1
|
Coban H, Barutcu Atas D, Karsli Demirsoy A, Tugcu M, Asicioglu E, Arikan IH, Tuglular ZS, Velioglu A. McArdle Disease Diagnosis After 2 Decades of Kidney Transplantation. Prog Transplant 2024:15269248241288562. [PMID: 39370991 DOI: 10.1177/15269248241288562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Affiliation(s)
- Harun Coban
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Dilek Barutcu Atas
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Asli Karsli Demirsoy
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Murat Tugcu
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Ebru Asicioglu
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Izzet Hakki Arikan
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Zübeyde Serhan Tuglular
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| | - Arzu Velioglu
- Division of Nephrology, Department of Internal Medicine, Marmara University School of Medicine, Istanbul, Turkey
| |
Collapse
|
2
|
Teles JS, Ramos CT, Almeida BM, Sousa AV. A Case Report of McArdle Disease Diagnosed Following Statin-Induced Myositis. Cureus 2023; 15:e44701. [PMID: 37809236 PMCID: PMC10552332 DOI: 10.7759/cureus.44701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
McArdle disease is a rare condition, characterized by a deficiency of phosphorylase muscle isoform, an enzyme responsible for the breaking down of glycogen, necessary for obtaining energy. Patients typically present with exercise intolerance, myalgias, fatigue, cramps, muscle stiffness, and/or weakness induced by physical activity. The diagnosis is generally established late, with a median delay of about 29 years. We present the case of a female patient with a long history of myalgias, muscle weakness, and exercise intolerance, diagnosed with McArdle disease by the age of 74, after statin-induced myopathy. We aim to review the diagnosis and treatment of this disease, as a way to raise awareness among the medical community.
Collapse
Affiliation(s)
- João S Teles
- Family Medicine, Unidade de Saúde Familiar (USF) Brás-Oleiro, Agrupamento de Centros de Saúde (ACeS) Gondomar, Porto, PRT
| | - Catarina T Ramos
- Family Medicine, Unidade de Saúde Familiar (USF) Brás-Oleiro, Agrupamento de Centros de Saúde (ACeS) Gondomar, Porto, PRT
| | - Beatriz M Almeida
- Family Medicine, Unidade de Saúde Familiar (USF) Brás-Oleiro, Agrupamento de Centros de Saúde (ACeS) Gondomar, Porto, PRT
| | - Anabela V Sousa
- Family Medicine, Unidade de Saúde Familiar (USF) Brás-Oleiro, Agrupamento de Centros de Saúde (ACeS) Gondomar, Porto, PRT
| |
Collapse
|
3
|
Godbe K, Malaty G, Wenzel A, Nazeer S, Grider DJ, Kinsey A. McArdle Disease vs. Stiff-Person Syndrome: A Case Report Highlighting the Similarities Between Two Rare and Distinct Disorders. Front Neurol 2020; 11:529985. [PMID: 33240189 PMCID: PMC7683573 DOI: 10.3389/fneur.2020.529985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022] Open
Abstract
McArdle disease is a rare autosomal recessive disorder of muscle glycogen metabolism that presents with pain and fatigue during exercise. Stiff-Person Syndrome is an autoimmune-related neurologic process characterized by fluctuating muscle rigidity and spasm. Reported is a 41-year-old male who presented to the emergency department due to sudden-onset weakness and chest pain while moving his refrigerator at home. Cardiac workup was non-contributory, but a creatine kinase level > 6,000 warranted a muscle biopsy. The biopsy pathology report was misinterpreted to be diagnostic for McArdle disease given the clinical presentation. After 4 years of treatment without symptomatic improvement, a gradual transition of symptoms from pain alone to pain with stiffness was noted. A positive glutamic acid decarboxylase antibody test resulted in a change of diagnosis to Stiff-Person Syndrome. This is the first known case that highlights the similarities between these two rare and distinct disease processes, highlighting the necessity for thorough history taking, maintenance of a broad differential diagnosis, and knowledge of how best to interpret complex pathology reports.
Collapse
Affiliation(s)
- Kerilyn Godbe
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Giovanni Malaty
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Alyssa Wenzel
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Sahana Nazeer
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Douglas J Grider
- Department of Basic Science, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Adrienne Kinsey
- Department of Family Medicine, Carilion Clinic, Roanoke, VA, United States
| |
Collapse
|
4
|
Joshi PR, Deschauer M, Zierz S. McArdle Disease: Clinical, Biochemical, Histological and Molecular Genetic Analysis of 60 Patients. Biomedicines 2020; 8:biomedicines8020033. [PMID: 32075227 PMCID: PMC7168270 DOI: 10.3390/biomedicines8020033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 11/25/2022] Open
Abstract
A clinical, biochemical, histological and molecular genetic analysis of 60 McArdle patients (33 males and 27 females; mean age at diagnosis: 37 years) was performed. The objective of this study was to identify a possible genotype–phenotype correlation in McArdle disease. All patients complained of exercise-induced myalgia and fatigue; permanent weakness was present in 47% of the patients. Five percent of patients conveyed of masticatory muscle weakness. Age of onset was <15 years in 92% patients. Serum creatine kinase was elevated 5 to13-fold. Forearm ischemic test showed decreased lactate production but excessively increased ammonia upon exercise (n = 16). Muscle biopsies revealed highly reduced or missing myophosphorylase activity (n = 20) (mean: 0.17 ± 0.35 U/g tissue; normal: 12–61) and histologically, sub-sarcolemmal glycogen accumulation (n = 9). Molecular genetic analysis revealed the common p.Arg50Ter mutation in 68% of the patients. Other rather frequent mutations were p.Arg270Ter (allele frequency: 5%) followed by c.2262delA and p.Met1Val (allele frequencies: 3%). Twenty-four other rare mutations were also identified. No genotype–phenotype correlation was observed. The analysis highlights that testing of the p.Arg50Ter mutation could be performed first in molecular genetic testing of patients with exercise intolerance possibly due to McArdle disease. However, there is enormous mutation heterogeneity in McArdle disease thus sequencing of the myophosphorylase gene is needed in patients highly suspicious of McArdle disease.
Collapse
Affiliation(s)
- Pushpa Raj Joshi
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.D.); (S.Z.)
- Correspondence: ; Tel.: +49-345-557-5259
| | - Marcus Deschauer
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.D.); (S.Z.)
- Department of Neurology, School of Medicine, Technical University Munich, 81675 Munich, Germany
| | - Stephan Zierz
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany; (M.D.); (S.Z.)
| |
Collapse
|
5
|
Núñez-Manchón J, Ballester-Lopez A, Koehorst E, Linares-Pardo I, Coenen D, Ara I, Rodriguez-Lopez C, Ramos-Fransi A, Martínez-Piñeiro A, Lucente G, Almendrote M, Coll-Cantí J, Pintos-Morell G, Santos-Lozano A, Arenas J, Martín MA, de Castro M, Lucia A, Santalla A, Nogales-Gadea G. Manifesting heterozygotes in McArdle disease: a myth or a reality-role of statins. J Inherit Metab Dis 2018; 41:1027-1035. [PMID: 29926259 DOI: 10.1007/s10545-018-0203-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 11/26/2022]
Abstract
McArdle disease is an autosomal recessive condition caused by deficiency of the PYGM gene-encoded muscle isoform of glycogen phosphorylase. Some cases of "manifesting" heterozygotes or carriers (i.e., patients who show some McArdle-like symptoms or signs despite being carriers of only one mutated PYGM allele) have been reported in the literature but there is controversy, with misdiagnosis being a possibility. The purpose of our study was to determine if there are actually "manifesting" heterozygotes of McArdle disease and, if existing, whether statin treatment can trigger such condition. Eighty-one relatives of McArdle patients (among a total of 16 different families) were studied. We determined whether they were carriers of PYGM mutations and also collected information on exercise tests (second wind and modified Wingate anaerobic test) and statin intake. We found 50 carriers and 31 non-carriers of PYGM mutations. Although we found existence of heterozygotes manifesting some exercise-related muscle problems such as exacerbated myalgia or weakness, they only accounted for 14% of the carriers and muscle symptoms were milder than those commonly reported in patients. Further, no carrier (whether reporting symptoms or not) showed the second wind phenomenon or a flat blood lactate response to maximal-intensity exercise, both of which are hallmarks of McArdle disease. On the other hand, statin myotoxicity was not associated with muscle symptom onset.
Collapse
Affiliation(s)
- Judit Núñez-Manchón
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Alfonsina Ballester-Lopez
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Emma Koehorst
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Ian Linares-Pardo
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
| | - Daniëlle Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, the Netherlands
| | - Ignacio Ara
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBER FES), Madrid, Spain
| | - Carlos Rodriguez-Lopez
- GENUD Toledo Research Group, Universidad de Castilla-La Mancha, Madrid, Spain
- CIBER of Frailty and Healthy Aging (CIBER FES), Madrid, Spain
| | - Alba Ramos-Fransi
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Alicia Martínez-Piñeiro
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Giuseppe Lucente
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Miriam Almendrote
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Jaume Coll-Cantí
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Neuromuscular Pathology Unit, Neurology Service, Neuroscience Department, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Guillem Pintos-Morell
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Division of Rare Diseases, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alejandro Santos-Lozano
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- i+HeALTH, European University Miguel de Cervantes, Valladolid, Spain
| | - Joaquin Arenas
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel Angel Martín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Mauricio de Castro
- United States Air Force Medical Genetics Center, 81st Medical Group, Keesler AFB, Biloxi, MS, 39534, USA
| | - Alejandro Lucia
- CIBER of Frailty and Healthy Aging (CIBER FES), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Universidad Europea de Madrid (Faculty of Sport Sciences), Madrid, Spain
| | - Alfredo Santalla
- CIBER of Frailty and Healthy Aging (CIBER FES), Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
- Universidad Pablo de Olavide, Sevilla, Spain
| | - Gisela Nogales-Gadea
- Grup de Recerca en Malalties Neuromusculars i Neuropediatriques, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
6
|
Quinlivan R, Andreu AL, Marti R. 211th ENMC International Workshop:: Development of diagnostic criteria and management strategies for McArdle Disease and related rare glycogenolytic disorders to improve standards of care. 17-19 April 2015, Naarden, The Netherlands. Neuromuscul Disord 2017; 27:1143-1151. [PMID: 29079393 DOI: 10.1016/j.nmd.2017.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 11/17/2022]
Affiliation(s)
- Ros Quinlivan
- MRC Centre for Neuromuscular Disease, National Hospital for Neurology and Neurosurgery, London, UK.
| | - Antoni L Andreu
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Catalonia, Spain
| | - Ramon Marti
- Research Group on Neuromuscular and Mitochondrial Diseases, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, CIBERER, Barcelona, Catalonia, Spain
| |
Collapse
|
7
|
Nogales-Gadea G, Godfrey R, Santalla A, Coll-Cantí J, Pintos-Morell G, Pinós T, Arenas J, Martín MA, Lucia A. Genes and exercise intolerance: insights from McArdle disease. Physiol Genomics 2016; 48:93-100. [DOI: 10.1152/physiolgenomics.00076.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
McArdle disease (glycogen storage disease type V) is caused by inherited deficiency of a key enzyme in muscle metabolism, the skeletal muscle-specific isoform of glycogen phosphorylase, “myophosphorylase,” which is encoded by the PYGM gene. Here we review the main pathophysiological, genotypic, and phenotypic features of McArdle disease and their interactions. To date, moderate-intensity exercise (together with pre-exercise carbohydrate ingestion) is the only treatment option that has proven useful for these patients. Furthermore, regular physical activity attenuates the clinical severity of McArdle disease. This is quite remarkable for a monogenic disorder that consistently leads to the same metabolic defect at the muscle tissue level, that is, complete inability to use muscle glycogen stores. Further knowledge of this disorder would help patients and enhance understanding of exercise metabolism as well as exercise genomics. Indeed, McArdle disease is a paradigm of human exercise intolerance and PYGM genotyping should be included in the genetic analyses that might be applied in the coming personalized exercise medicine as well as in future research on genetics and exercise-related phenotypes.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Richard Godfrey
- Centre for Sports Medicine and Human Performance, Brunel University, London, United Kingdom
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Seville, Spain
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Jaume Coll-Cantí
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Neurología, Unidad Neuromuscular, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Guillem Pintos-Morell
- Translational Research Laboratory in Neuromuscular Diseases, Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
- Servicio de Pediatría, Unidad de Enfermedades Minoritarias, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomàs Pinós
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Joaquín Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Miguel Angel Martín
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain; and
- Universidad Europea, Madrid, Spain
| |
Collapse
|
8
|
Garton FC, North KN, Koch LG, Britton SL, Nogales-Gadea G, Lucia A. Rodent models for resolving extremes of exercise and health. Physiol Genomics 2015; 48:82-92. [PMID: 26395598 DOI: 10.1152/physiolgenomics.00077.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis-driven discovery in humans. Hypotheses underlying molecular mechanisms of disease and gene/tissue function can be tested in rodents to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. First we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis." Second we review specific transgenic and knockout mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.
Collapse
Affiliation(s)
- Fleur C Garton
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia;
| | - Kathryn N North
- Murdoch Childrens Research Institute, Melbourne, Victoria, Australia; Royal Children's Hospital, Department of Paediatrics, Melbourne, Victoria, Australia
| | - Lauren G Koch
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| | - Steven L Britton
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan; Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and
| | - Alejandro Lucia
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol i Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain; and Instituto de Investigación Hospital 12 de Octubre (i+12) and Universidad Europea, Madrid, Spain
| |
Collapse
|
9
|
Nogales-Gadea G, Brull A, Santalla A, Andreu AL, Arenas J, Martín MA, Lucia A, de Luna N, Pinós T. McArdle Disease: Update of Reported Mutations and Polymorphisms in the PYGM Gene. Hum Mutat 2015; 36:669-78. [PMID: 25914343 DOI: 10.1002/humu.22806] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/15/2015] [Indexed: 01/01/2023]
Abstract
McArdle disease is an autosomal-recessive disorder caused by inherited deficiency of the muscle isoform of glycogen phosphorylase (or "myophosphorylase"), which catalyzes the first step of glycogen catabolism, releasing glucose-1-phosphate from glycogen deposits. As a result, muscle metabolism is impaired, leading to different degrees of exercise intolerance. Patients range from asymptomatic to severely affected, including in some cases, limitations in activities of daily living. The PYGM gene codifies myophosphoylase and to date 147 pathogenic mutations and 39 polymorphisms have been reported. Exon 1 and 17 are mutational hot-spots in PYGM and 50% of the described mutations are missense. However, c.148C>T (commonly known as p.R50X) is the most frequent mutation in the majority of the studied populations. No genotype-phenotype correlation has been reported and no mutations have been described in the myophosphorylase domains affecting the phosphorylated Ser-15, the 280's loop, the pyridoxal 5'-phosphate, and the nucleoside inhibitor binding sites. A newly generated knock-in mouse model is now available, which renders the main clinical and molecular features of the disease. Well-established methods for diagnosing patients in laboratories around the world will shorten the frequent ∼20-year period stretching from first symptoms appearance to the genetic diagnosis.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Department of Neurosciences, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol I Campus Can Ruti, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Astrid Brull
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfredo Santalla
- Universidad Pablo de Olavide, Sevilla, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain
| | - Antoni L Andreu
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Joaquin Arenas
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Miguel A Martín
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.,Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Hospital 12 de Octubre, Madrid, Spain.,Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Alejandro Lucia
- Instituto de Investigación Hospital 12 de Octubre (i+12), Madrid, Spain.,Universidad Europea, Madrid, Spain
| | - Noemi de Luna
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Tomàs Pinós
- Departament de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), , Universitat Autónoma de Barcelona, Barcelona, Spain.,Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
10
|
Brull A, de Luna N, Blanco-Grau A, Lucia A, Martin MA, Arenas J, Martí R, Andreu AL, Pinós T. Phenotype consequences of myophosphorylase dysfunction: insights from the McArdle mouse model. J Physiol 2015; 593:2693-706. [PMID: 25873271 DOI: 10.1113/jp270085] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/10/2015] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS This is the first study to analyse the effect of muscle glycogen phosphorylase depletion in metabolically different muscle types. In McArdle mice, muscle glycogen phosphorylase is absent in both oxidative and glycolytic muscles. In McArdle mice, the glycogen debranching enzyme (catabolic) is increased in oxidative muscles, whereas the glycogen branching enzyme (anabolic) is increased in glycolytic muscles. In McArdle mice, total glycogen synthase is decreased in both oxidative and glycolytic muscles, whereas the phosphorylated inactive form of the enzyme is increased in both oxidative and glycolytic enzymes. In McArdle mice, glycogen content is higher in glycolytic muscles than in oxidative muscles. Additionally, in all muscles analysed, the glycogen content is higher in males than in females. The maximal endurance capacity of the McArdle mice is significantly lower compared to heterozygous and wild-type mice. ABSTRACT McArdle disease, caused by inherited deficiency of the enzyme muscle glycogen phosphorylase (GP-MM), is arguably the paradigm of exercise intolerance. The recent knock-in (p.R50X/p.R50X) mouse disease model allows an investigation of the phenotypic consequences of muscle glycogen unavailability and the physiopathology of exercise intolerance. We analysed, in 2-month-old mice [wild-type (wt/wt), heterozygous (p.R50X/wt) and p.R50X/p.R50X)], maximal endurance exercise capacity and the molecular consequences of an absence of GP-MM in the main glycogen metabolism regulatory enzymes: glycogen synthase, glycogen branching enzyme and glycogen debranching enzyme, as well as glycogen content in slow-twitch (soleus), intermediate (gastrocnemius) and glycolytic/fast-twitch (extensor digitorum longus; EDL) muscles. Compared with wt/wt, exercise capacity (measured in a treadmill test) was impaired in p.R50X/p.R50X (∼48%) and p.R50X/wt mice (∼18%). p.R50X/p.R50X mice showed an absence of GP-MM in the three muscles. GP-MM was reduced in p.R50X/wt mice, especially in the soleus, suggesting that the function of 'slow-twitch' muscles is less dependent on glycogen catabolism. p.R50X/p.R50X mice showed increased glycogen debranching enzyme in the soleus, increased glycogen branching enzyme in the gastrocnemius and EDL, as well as reduced levels of mucle glycogen synthase protein in the three muscles (mean ∼70%), reflecting a protective mechanism for preventing deleterious glycogen accumulation. Additionally, glycogen content was highest in the EDL of p.R50X/p.R50X mice. Amongst other findings, the present study shows that the expression of the main muscle glycogen regulatory enzymes differs depending on the muscle phenotype (slow- vs. fast-twitch) and that even partial GP-MM deficiency affects maximal endurance capacity. Our knock-in model might help to provide insights into the importance of glycogen on muscle function.
Collapse
Affiliation(s)
- Astrid Brull
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Noemí de Luna
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Albert Blanco-Grau
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejandro Lucia
- Universidad Europea, Madrid, Spain.,Instituto de Investigación 'i+12', Madrid, Spain
| | | | | | - Ramon Martí
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Antoni L Andreu
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Tomàs Pinós
- Neuromuscular and Mitochondrial Disorders Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.,Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| |
Collapse
|
11
|
Nogales-Gadea G, Pinós T, Lucia A, Arenas J, Camara Y, Brull A, de Luna N, Martín MA, Garcia-Arumí E, Martí R, Andreu AL. Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. ACTA ACUST UNITED AC 2012; 135:2048-57. [PMID: 22730558 DOI: 10.1093/brain/aws141] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
McArdle disease (glycogenosis type V), the most common muscle glycogenosis, is a recessive disorder caused by mutations in PYGM, the gene encoding myophosphorylase. Patients with McArdle disease typically experience exercise intolerance manifested as acute crises of early fatigue and contractures, sometimes with rhabdomyolysis and myoblobinuria, triggered by static muscle contractions or dynamic exercises. Currently, there are no therapies to restore myophosphorylase activity in patients. Although two spontaneous animal models for McArdle disease have been identified (cattle and sheep), they have rendered a limited amount of information on the pathophysiology of the disorder; therefore, there have been few opportunities for experimental research in the field. We have developed a knock-in mouse model by replacing the wild-type allele of Pygm with a modified allele carrying the common human mutation, p.R50X, which is the most frequent cause of McArdle disease. Histochemical, biochemical and molecular analyses of the phenotype, as well as exercise tests, were carried out in homozygotes, carriers and wild-type mice. p.R50X/p.R50X mice showed undetectable myophosphorylase protein and activity in skeletal muscle. Histochemical and biochemical analyses revealed massive muscle glycogen accumulation in homozygotes, in contrast to heterozygotes or wild-type mice, which did not show glycogen accumulation in this tissue. Additional characterization confirmed a McArdle disease-like phenotype in p.R50X/p.R50X mice, i.e. they had hyperCKaemia and very poor exercise performance, as assessed in the wire grip and treadmill tests (6% and 5% of the wild-type values, respectively). This model represents a powerful tool for in-depth studies of the pathophysiology of McArdle disease and other neuromuscular disorders, and for exploring new therapeutic approaches for genetic disorders caused by premature stop codon mutations.
Collapse
Affiliation(s)
- Gisela Nogales-Gadea
- Laboratori de Patologia Mitocondrial i Neuromuscular, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Auto` noma deBarcelona, 08035 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Wu Y, Weber JL, Vladutiu GD, Tarnopolsky MA. Six novel mutations in the myophosphorylase gene in patients with McArdle disease and a family with pseudo-dominant inheritance pattern. Mol Genet Metab 2011; 104:587-91. [PMID: 21880526 DOI: 10.1016/j.ymgme.2011.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/10/2011] [Indexed: 11/17/2022]
Abstract
McArdle disease is an autosomal recessive glycogenosis due to deficiency of the enzyme myophosphorylase. It results from homozygous or compound heterozygous mutations in the gene for this enzyme, PYGM. We report six novel mutations in the PYGM gene based upon sequencing data including three missense mutations (p.D51G, p.P398L, and p.N648Y), one nonsense mutation (p.Y75X), one frame-shift mutation (p.Y114SfsX181), and one amino acid deletion (p.Y53del) in six patients with McArdle disease. We also report on a Caucasian family that appeared to transmit McArdle disease in an autosomal dominant manner. In order to evaluate the potential pathogenicity of the sequence variants, we performed in silico analysis using PolyPhen-2 and SIFT BLink, along with species conservation analysis using UCSC Genome Browser. The above mutations were all predicted to be disease associated with high probability and with at least the same level of certainty as several confirmed mutations. The current data add to the list of pathogenic mutations in the PYGM gene associated with McArdle disease.
Collapse
Affiliation(s)
- Y Wu
- Department of Pediatrics, McMaster University Medical Centre, Hamilton, Ontario, Canada
| | | | | | | |
Collapse
|
13
|
Vissing J, Duno M, Schwartz M, Haller RG. Splice mutations preserve myophosphorylase activity that ameliorates the phenotype in McArdle disease. Brain 2009; 132:1545-52. [PMID: 19433441 DOI: 10.1093/brain/awp065] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Over 100 mutations in the myophosphorylase gene, which cause McArdle disease, are known. All these mutations have resulted in a complete block of muscle glycogenolysis, and accordingly, no genotype-phenotype correlation has been identified in this condition. We evaluated physiologic and genetic features of two patients with a variant form of McArdle disease, associated with unusually high exercise capacity. Physiologic findings were compared to those in 47 patients with typical McArdle disease, and 17 healthy subjects. Subjects performed an ischaemic forearm exercise test to assess lactate and ammonia production. Peak oxidative capacity (VO2max) and cardiac output were determined, using cycle ergometry as the exercise modality. The two patients with atypical McArdle disease carried common mutations on one allele (R50X and G205S), and novel splice mutations in introns 3 [IVS3-26A>G (c.425-26A>G)] and 5 [IVS5-601G>A (c.856-601G>A)] on the other allele. Plasma lactate after ischaemic exercise decreased in all typical McArdle patients, but increased in the two atypical McArdle patients (10% of that in healthy subjects). Peak workload and oxidative capacity were 2-fold higher in patients with atypical McArdle disease compared to typical McArdle patients. Oxygen uptake, relative to cardiac output, was severely impaired in the 47 patients with typical McArdle disease, and partially normalized in the milder affected McArdle patients. These findings identify the first distinct genotype-phenotype relationship in McArdle disease, and indicate that minimal myophosphorylase activity ameliorates the typical McArdle disease phenotype by augmenting muscle oxidative capacity. The milder form of McArdle disease provides important clues to the level of functional myophosphorylase needed to support muscle oxidative metabolism.
Collapse
Affiliation(s)
- John Vissing
- Department of Neurology 2082, University of Copenhagen, Rigshospitalet, Blegdamsvej 9, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
14
|
Duno M, Quinlivan R, Vissing J, Schwartz M. High-resolution Melting Facilitates Mutation Screening ofPYGMin Patients with McArdle Disease. Ann Hum Genet 2009; 73:292-7. [DOI: 10.1111/j.1469-1809.2009.00512.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Argov Z, Mitrani-Rosenbaum S. The hereditary inclusion body myopathy enigma and its future therapy. Neurotherapeutics 2008; 5:633-7. [PMID: 19019317 PMCID: PMC4514692 DOI: 10.1016/j.nurt.2008.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hereditary inclusion body myopathy (HIBM) is a genetic muscle disease due to mutations in the gene encoding the enzyme complex UDP-N-acetylglucosamine 2 epimerase-N-acetylmannosamine kinase (GNE), which catalyzes the rate-limiting step in sialic acid production. The review describes some of the disease features that may be relevant for further understanding of the metabolic impairment of HIBM and its future therapy. It also addresses the biochemical basis behind the substrate supplementation therapy designed for this condition.
Collapse
Affiliation(s)
- Zohar Argov
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | |
Collapse
|
16
|
Quinlivan R, Vissing J. 144th ENMC International Workshop: Outcome Measures in McArdle Disease, 29 September–1 November 2006, Naarden, The Netherlands. Neuromuscul Disord 2007; 17:494-8. [PMID: 17490880 DOI: 10.1016/j.nmd.2007.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Indexed: 10/23/2022]
Affiliation(s)
- R Quinlivan
- The Centre for Inherited Neuromuscular Disease, Robert Jones and Agnes Hunt NHS Trust, Gobowen, Oswestry, UK.
| | | |
Collapse
|