1
|
Medina R, Derias AM, Lakdawala M, Speakman S, Lucke-Wold B. Overview of emerging therapies for demyelinating diseases. World J Clin Cases 2024; 12:6361-6373. [PMID: 39464332 PMCID: PMC11438674 DOI: 10.12998/wjcc.v12.i30.6361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
This paper provides an overview of autoimmune disorders of the central nervous system, specifically those caused by demyelination. We explore new research regarding potential therapeutic interventions, particularly those aimed at inducing remyelination. Remyelination is a detailed process, involving many cell types-oligodendrocyte precursor cells (OPCs), astrocytes, and microglia-and both the innate and adaptive immune systems. Our discussion of this process includes the differentiation potential of neural stem cells, the function of adult OPCs, and the impact of molecular mediators on myelin repair. Emerging therapies are also explored, with mechanisms of action including the induction of OPC differentiation, the transplantation of mesenchymal stem cells, and the use of molecular mediators. Further, we discuss current medical advancements in relation to many myelin-related disorders, including multiple sclerosis, optic neuritis, neuromyelitis optica spectrum disorder, myelin oligodendrocyte glycoprotein antibody-associated disease, transverse myelitis, and acute disseminated encephalomyelitis. Beyond these emerging systemic therapies, we also introduce the dimethyl fumarate/silk fibroin nerve conduit and its potential role in the treatment of peripheral nerve injuries. Despite these aforementioned scientific advancements, this paper maintains the need for ongoing research to deepen our understanding of demyelinating diseases and advance therapeutic strategies that enhance affected patients' quality of life.
Collapse
Affiliation(s)
- Robert Medina
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Ann-Marie Derias
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Maria Lakdawala
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Skye Speakman
- University of Florida College of Medicine, University of Florida, Gainesville, Fl 32610, United States
| | - Brandon Lucke-Wold
- Department of Neurosurgery, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
3
|
Song Z, Li J, He Y, Wang X, Tian J, Wu Y. A novel PROTAC molecule dBET1 alleviates pathogenesis of experimental autoimmune encephalomyelitis in mice by degrading BRD4. Int Immunopharmacol 2024; 139:112646. [PMID: 39002520 DOI: 10.1016/j.intimp.2024.112646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Neuroinflammation and neurodegeneration are hallmarks of multiple sclerosis (MS). Bromodomain-containing protein 4 (BRD4), a bromodomain and extra-terminal domain (BET) protein family member, is indispensable for the transcription of pro-inflammatory genes. Therefore, inhibiting BRD4 may be a prospective therapeutic approach for modulating the inflammatory response and regulating the course of MS. dBET1, a newly synthesized proteolysis-targeting chimera (PROTAC), exhibits effectively degrades of BRD4. However, the precise effects of dBET1 on MS require further investigation. Therefore, we assessed the effect of dBET1 in experimental autoimmune encephalomyelitis (EAE), a typical MS experimental model. Our findings revealed that BRD4 is mainly expressed in astrocytes and neurons of the spinal cords, and is up-regulated in the spinal cords of EAE mice. The dBET1 attenuated lipopolysaccharide-induced expression of astrocytic pro-inflammatory mediators and inhibited deleterious molecular activity in astrocytes. Correspondingly, dBET1, used in preventive and therapeutic settings, alleviated the behavioral symptoms in EAE mice, as demonstrated by decreased demyelination, alleviated leukocyte infiltration, reduced microglial and astrocyte activation, and diminished inflammatory mediator levels. In addition, dBET1 corrected the imbalance in peripheral T cells and protected blood-brain barrier integrity in EAE mice. The underlying mechanism involved suppressing the phosphoinositide-3-kinase/protein kinase B, mitogen-activated protein kinase /extracellular signal-regulated kinase, and nuclear factor kappa B pathways. In summary, our data strongly suggests that dBET1 is a promising treatment option for MS.
Collapse
Affiliation(s)
- Ziwei Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150001, China
| | - Jin Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yijie He
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xiaokun Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jianan Tian
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yun Wu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
6
|
Spelman T, Magyari M, Butzkueven H, Van Der Walt A, Vukusic S, Trojano M, Iaffaldano P, Horáková D, Drahota J, Pellegrini F, Hyde R, Duquette P, Lechner-Scott J, Sajedi SA, Lalive P, Shaygannejad V, Ozakbas S, Eichau S, Alroughani R, Terzi M, Girard M, Kalincik T, Grand'Maison F, Skibina O, Khoury SJ, Yamout B, Sa MJ, Gerlach O, Blanco Y, Karabudak R, Oreja-Guevara C, Altintas A, Hughes S, McCombe P, Ampapa R, de Gans K, McGuigan C, Soysal A, Prevost J, John N, Inshasi J, Stawiarz L, Manouchehrinia A, Forsberg L, Sellebjerg F, Glaser A, Pontieri L, Joensen H, Rasmussen PV, Sejbaek T, Poulsen MB, Christensen JR, Kant M, Stilund M, Mathiesen H, Hillert J. Predictors of treatment switching in the Big Multiple Sclerosis Data Network. Front Neurol 2023; 14:1274194. [PMID: 38187157 PMCID: PMC10771327 DOI: 10.3389/fneur.2023.1274194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/27/2023] [Indexed: 01/09/2024] Open
Abstract
Background Treatment switching is a common challenge and opportunity in real-world clinical practice. Increasing diversity in disease-modifying treatments (DMTs) has generated interest in the identification of reliable and robust predictors of treatment switching across different countries, DMTs, and time periods. Objective The objective of this retrospective, observational study was to identify independent predictors of treatment switching in a population of relapsing-remitting MS (RRMS) patients in the Big Multiple Sclerosis Data Network of national clinical registries, including the Italian MS registry, the OFSEP of France, the Danish MS registry, the Swedish national MS registry, and the international MSBase Registry. Methods In this cohort study, we merged information on 269,822 treatment episodes in 110,326 patients from 1997 to 2018 from five clinical registries. Patients were included in the final pooled analysis set if they had initiated at least one DMT during the relapsing-remitting MS (RRMS) stage. Patients not diagnosed with RRMS or RRMS patients not initiating DMT therapy during the RRMS phase were excluded from the analysis. The primary study outcome was treatment switching. A multilevel mixed-effects shared frailty time-to-event model was used to identify independent predictors of treatment switching. The contributing MS registry was included in the pooled analysis as a random effect. Results Every one-point increase in the Expanded Disability Status Scale (EDSS) score at treatment start was associated with 1.08 times the rate of subsequent switching, adjusting for age, sex, and calendar year (adjusted hazard ratio [aHR] 1.08; 95% CI 1.07-1.08). Women were associated with 1.11 times the rate of switching relative to men (95% CI 1.08-1.14), whilst older age was also associated with an increased rate of treatment switching. DMTs started between 2007 and 2012 were associated with 2.48 times the rate of switching relative to DMTs that began between 1996 and 2006 (aHR 2.48; 95% CI 2.48-2.56). DMTs started from 2013 onwards were more likely to switch relative to the earlier treatment epoch (aHR 8.09; 95% CI 7.79-8.41; reference = 1996-2006). Conclusion Switching between DMTs is associated with female sex, age, and disability at baseline and has increased in frequency considerably in recent years as more treatment options have become available. Consideration of a patient's individual risk and tolerance profile needs to be taken into account when selecting the most appropriate switch therapy from an expanding array of treatment choices.
Collapse
Affiliation(s)
- Tim Spelman
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
- MSBase Foundation, Melbourne, VIC, Australia
| | - Melinda Magyari
- The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Copenhagen, Denmark
| | - Helmut Butzkueven
- MSBase Foundation, Melbourne, VIC, Australia
- MS and Neuroimmunology Research, Central Clinical School, Alfred and Box Hill Hospitals, Monash University, Melbourne, VIC, Australia
| | - Anneke Van Der Walt
- MSBase Foundation, Melbourne, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sandra Vukusic
- Service de Neurologie, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Lyon, France
- Centre des Neurosciences de Lyon, L'Institut national de la santé et de la recherche médicale 1028 et Centre national de la recherche scientifique joint research units5292, Lyon, France
- Faculté de Médicine Lyon-Est, Université Claude Bernard Lyon 1, Villeurbanne, Auvergne-Rhône-Alpes, France
| | - Maria Trojano
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Pietro Iaffaldano
- Department of Translational Biomedicine and Neuroscience, DiBraiN, University of Bari Aldo Moro, Bari, Italy
| | - Dana Horáková
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Jirí Drahota
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Fabio Pellegrini
- Biogen International GmbH, Zug, Switzerland
- Biogen Digital Health, Biogen Spain, Madrid, Spain
| | | | - Pierre Duquette
- University of Montreal Hospital Research Centre and Universite de Montreal, Montreal, QC, Canada
| | - Jeannette Lechner-Scott
- University Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute, Hunter New England Health, John Hunter Hospital, New Lambton Heights, NSW, Australia
| | - Seyed Aidin Sajedi
- Department of Neurology, Neuroscience Research Center, Golestan University of Medical Sciences, Gogan, Iran
| | - Patrice Lalive
- Faculty of Medicine, Division of Neurology, Geneva University Hospital, Geneva, Switzerland
| | | | | | - Sara Eichau
- Department of Neurology, Hospital Universitario Virgen Macarena, Sevilla, Spain
| | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq, Kuwait
| | - Murat Terzi
- Medical Faculty, 19 Mayis University, Samsun, Türkiye
| | - Marc Girard
- University of Montreal Hospital Research Centre and Universite de Montreal, Montreal, QC, Canada
| | - Tomas Kalincik
- Clinical Outcomes Research Unit, Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | | | - Olga Skibina
- MS and Neuroimmunology Research, Central Clinical School, Alfred and Box Hill Hospitals, Monash University, Melbourne, VIC, Australia
| | - Samia J. Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Bassem Yamout
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut, Lebanon
| | - Maria Jose Sa
- Department of Neurology, Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | - Oliver Gerlach
- Academic MS Center Zuyderland, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, Netherlands
| | - Yolanda Blanco
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic de Barcelona, Barcelona, Spain
| | | | | | - Ayse Altintas
- Department of Neurology, School of Medicine and Koc University Research Center for Translational Medicine (KUTTAM), Koc University, Istanbul, Türkiye
| | | | | | | | | | | | - Aysun Soysal
- Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Türkiye
| | | | - Nevin John
- Monash Health, Melbourne, VIC, Australia
| | | | - Leszek Stawiarz
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ali Manouchehrinia
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Lars Forsberg
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Glostrup, Copenhagen, Denmark
| | - Anna Glaser
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Luigi Pontieri
- The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Hanna Joensen
- The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | | | - Tobias Sejbaek
- Department of Neurology, Southwest Jutland Hospital, University Hospital of Southern Denmark, Esbjerg, Denmark
| | - Mai Bang Poulsen
- Department of Neurology, Nordsjællands Hospital, Hillerød, Denmark
| | - Jeppe Romme Christensen
- The Danish Multiple Sclerosis Registry, Copenhagen University Hospital, Rigshospitalet, Glostrup, Denmark
| | - Matthias Kant
- Department of Neurology, Hospital of Southern Jutland, University of Southern Denmark, Aabenraa, Denmark
| | - Morten Stilund
- Department of Neurology, Physiotherapy and Occupational Therapy, Gødstrup Hospital, Herning, Denmark
- NIDO | Centre for Research and Education, Gødstrup Hospital, Herning, Denmark
| | - Henrik Mathiesen
- Department of Neurology, Copenhagen University Hospital Herlev and Gentofte, København, Denmark
| | - Jan Hillert
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
7
|
Del Negro I, Pez S, Versace S, Marziali A, Gigli GL, Tereshko Y, Valente M. Impact of Disease-Modifying Therapies on Gut-Brain Axis in Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2023; 60:6. [PMID: 38276041 PMCID: PMC10818907 DOI: 10.3390/medicina60010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Multiple sclerosis is a chronic, autoimmune-mediated, demyelinating disease whose pathogenesis remains to be defined. In past years, in consideration of a constantly growing number of patients diagnosed with multiple sclerosis, the impacts of different environmental factors in the pathogenesis of the disease have been largely studied. Alterations in gut microbiome composition and intestinal barrier permeability have been suggested to play an essential role in the regulation of autoimmunity. Thus, increased efforts are being conducted to demonstrate the complex interplay between gut homeostasis and disease pathogenesis. Numerous results confirm that disease-modifying therapies (DMTs) used for the treatment of MS, in addition to their immunomodulatory effect, could exert an impact on the intestinal microbiota, contributing to the modulation of the immune response itself. However, to date, the direct influence of these treatments on the microbiota is still unclear. This review intends to underline the impact of DMTs on the complex system of the microbiota-gut-brain axis in patients with multiple sclerosis.
Collapse
Affiliation(s)
- Ilaria Del Negro
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Sara Pez
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Salvatore Versace
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Alessandro Marziali
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Gian Luigi Gigli
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Yan Tereshko
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| | - Mariarosaria Valente
- Clinical Neurology Unit, Udine University Hospital, Piazzale S. Maria della Misericordia, 33100 Udine, Italy
- Department of Medical Area (DAME), University of Udine, 33100 Udine, Italy
| |
Collapse
|