized tapping task. Seventeen SCA patients (11 SCA6, 6 SCA31) and 17 normal age-matched volunteers participated. The task required subjects to tap a keyboard in synchrony with sequences of auditory stimuli presented at fixed interstimulus intervals (ISIs) between 200 and 4800 ms. In this task, the subjects required non-motor components to estimate the time of forthcoming tone in addition to motor components to tap. Normal subjects synchronized their taps to the presented tones at shorter ISIs, whereas as the ISI became longer, the normal subjects displayed greater latency between the tone and the tapping (transition zone). After the transition zone, normal subjects pressed the button delayed relative to the tone. On the other hand, SCA patients could not synchronize their tapping with the tone even at shorter ISIs, although they pressed the button delayed relative to the tone earlier than normal subjects did. The earliest time of delayed tapping appearance after the transition zone was 4800 ms in normal subjects but 1800 ms in SCA patients. The span of temporal integration in SCA patients is shortened compared to that in normal subjects. This could represent non-motor cerebellar dysfunction in SCA patients.
Collapse
|
23
|
Matsuda S, Matsumoto H, Furubayashi T, Fukuda H, Emoto M, Hanajima R, Tsuji S, Ugawa Y, Terao Y. Top-down but not bottom-up visual scanning is affected in hereditary pure cerebellar ataxia. PLoS One 2014; 9:e116181. [PMID: 25545148 PMCID: PMC4278854 DOI: 10.1371/journal.pone.0116181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/04/2014] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to clarify the nature of visual processing deficits caused by cerebellar disorders. We studied the performance of two types of visual search (top-down visual scanning and bottom-up visual scanning) in 18 patients with pure cerebellar types of spinocerebellar degeneration (SCA6: 11; SCA31: 7). The gaze fixation position was recorded with an eye-tracking device while the subjects performed two visual search tasks in which they looked for a target Landolt figure among distractors. In the serial search task, the target was similar to the distractors and the subject had to search for the target by processing each item with top-down visual scanning. In the pop-out search task, the target and distractor were clearly discernible and the visual salience of the target allowed the subjects to detect it by bottom-up visual scanning. The saliency maps clearly showed that the serial search task required top-down visual attention and the pop-out search task required bottom-up visual attention. In the serial search task, the search time to detect the target was significantly longer in SCA patients than in normal subjects, whereas the search time in the pop-out search task was comparable between the two groups. These findings suggested that SCA patients cannot efficiently scan a target using a top-down attentional process, whereas scanning with a bottom-up attentional process is not affected. In the serial search task, the amplitude of saccades was significantly smaller in SCA patients than in normal subjects. The variability of saccade amplitude (saccadic dysmetria), number of re-fixations, and unstable fixation (nystagmus) were larger in SCA patients than in normal subjects, accounting for a substantial proportion of scattered fixations around the items. Saccadic dysmetria, re-fixation, and nystagmus may play important roles in the impaired top-down visual scanning in SCA, hampering precise visual processing of individual items.
Collapse
Affiliation(s)
| | | | - Toshiaki Furubayashi
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hideki Fukuda
- Segawa Neurological Clinic for Children, Tokyo, Japan
| | - Masaki Emoto
- Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan
| | | | - Shoji Tsuji
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yasuo Terao
- Department of Neurology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
24
|
Adachi T, Kitayama M, Nakano T, Adachi Y, Kato S, Nakashima K. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology 2014; 35:273-9. [PMID: 25495291 DOI: 10.1111/neup.12184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant cerebellar ataxia commonly observed in Japan. However, few neuropathological examinations have been conducted. Here we report the case of a 76-year-old Japanese male SCA31 patient. He noticed dysarthria and difficulty walking at 65 years old. His symptoms subsequently deteriorated, although he could still walk with assistance at 70 years. At 73 years, when he could no longer walk, he was admitted to our hospital. He showed severe limb and truncal ataxia. His father and older brother had shown the same symptoms. Brain magnetic resonance imaging showed cerebellar atrophy of the anterior lobe and white matter hyperintensities. He was diagnosed with SCA31 by genetic analysis. Gradually, his cognitive functions and ability to communicate declined. He died of respiratory failure at the age of 76. Neuropathological examination revealed severe Purkinje cell loss that was accentuated in the anterior lobe of the cerebellum. Furthermore, the remaining Purkinje cells showed abnormal processes (that is, halo-like amorphous materials), as has been reported previously. Severe deposition of hyperphosphorylated tau-positive neurites, many senile plaques and amyloid angiopathy were observed in the neocortex. Our findings suggest that in SCA31, accelerated tau and amyloid pathology in the neocortex might induce dementia at the terminal stage.
Collapse
Affiliation(s)
- Tadashi Adachi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Michio Kitayama
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Toshiya Nakano
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiki Adachi
- Department of Neurology, National Hospital Organization Matsue Medical Center, Matsue, Japan
| | - Shinsuke Kato
- Department of Neuropathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kenji Nakashima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
25
|
Matsuda S, Matsumoto H, Furubayashi T, Fukuda H, Hanajima R, Tsuji S, Ugawa Y, Terao Y. Visual Scanning Area is Abnormally Enlarged in Hereditary Pure Cerebellar Ataxia. THE CEREBELLUM 2014; 14:63-71. [PMID: 25231433 DOI: 10.1007/s12311-014-0600-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Saito R, Kikuno S, Maeda M, Uesaka Y, Ida M. [A case of 77-year-old male with spinocerebellar ataxia type 31 with left dominant dystonia]. Rinsho Shinkeigaku 2014; 54:643-7. [PMID: 25142535 DOI: 10.5692/clinicalneurol.54.643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report on the case of a 77-year-old male with genetically proven spinocerebellar ataxia type 31 (SCA31) who had dystonia. He was referred to our hospital for evaluation following a 6-year history of slowly progressive unsteadiness of his left leg during walking and dysarthria at the age of 62 years old. On the basis of his symptoms, we diagnosed him as spinocerebellar degeneration (SCD), and prescribed taltirelin hydrate. However, his symptoms continued to worsen. He required a cane for walking at the age of 63 years, and a wheelchair at the age of 66 years. He was admitted to our hospital following acute cerebral infarction at the age of 77 years. On examination at admission, right hemiparesis and cerebellar ataxia were detected. And left hallux moved involuntarily toward the top surface of the foot at rest, that is dystonia. The dystonia was not associated with cerebral infarction, because it had been several years with dystonia that he got cerebral infarction. Genetic analysis revealed that this patient harbored a heterozygous SCA31 mutation. Previously there have been no reports of SCA31 associated with dystonia. Our case report support clinical heterogeneity of SCA31, and highlight the importance of considering this type in patients with dystonia and ataxia. Patients with the combination of dystonia and ataxia and a family history of a neurodegenerative disorder should be tested for SCA31.
Collapse
Affiliation(s)
- Rie Saito
- Department of Neurology, Toranomon Hospital
| | | | | | | | | |
Collapse
|
27
|
Sakakibara S, Aiba I, Saito Y, Inukai A, Ishikawa K, Mizusawa H. [Clinical features and MRI findings in spinocerebellar ataxia type 31 (SCA31) comparing with spinocerebellar ataxia type 6 (SCA6)]. Rinsho Shinkeigaku 2014; 54:473-479. [PMID: 24990830 DOI: 10.5692/clinicalneurol.54.473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Since the discovery of spinocerebellar ataxia type 31 (SCA31) gene, we identified 6 patients whose SCA type had been unkown for a long period of time as having SCA31 in our hospital and realized that SCA31 is not a rare type of autosomal dominant spinocerebellar ataxia in this region. We examined and compared the clinical details of these six SCA31 patients and the same number of SCA6 patients, finding that some SCA31 patients had hearing loss in common while there are more wide range and complicated signs of extra cerebellum in SCA6 such as pyramidal signs, extrapyramidal signs, dizzy sensations or psychotic, mental problems. There is a significant difference in the number of extracerebellar symptoms between SCA31 and SCA6. There are differences also in MRI findings. Cerebellar atrophy starts from the upper vermis in SCA31, as well as some SCA types, whereas the 4th ventricule becomes enlarged in SCA6 even in the early stage of disease. We suggest that these differences in clinical and MRI findings can be clues for accurate diagnosis before gene analysis.
Collapse
Affiliation(s)
- Satoko Sakakibara
- Department of Neurology, National Hospital Organization Higashi Nagoya National Hospital
| | | | | | | | | | | |
Collapse
|
28
|
Yoshida K, Asakawa M, Suzuki-Kouyama E, Tabata K, Shintaku M, Ikeda SI, Oyanagi K. Distinctive features of degenerating Purkinje cells in spinocerebellar ataxia type 31. Neuropathology 2013; 34:261-7. [PMID: 24344778 PMCID: PMC4282432 DOI: 10.1111/neup.12090] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/15/2013] [Indexed: 11/29/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant form of pure cerebellar ataxia that is caused by a disease-specific insertion containing penta-nucleotide repeats (TGGAA)n. Neuropathologically, cerebellar Purkinje cells are preferentially affected and reduced in number in SCA31, and they are often surrounded by halo-like amorphous materials. In the present study, we performed neuropathological analyses on two SCA31 brains, and discussed the serial morphological changes of Purkinje cells in SCA31.We found that bent, elongated, often folded nuclei were observed frequently in degenerating Purkinje cells with the halo-like structure. Conversely, Purkinje cells without this structure developed marked atrophy with severely slender and condensed nuclei. On the basis of these pathological findings, we propose two different processes for Purkinje cell degeneration in SCA31, namely, shrinkage of Purkinje cells with or without the halo-like amorphous materials. The former, but not the latter, was considered to be specific to SCA31. Correspondingly, fragmentation of the Golgi apparatus was observed more frequently in Purkinje cells with the halo-like structure than in those without this structure. We consider that the profound nuclear deformity and fragmentation of the Golgi apparatus are closely linked with the formation of the halo-like structure in SCA31.
Collapse
Affiliation(s)
- Kunihiro Yoshida
- Division of Neurogenetics, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
SUGIYAMA M, SAKAKIBARA R, TATENO F, YANO M, TAKAHASHI O, KISHI M, TSUYUSAKI Y, YAMAMOTO T, UCHIYAMA T, YAMANISHI T, YAMAGUCHI C, NOMURA F. Voiding Dysfunction in Spinocerebellar Ataxia Type 31. Low Urin Tract Symptoms 2013; 6:64-7. [DOI: 10.1111/luts.12021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/08/2013] [Accepted: 03/11/2013] [Indexed: 01/23/2023]
Affiliation(s)
- Megumi SUGIYAMA
- Clinical Physiology Unit; Sakura Medical Center, Toho University; Sakura Japan
| | - Ryuji SAKAKIBARA
- Department of Neurology and Internal Medicine; Sakura Medical Center, Toho University; Sakura Japan
| | - Fuyuki TATENO
- Department of Neurology and Internal Medicine; Sakura Medical Center, Toho University; Sakura Japan
| | - Masashi YANO
- Department of Urology; Sakura Medical Center, Toho University; Sakura Japan
| | - Osamu TAKAHASHI
- Clinical Physiology Unit; Sakura Medical Center, Toho University; Sakura Japan
| | - Masahiko KISHI
- Department of Neurology and Internal Medicine; Sakura Medical Center, Toho University; Sakura Japan
| | - Yohei TSUYUSAKI
- Department of Neurology and Internal Medicine; Sakura Medical Center, Toho University; Sakura Japan
| | | | | | | | | | - Fumio NOMURA
- Department of Molecular Diagnosis; Graduate School of Medicine, Chiba University; Chiba Japan
| |
Collapse
|
30
|
Niimi Y, Takahashi M, Sugawara E, Umeda S, Obayashi M, Sato N, Ishiguro T, Higashi M, Eishi Y, Mizusawa H, Ishikawa K. Abnormal RNA structures (RNA foci) containing a penta-nucleotide repeat (UGGAA)nin the Purkinje cell nucleus is associated with spinocerebellar ataxia type 31 pathogenesis. Neuropathology 2013; 33:600-11. [DOI: 10.1111/neup.12032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 02/12/2013] [Accepted: 02/13/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Yusuke Niimi
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Makoto Takahashi
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Emiko Sugawara
- Department of Pathology; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Shigeaki Umeda
- Department of Pathology; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Masato Obayashi
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Nozomu Sato
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Taro Ishiguro
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Miwa Higashi
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Yoshinobu Eishi
- Department of Pathology; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science; Graduate School; Tokyo Medical and Dental University; Tokyo Japan
| |
Collapse
|
31
|
Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2013; 8:14. [PMID: 23331413 PMCID: PMC3558377 DOI: 10.1186/1750-1172-8-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 01/16/2013] [Indexed: 12/26/2022] Open
Abstract
Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.
Collapse
Affiliation(s)
- Shinsuke Fujioka
- Department of Neurology at Mayo Clinic, 4500 San Pablo Road Cannaday Bldg 2-E, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
32
|
Mizusawa H. [Overcoming neurological diseases-breakthrough for new era]. Rinsho Shinkeigaku 2013; 53:893-897. [PMID: 24291826 DOI: 10.5692/clinicalneurol.53.893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neurological diseases have long been thought to be difficult or intractable to be cured. Recent progress in researches on etiologies and pathogeneses of many neurological diseases, however, has made it become possible to treat some diseases such as bulbo-spinal muscular atrophy and Alzheimer's disease not only symptomatically but also in the sense of disease modification. We may be at the entrance of a new era where many neurological diseases would become treatable and overcome. My individual experiences studying 3 diseases, namely, distal myopathy with rimmed vacuoles, amyotrophic lateral sclerosis and spinocerebellar ataxia were presented and through them the following massages were conveyed to young neurologists of the Japanese Society of Neurology (JSN); To tackle the case even there is no similar case in the literature because you are the only one who could help the patient and some clues must be found, To cooperate with other colleagues and patients because you are not alone, To be reasonable, logical or scientific, To always be innovative or seek better situations, and To be global or international sharing real time information with other peoples in the world. JSN will make great leaps to the goals under the mission to contribute happiness of peoples in Japan and other countries through neurology including neurological practice, education and research.
Collapse
Affiliation(s)
- Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Center for Brain Integration Research, Tokyo Medical and Dental University
| |
Collapse
|
33
|
Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012; 124:1-21. [PMID: 22684686 DOI: 10.1007/s00401-012-1000-x] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022]
Abstract
The autosomal dominant cerebellar ataxias (ADCAs) represent a heterogeneous group of neurodegenerative diseases with progressive ataxia and cerebellar degeneration. The current classification of this disease group is based on the underlying genetic defects and their typical disease courses. According to this categorization, ADCAs are divided into the spinocerebellar ataxias (SCAs) with a progressive disease course, and the episodic ataxias (EA) with episodic occurrences of ataxia. The prominent disease symptoms of the currently known and genetically defined 31 SCA types result from damage to the cerebellum and interconnected brain grays and are often accompanied by more specific extra-cerebellar symptoms. In the present review, we report the genetic and clinical background of the known SCAs and present the state of neuropathological investigations of brain tissue from SCA patients in the final disease stages. Recent findings show that the brain is commonly seriously affected in the polyglutamine SCAs (i.e. SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) and that the patterns of brain damage in these diseases overlap considerably in patients suffering from advanced disease stages. In the more rarely occurring non-polyglutamine SCAs, post-mortem neuropathological data currently are scanty and investigations have been primarily performed in vivo by means of MRI brain imaging. Only a minority of SCAs exhibit symptoms and degenerative patterns allowing for a clear and unambiguous diagnosis of the disease, e.g. retinal degeneration in SCA7, tau aggregation in SCA11, dentate calcification in SCA20, protein depositions in the Purkinje cell layer in SCA31, azoospermia in SCA32, and neurocutaneous phenotype in SCA34. The disease proteins of polyglutamine ataxias and some non-polyglutamine ataxias aggregate as cytoplasmic or intranuclear inclusions and serve as morphological markers. Although inclusions may impair axonal transport, bind transcription factors, and block protein quality control, detailed molecular and pathogenetic consequences remain to be determined.
Collapse
Affiliation(s)
- Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Theodor-Stern-Kai 7, 60950, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
34
|
The spinocerebellar ataxias: clinical aspects and molecular genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:351-74. [PMID: 22411256 DOI: 10.1007/978-1-4614-0653-2_27] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Spinocerebellar ataxias (SCAs) are a highly heterogeneous group of inherited neurological disorders, based on clinical characterization alone with variable degrees of cerebellar ataxia often accompanied by additional cerebellar and noncerebellar symptoms which in most cases defy differentiation. Molecular causative deficits in at least 31 genes underlie the clinical symptoms in the SCAs by triggering cerebellar and, very frequently, brain stem dysfunction. The identification of the causative molecular deficits enables the molecular diagnosis of the different SCA subtypes and facilitates genetic counselling. Recent scientific advances are shedding light into developing therapeutic strategies. The scope of this chapter is to provide updated details of the spinocerebellar ataxias with particular emphasis on those aspects aimed at facilitating the clinical and genetic diagnoses.
Collapse
|
35
|
Ikeda Y, Nagai M, Kurata T, Yamashita T, Ohta Y, Nagotani S, Deguchi K, Takehisa Y, Shiro Y, Matsuura T, Abe K. Comparisons of acoustic function in SCA31 and other forms of ataxias. Neurol Res 2012; 33:427-32. [PMID: 21535943 DOI: 10.1179/1743132810y.0000000011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To investigate whether acoustic impairment can be one of the characteristic extracerebellar symptoms in sporadic and hereditary ataxias including spinocerebellar ataxia type 31 (SCA31). METHODS We investigated genotypes of dominant ataxia families, and determined a frequency of each form in our cohort of 154 families. Acoustic function in the groups of various forms of ataxia with multiple system atrophy of cerebellar predominance (MSA-C), cortical cerebellar atrophy (CCA), and hereditary ataxias including SCA31 was evaluated by using audiogram and brainstem auditory evoked potentials (BAEPs). RESULTS Genetic analysis of dominant ataxia families revealed that a frequency of SCA31 in our cohort was fewer than that reported from other areas of Japan, indicating that SCA31 is not widely distributed throughout Japan. Results of audiogram showed no significant difference of hearing levels among ataxic groups, and those of BAEPs did not support inner ear dysfunction in SCA31 in which hearing loss had initially been suggested as one of its characteristic symptoms. CONCLUSION This study suggests that acoustic impairment is neither specific to SCA31, MSA-C and CCA nor useful in making a differential diagnosis among them.
Collapse
Affiliation(s)
- Yoshio Ikeda
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ouyang Y, He Z, Li L, Qin X, Zhao Y, Yuan L. Spinocerebellar ataxia type 31 exists in northeast China. J Neurol Sci 2012; 316:164-7. [PMID: 22353852 DOI: 10.1016/j.jns.2012.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/30/2012] [Accepted: 02/01/2012] [Indexed: 10/28/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31), is a recently defined subtype of autosomal dominant cerebellar ataxia (ADCA) characterized by late-onset pure cerebellar ataxia. SCA31 is common in Japan but whether or not it exists in other countries is still unclear. In this study, the authors describe a sporadic Chinese patient with SCA31. Although the cardinal clinical features, i.e., late-onset cerebellar ataxia and hearing impairment in our sporadic patient were similar to those described previously in Japan, mild axonal sensorimotor neuropathy was identified in our SCA31 patient, which is somewhat distinct from most prior reports of the disease. This is the first report of SCA31 in China; thus, extending the ethnic association beyond families of Japanese origin. In addition, our study suggests that the clinical features of SCA31 might be broader than previously thought.
Collapse
Affiliation(s)
- Yi Ouyang
- Department of Neurology, First Affiliated Hospital, China Medical University, Shenyang 110001, Liaoning Province, China
| | | | | | | | | | | |
Collapse
|
37
|
Ishikawa K, Niimi Y, Sato N, Amino T, Mizusawa H. [Dissecting molecular mechanism of spinocerebellar ataxia type 31]. Rinsho Shinkeigaku 2011; 51:1122-1124. [PMID: 22277505 DOI: 10.5692/clinicalneurol.51.1122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Spinocerebellar ataxia is a group of neurodegenerative disorders clinically presenting adult onset cerebellar ataxia. To date, 21 different genes (SCA1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, 23, 27, 28, 31, 35, 36 and DRPLA) and additionally 10 different gene loci (SCA4, 18, 19, 20, 21, 25, 26, 29, 30 and 32) are identified. Among these, SCA6 and SCA31 are the two common diseases clinically presenting as a relatively predominant cerebellar syndrome, whereas Machado-Joseph disease/SCA3, DRPLA, SCA1 and SCA2 are SCAs often associated with extra-cerebellar manifestations. SCA31 is a late-onset purely cerebellar ataxia caused by a complex pentanucleotide repeat containing (TGGAA)(n) lying in an intronic region shared by two genes, BEAN (brain expressed, associated with NEDD4) and TK2 (thymidine kinase 2). In situ hybridization analysis in patients' Purkinje cells demonstrated that pentanucleotide repeats transcribed in BEAN direction form RNA aggregates ("RNA foci"), and essential splicing factors, SFRS1 and SFRS9, bind to (UGGAA)(n), the transcript of (TGGAA)(n)in vitro. Our preliminary data also demonstrated that (UGGAA)(n) is toxic when expressed in cultured cells. These findings may imply that RNA-mediated pathogenesis is involved in SCA31. Further studies are needed to explore precise mechanism of this disease.
Collapse
Affiliation(s)
- Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University
| | | | | | | | | |
Collapse
|
38
|
Ishikawa K, Sato N, Niimi Y, Amino T, Mizusawa H. [Spinocerebellar ataxia type 31]. Rinsho Shinkeigaku 2011; 50:985-7. [PMID: 21921537 DOI: 10.5692/clinicalneurol.50.985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is a relatively common degenerative ataxia in Japan. We recently discovered SCA31 mutation as a complex pentanucleotide repeat containing (TAAAA)(n), (TAGAA)(n), and (TGGAA)(n). The size of this repeat ranged from 2.8 to 3.5 kilo-base pairs (kb). Among these repeats, (TGGAA)(n) repeat appears crucial for SCA31 pathogenesis. The length of this complex repeat inversely correlated with ages of onset in patients. The mutation lies in an intron shared by two different genes, BEAN (brain expressed, associated with NEDD4) and TK2 (thymidine kinase 2), which are transcribed in opposite directions. Thus, the complex pentanucleotide sequence is predicted to be transcribed in both directions, but not necessarily translated into proteins. In situ hybridization analysis in patients' Purkinje cells demonstrated that pentanucleotide repeats transcribed in BEAN direction form RNA aggregates ("RNA foci"). We further found that splicing factors, SFRS1 and SFRS9, binds to (UGGAA)(n), the transcript of (TGGAA)(n) in vitro. These findings may imply that SCA31 conforms to pathogenic mechanisms underlying non-coding repeat disorders, such as myotonic dystrophies (DM1 & DM2), and that SFRS1 and SFRS9 are involved in SCA31 pathogenesis.
Collapse
Affiliation(s)
- Kinya Ishikawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University
| | | | | | | | | |
Collapse
|
39
|
Affiliation(s)
- Leslie J Cloud
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | |
Collapse
|
40
|
Marelli C, Cazeneuve C, Brice A, Stevanin G, Dürr A. Autosomal dominant cerebellar ataxias. Rev Neurol (Paris) 2011; 167:385-400. [PMID: 21546047 DOI: 10.1016/j.neurol.2011.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 01/27/2011] [Indexed: 12/30/2022]
Abstract
Cerebellar ataxias with autosomal dominant transmission (ADCA) are far rarer than sporadic cases of cerebellar ataxia. The identification of genes involved in dominant forms has confirmed the genetic heterogeneity of these conditions and of the underlying mechanisms and pathways. To date, at least 28 genetic loci and, among them, 20 genes have been identified. In many instances, the phenotype is not restricted to cerebellar dysfunction but includes more complex multisystemic neurological deficits. Seven ADCA (SCA1, 2, 3, 6, 7, 17, and dentatorubro-pallido-luysian atrophy) are caused by repeat expansions in the corresponding proteins; phenotype-genotype correlations have shown that repeat size influences the progression of the disease, its severity and clinical differences among patients, including the phenomenon of anticipation between generations. All other ADCA are caused either by non-coding repeat expansions, conventional mutations or large rearrangements in genes with different functions. This review will focus on the genetic features of ADCA and on the clinical differences among the different forms.
Collapse
Affiliation(s)
- C Marelli
- Département de génétique et cytogénétique, consultation de génétique clinique, CHU Pitié-Salpêtrière, AP-HP, 47, boulevard de l'Hôpital, 75013 Paris, France
| | | | | | | | | |
Collapse
|
41
|
Edener U, Bernard V, Hellenbroich Y, Gillessen-Kaesbach G, Zühlke C. Two dominantly inherited ataxias linked to chromosome 16q22.1: SCA4 and SCA31 are not allelic. J Neurol 2011; 258:1223-7. [DOI: 10.1007/s00415-011-5905-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/04/2011] [Accepted: 01/05/2011] [Indexed: 12/19/2022]
|
42
|
Spinocerebellar ataxia type 31 is associated with "inserted" penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 2009; 85:544-57. [PMID: 19878914 DOI: 10.1016/j.ajhg.2009.09.019] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 08/25/2009] [Accepted: 09/21/2009] [Indexed: 01/20/2023] Open
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an adult-onset autosomal-dominant neurodegenerative disorder showing progressive cerebellar ataxia mainly affecting Purkinje cells. The SCA31 critical region was tracked down to a 900 kb interval in chromosome 16q22.1, where the disease shows a strong founder effect. By performing comprehensive Southern blot analysis and BAC- and fosmid-based sequencing, we isolated two genetic changes segregating with SCA31. One was a single-nucleotide change in an intron of the thymidine kinase 2 gene (TK2). However, this did not appear to affect splicing or expression patterns. The other was an insertion, from 2.5-3.8 kb long, consisting of complex penta-nucleotide repeats including a long (TGGAA)n stretch. In controls, shorter (1.5-2.0 kb) insertions lacking (TGGAA)n were found only rarely. The SCA31 repeat insertion's length inversely correlated with patient age of onset, and an expansion was documented in a single family showing anticipation. The repeat insertion was located in introns of TK2 and BEAN (brain expressed, associated with Nedd4) expressed in the brain and formed RNA foci in the nuclei of patients' Purkinje cells. An electrophoretic mobility-shift assay showed that essential splicing factors, serine/arginine-rich splicing factors SFRS1 and SFRS9, bind to (UGGAA)n in vitro. Because (TGGAA)n is a characteristic sequence of paracentromeric heterochromatin, we speculate that the insertion might have originated from heterochromatin. SCA31 is important because it exemplifies human diseases associated with "inserted" microsatellite repeats that can expand through transmission. Our finding suggests that the ectopic microsatellite repeat, when transcribed, might cause a disease involving the essential splicing factors.
Collapse
|
43
|
Diering GH, Church J, Numata M. Secretory Carrier Membrane Protein 2 Regulates Cell-surface Targeting of Brain-enriched Na+/H+ Exchanger NHE5. J Biol Chem 2009; 284:13892-13903. [PMID: 19276089 DOI: 10.1074/jbc.m807055200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
NHE5 is a brain-enriched Na(+)/H(+) exchanger that dynamically shuttles between the plasma membrane and recycling endosomes, serving as a mechanism that acutely controls the local pH environment. In the current study we show that secretory carrier membrane proteins (SCAMPs), a group of tetraspanning integral membrane proteins that reside in multiple secretory and endocytic organelles, bind to NHE5 and co-localize predominantly in the recycling endosomes. In vitro protein-protein interaction assays revealed that NHE5 directly binds to the N- and C-terminal cytosolic extensions of SCAMP2. Heterologous expression of SCAMP2 but not SCAMP5 increased cell-surface abundance as well as transporter activity of NHE5 across the plasma membrane. Expression of a deletion mutant lacking the SCAMP2-specific N-terminal cytosolic domain, and a mini-gene encoding the N-terminal extension, reduced the transporter activity. Although both Arf6 and Rab11 positively regulate NHE5 cell-surface targeting and NHE5 activity across the plasma membrane, SCAMP2-mediated surface targeting of NHE5 was reversed by dominant-negative Arf6 but not by dominant-negative Rab11. Together, these results suggest that SCAMP2 regulates NHE5 transit through recycling endosomes and promotes its surface targeting in an Arf6-dependent manner.
Collapse
Affiliation(s)
- Graham H Diering
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John Church
- Cellular and Physiological Sciences, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Masayuki Numata
- Departments of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
44
|
Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:263-96. [DOI: 10.1007/978-90-481-2813-6_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Severity and Progression Rate of Cerebellar Ataxia in 16q-linked Autosomal Dominant Cerebellar Ataxia (16q-ADCA) in the Endemic Nagano Area of Japan. THE CEREBELLUM 2008; 8:46-51. [DOI: 10.1007/s12311-008-0062-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Ohnari K, Aoki M, Uozumi T, Tsuji S. Severe symptoms of 16q-ADCA coexisting with SCA8 repeat expansion. J Neurol Sci 2008; 273:15-8. [DOI: 10.1016/j.jns.2008.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 06/02/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
|
47
|
Shintaku M, Kaneda D. Chromosome 16q22.1-linked autosomal dominant cerebellar ataxia: an autopsy case report with some new observations on cerebellar pathology. Neuropathology 2008; 29:285-92. [PMID: 18627481 DOI: 10.1111/j.1440-1789.2008.00947.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An autopsy case of chromosome 16q22.1-linked autosomal dominant cerebellar ataxia is reported. The patient was a 77-year-old man who died after a clinical course of about 19 years characterized by pure cerebellar ataxia. Main neuropathological findings included moderate loss of Purkinje cells, variegated degenerative features of the remaining Purkinje cells, finely fibrillary material surrounding the perikarya of Purkinje cells, and ubiquitin-immunoreactive small dots in the molecular layer and cerebellar white matter. Neuritic hyperplasia surrounding the perikarya of Purkinje cells was also a prominent finding. Golgi impregnation study demonstrated poor dendritic arborization of some Purkinje cells. It is our assumption that the pathological processes leading to Purkinje cell death in this disorder are not singular because the intracellular functions of the protein coded by the mutant gene are manifold, and the multiplicity of the pathological processes is reflected in diverse cytomorphological changes seen in degenerating Purkinje cells.
Collapse
|
48
|
Ota S, Tsuchiya K, Anno M, Niizato K, Akiyama H. Distribution of cerebello-olivary degeneration in idiopathic late cortical cerebellar atrophy: Clinicopathological study of four autopsy cases. Neuropathology 2008; 28:43-50. [DOI: 10.1111/j.1440-1789.2007.00845.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
49
|
Basri R, Yabe I, Soma H, Sasaki H. Spectrum and prevalence of autosomal dominant spinocerebellar ataxia in Hokkaido, the northern island of Japan: a study of 113 Japanese families. J Hum Genet 2007; 52:848-855. [PMID: 17805477 DOI: 10.1007/s10038-007-0182-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 07/31/2007] [Indexed: 11/28/2022]
Abstract
Autosomal dominant cerebellar ataxia (ADCA) is a genetically heterogeneous group of neurodegenerative disorders. To shed further light on the clinical and genetic spectrum of ADCA in Japan, we conducted a study to determine the frequency of a new variety of different subtypes of SCAs among ADCA patients. This current study was carried out from April 1999 to December 2006 on the basis of patients with symptoms and signs of ADCA disorders. PCR and/or direct sequencing were evaluated in a total of 113 families. Among them, 35 families were found to have the mutation associated with SCA6, 30 with SCA3, 11 with SCA1, five with SCA2, five with DRPLA, and one with SCA14. We also detected the heterozygous -16C --> T single nucleotide substitution within the puratrophin-1 gene responsible for 16q22.1-linked ADCA in ten families. In this study, unusual varieties of SCA, including 27, 13, 5, 7, 8, 12, 17, and 16 were not found. Of the 113 patients, 14% had as yet unidentified ADCA mutations. The present study validates the prevalence of genetically distinct ADCA subtypes based on ethnic origin and geographical variation, and shows that 16q-linked ADCA has strong hereditary effects in patients with ADCAs in Japan.
Collapse
Affiliation(s)
- Rehana Basri
- Department of Neurology, Graduate School of Medicine, Hokkaido University, N15W7. Kita-Ku, Sapporo, 060-8368, Japan
| | - Ichiro Yabe
- Department of Neurology, Graduate School of Medicine, Hokkaido University, N15W7. Kita-Ku, Sapporo, 060-8368, Japan.
| | - Hiroyuki Soma
- Department of Neurology, Graduate School of Medicine, Hokkaido University, N15W7. Kita-Ku, Sapporo, 060-8368, Japan
| | - Hidenao Sasaki
- Department of Neurology, Graduate School of Medicine, Hokkaido University, N15W7. Kita-Ku, Sapporo, 060-8368, Japan
| |
Collapse
|
50
|
Furiya Y, Hirano M, Nomura M, Asai H, Kiriyama T, Ueno S. Peripheral neuropathy in chromosome16q22.1 linked autosomal dominant cerebellar ataxia. J Neurol Neurosurg Psychiatry 2007; 78:1009-11. [PMID: 17702787 PMCID: PMC2117868 DOI: 10.1136/jnnp.2006.103895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|