1
|
Stevenson M, Algarzae NK, Moussa C. Tyrosine kinases: multifaceted receptors at the intersection of several neurodegenerative disease-associated processes. FRONTIERS IN DEMENTIA 2024; 3:1458038. [PMID: 39221072 PMCID: PMC11361951 DOI: 10.3389/frdem.2024.1458038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Tyrosine kinases (TKs) are catalytic enzymes activated by auto-phosphorylation that function by phosphorylating tyrosine residues on downstream substrates. Tyrosine kinase inhibitors (TKIs) have been heavily exploited as cancer therapeutics, primarily due to their role in autophagy, blood vessel remodeling and inflammation. This suggests tyrosine kinase inhibition as an appealing therapeutic target for exploiting convergent mechanisms across several neurodegenerative disease (NDD) pathologies. The overlapping mechanisms of action between neurodegeneration and cancer suggest that TKIs may play a pivotal role in attenuating neurodegenerative processes, including degradation of misfolded or toxic proteins, reduction of inflammation and prevention of fibrotic events of blood vessels in the brain. In this review, we will discuss the distinct roles that select TKs have been shown to play in various disease-associated processes, as well as identify TKs that have been explored as targets for therapeutic intervention and associated pharmacological agents being investigated as treatments for NDDs.
Collapse
Affiliation(s)
- Max Stevenson
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| | - Norah K. Algarzae
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Charbel Moussa
- The Laboratory for Dementia and Parkinsonism, Translational Neurotherapeutics Program, Department of Neurology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
2
|
Khan SA, Khan S, Kausar H, Shah R, Luitel A, Gautam S, Parajuli SB, Rauniyar VK, Khan MA. Insights into the management of Lewy body dementia: a scoping review. Ann Med Surg (Lond) 2024; 86:930-942. [PMID: 38333295 PMCID: PMC10849442 DOI: 10.1097/ms9.0000000000001664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 02/10/2024] Open
Abstract
Lewy body dementia (LBD) is situated at the convergence of neurodegenerative disorders, posing an intricate and diverse clinical dilemma. The accumulation of abnormal protein in the brain, namely, the Lewy body causes disturbances in typical neural functioning, leading to a range of cognitive, motor, and mental symptoms that have a substantial influence on the overall well-being and quality of life of affected individuals. There is no definitive cure for the disease; however, several nonpharmacological and pharmacological modalities have been tried with questionable efficacies. The aim of this study is to figure out the role of different interventional strategies in the disease. Donepezil, rivastigmine, memantine, and galantamine were the commonly used drugs for LBD. Together with that, levodopa, antipsychotics, armodafinil, piracetam, and traditional medications like yokukansan were also used, when indicated. Talking about nonpharmacological measures, exercise, physical therapy, multicomponent therapy, occupational therapy, psychobehavioral modification, transcranial stimulation, and deep brain stimulation have been used with variable efficacies. Talking about recent advances in the treatment of LBD, various disease-modifying therapies like ambroxol, neflamapimod, irsenontrine, nilotinib, bosutinib, vodobatinib, clenbuterol, terazosin, elayta, fosgonimeton, and anle138b are emerging out. However, there drugs are still in the different phases of clinical trials and are not commonly used in clinical practice. With the different pharmacological and nonpharmacological modalities we have for treatment of LBD, all of them offer symptomatic relief only. Being a degenerative disease, definite cure of the disease can only be possible with regenerative measures.
Collapse
Affiliation(s)
- Sajjad Ahmed Khan
- Department of Community Medicine, Birat Medical College Teaching Hospital, Morang
| | - Sadab Khan
- Karnali Academy of Health Sciences, Karnali, Nepal
| | - Huma Kausar
- Karnali Academy of Health Sciences, Karnali, Nepal
| | - Rajat Shah
- Department of Community Medicine, Birat Medical College Teaching Hospital, Morang
| | - Anish Luitel
- Department of Community Medicine, Birat Medical College Teaching Hospital, Morang
| | - Sakshyam Gautam
- Department of Community Medicine, Birat Medical College Teaching Hospital, Morang
| | | | - Vivek K. Rauniyar
- Department of Clinical Neurology, Birat Medical College Teaching Hospital, Morang
| | - Moien A.B. Khan
- Department of Family Medicine, College of Medicine and Health sciences, United Arab Emirates University, Abu Dhabi, United Arab Emirates
- Primary Care, NHS North West London, United Kingdom
| |
Collapse
|
3
|
Tolea MI, Ezzeddine R, Camacho S, Galvin JE. Emerging drugs for dementia with Lewy Bodies: a review of Phase II & III trials. Expert Opin Emerg Drugs 2023; 28:167-180. [PMID: 37531299 DOI: 10.1080/14728214.2023.2244425] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
INTRODUCTION Despite faster cognitive decline and greater negative impact on patients and family caregivers, drug development efforts in Dementia with Lewy Bodies (DLB) fall behind those for Alzheimer's Disease (AD). Current off-label drug DLB treatment options are limited to symptomatic agents developed to address cognitive deficits in AD, motor deficits in Parkinson's Disease, or behavioral symptoms in psychiatric disease. Aided by recent improvements in DLB diagnosis, a new focus on the development of disease-modifying agents (DMA) is emerging. AREAS COVERED Driven by evidence supporting different pathological mechanisms in DLB and PDD, this review assesses the evidence on symptomatic drug treatments and describes current efforts in DMA development in DLB. Specifically, our goals were to: (1) review evidence supporting the use of symptomatic drug treatments in DLB; (2) review the current DMA pipeline in DLB with a focus on Phase II and III clinical trials; and (3) identify potential issues with the development of DMA in DLB. Included in this review were completed and ongoing drug clinical trials in DLB registered on ClinicalTrials.gov (no time limits set for the search) or disseminated at the 2023 international conference on Clinical Trials in AD. Drug clinical trials registered in non-US clinical trial registries were not included. EXPERT OPINION Adoption of current symptomatic drug treatments used off-label in DLB relied on efficacy of benefits in other disorders rather than evidence from randomized controlled clinical trials. Symptoms remain difficult to manage. Several DMA drugs are currently being evaluated as either repurposing candidates or novel small molecules. Continued improvement in methodological aspects including development of DLB-specific outcome measures and biomarkers is needed to move the field of DMA drug development forward.
Collapse
Affiliation(s)
- Magdalena I Tolea
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Reem Ezzeddine
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Simone Camacho
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - James E Galvin
- Comprehensive Center for Brain Health, Lewy Body Dementia Research Center of Excellence, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Skylar-Scott IA, Sha SJ. Lewy Body Dementia: An Overview of Promising Therapeutics. Curr Neurol Neurosci Rep 2023; 23:581-592. [PMID: 37572228 DOI: 10.1007/s11910-023-01292-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/14/2023]
Abstract
PURPOSE OF REVIEW Lewy body dementia (LBD) encompasses dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). This article will emphasize potential disease-modifying therapies as well as investigative symptomatic treatments for non-motor symptoms including cognitive impairment and psychosis that can present a tremendous burden to patients with LBD and their caregivers. RECENT FINDINGS We review 11 prospective disease-modifying therapies (DMT) including four with phase 2 data (neflamapimod, nilotinib, bosutinib, and E2027); four with some limited data in symptomatic populations including phase 1, open-label, registry, or cohort data (vodabatinib, ambroxol, clenbuterol, and terazosin); and three with phase 1 data in healthy populations (Anle138b, fosgonimeton, and CT1812). We also appraise four symptomatic therapies for cognitive impairment, but due to safety and efficacy concerns, only NYX-458 remains under active investigation. Of symptomatic therapies for psychosis recently investigated, pimavanserin shows promise in LBD, but studies of nelotanserin have been suspended. Although the discovery of novel symptomatic and disease-modifying therapeutics remains a significant challenge, recently published and upcoming trials signify promising strides toward that aim.
Collapse
Affiliation(s)
- Irina A Skylar-Scott
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Palo Alto, CA, 94305, USA.
| | - Sharon J Sha
- Memory Disorders Division, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Palo Alto, CA, 94305, USA
| |
Collapse
|
5
|
Abdelnour C, Gonzalez MC, Gibson LL, Poston KL, Ballard CG, Cummings JL, Aarsland D. Dementia with Lewy Bodies Drug Therapies in Clinical Trials: Systematic Review up to 2022. Neurol Ther 2023; 12:727-749. [PMID: 37017910 PMCID: PMC10195935 DOI: 10.1007/s40120-023-00467-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023] Open
Abstract
INTRODUCTION Reviews of randomized clinical trials (RCTs) in dementia with Lewy bodies (DLB) are essential for informing ongoing research efforts of symptomatic therapies and potentially disease-modifying therapies (DMTs). METHODS We performed a systematic review of all clinical trials conducted until September 27, 2022, by examining 3 international registries: ClinicalTrials.gov, the European Union Drug Regulating Authorities Clinical Trials Database, and the International Clinical Trials Registry Platform, to identify drugs in trials in DLB. RESULTS We found 25 agents in 40 trials assessing symptomatic treatments and DMTs for DLB: 7 phase 3, 31 phase 2, and 2 phase 1 trials. We found an active pipeline for drug development in DLB, with most ongoing clinical trials in phase 2. We identified a recent trend towards including participants at the prodromal stages, although more than half of active clinical trials will enroll mild to moderate dementia patients. Additionally, repurposed agents are frequently tested, representing 65% of clinical trials. CONCLUSION Current challenges in DLB clinical trials include the need for disease-specific outcome measures and biomarkers, and improving representation of global and diverse populations.
Collapse
Affiliation(s)
- Carla Abdelnour
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA.
| | - Maria Camila Gonzalez
- Department of Quality and Health Technology, Faculty of Health Sciences, University of Stavanger, Stavanger, Norway
- The Norwegian Centre for Movement Disorders, Stavanger University Hospital, Stavanger, Norway
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
| | - Lucy L Gibson
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Jeffrey L Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Pam Quirk Brain Health and Biomarker Laboratory, Department of Brain Health, School of Integrated Health Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Dag Aarsland
- Centre for Age-Related Diseases, Stavanger University Hospital, Stavanger, Norway
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
6
|
Pang T, Chong EJY, Wong ZX, Chew KA, Venketasubramanian N, Chen C, Xu X. Validation of the Informant Quick Dementia Rating System (QDRS) among Older Adults in Singapore. J Alzheimers Dis 2022; 89:1323-1330. [DOI: 10.3233/jad-220520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The Quick Dementia Rating System (QDRS) is a brief and rapid tool that can be administered by an informant without the need for a trained assessor. Objective: Our objective was to examine the validity, reliability, and cost-effectiveness of the informant QDRS in a Singapore memory clinic sample. Methods: We assessed a total of 177 older adults, among whom, 32 had no cognitive impairment (NCI), 61 had mild cognitive impairment (MCI), and 84 had dementia. Elderly underwent 1) the informant QDRS, 2) the Clinical Dementia Rating (CDR) as the gold standard diagnosis, 3) the Mini-Mental State Examination (MMSE), and 4) the Ascertain Dementia 8 (AD8) as comparisons to the QDRS. The extent to which the QDRS may reduce the recruitment cost (time) of clinical trials was also calculated. Results: The QDRS had excellent internal consistency (Cronbach alpha = 0.939). It correlated highly with the CDR-global (R = 0.897), CDR Sum-of-Boxes (R = 0.915), MMSE (R = –0.848), and the AD8 (R = 0.747), showing good concurrent validity. With an optimal cut-off of 1.5 for MCI (sensitivity 85.2%, specificity 96.3%) and 6 for dementia (sensitivity 90.1%, specificity 89.2%), the QDRS achieved a higher overall accuracy of 85.0%, as compared to MMSE (71.2%) and AD8 (73.4%). A simulated clinical trial recruitment scenario demonstrated that pre-screening with the QDRS followed by a confirmatory CDR would reduce the time needed to identify NCI subjects by 23.3% and MCI subjects by 75.3%. Conclusion: The QDRS is a reliable cognitive impairment screening tool which is suitable for informant-administration, especially for identification of MCI.
Collapse
Affiliation(s)
- Ting Pang
- School of Public Health and the 2nd Affiliated Hospital of School of Medicine, Zhejiang University, China
| | - Eddie Jun Yi Chong
- Memory, Ageing and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zi Xuen Wong
- Memory, Ageing and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kimberly Ann Chew
- Memory, Ageing and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Narayanaswamy Venketasubramanian
- Memory, Ageing and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher Chen
- Memory, Ageing and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Xin Xu
- School of Public Health and the 2nd Affiliated Hospital of School of Medicine, Zhejiang University, China
- Memory, Ageing and Cognition Centre, Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
7
|
Zhao Y, Wang Y, Yang D, Suh K, Zhang M. A Computational Framework to Characterize the Cancer Drug Induced Effect on Aging Using Transcriptomic Data. Front Pharmacol 2022; 13:906429. [PMID: 35847024 PMCID: PMC9277350 DOI: 10.3389/fphar.2022.906429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Cancer treatments such as chemotherapies may change or accelerate aging trajectories in cancer patients. Emerging evidence has shown that “omics” data can be used to study molecular changes of the aging process. Here, we integrated the drug-induced and normal aging transcriptomic data to computationally characterize the potential cancer drug-induced aging process in patients. Our analyses demonstrated that the aging-associated gene expression in the GTEx dataset can recapitulate the well-established aging hallmarks. We next characterized the drug-induced transcriptomic changes of 28 FDA approved cancer drugs in brain, kidney, muscle, and adipose tissues. Further drug-aging interaction analysis identified 34 potential drug regulated aging events. Those events include aging accelerating effects of vandetanib (Caprelsa®) and dasatinib (Sprycel®) in brain and muscle, respectively. Our result also demonstrated aging protective effect of vorinostat (Zolinza®), everolimus (Afinitor®), and bosutinib (Bosulif®) in brain.
Collapse
Affiliation(s)
- Yueshan Zhao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yue Wang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Da Yang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kangho Suh
- Department of Pharmacy and Therapeutics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Min Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, United States
- *Correspondence: Min Zhang,
| |
Collapse
|
8
|
MacDonald S, Shah AS, Tousi B. Current Therapies and Drug Development Pipeline in Lewy Body Dementia: An Update. Drugs Aging 2022; 39:505-522. [PMID: 35619045 DOI: 10.1007/s40266-022-00939-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
The term Lewy body dementia refers to either of two related diagnoses: dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD). Clinical management of Lewy body dementia is challenging. The current treatment options focus on relieving symptoms; no disease-modifying therapies are available. There are currently no US Food and Drug Administration (FDA) approved drugs for the treatment of DLB, and there are only a few for PDD. Cholinesterase inhibitors are shown to be beneficial in improving cognitive symptoms in Lewy body dementia. Rivastigmine was approved by the FDA to treat PDD. Donepezil was approved in Japan as a treatment for DLB. Levodopa may provide modest benefit in treating motor symptoms and zonisamide in adjunct to low-dose levodopa helps with parkinsonism. Treatment of autonomic symptoms are based on symptomatic treatment with off-label agents. Our main objective in this article is to present an overview of the current pharmacological options available to treat the clinical features of DLB and PDD. When evaluating the existing management options for Lewy body dementia, it is difficult to fully separate PDD from DLB. However, we have attempted to identify whether the cited studies include patients with PDD and/or DLB. Moreover, we have provided an overview of the current drug pipeline in Lewy body dementia. All currently active trials are in phase I or II and most are focused on disease modification rather than symptomatic treatment. Phase II trial results for neflamapimod show promising results. Due to heterogeneity of symptoms and underlying pathophysiology, there is a need for new biomarker strategies and improved definitions of outcome measures for Lewy body dementia drug trials.
Collapse
Affiliation(s)
- Steve MacDonald
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA
| | | | - Babak Tousi
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland, OH, USA.
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Jordan S, Zielinski M, Kortylewski M, Kuhn T, Bystritsky A. Noninvasive Delivery of Biologicals to the Brain. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2022; 20:64-70. [PMID: 35746928 PMCID: PMC9063603 DOI: 10.1176/appi.focus.20210028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the past, psychotherapy and neuropharmacological approaches have been the most common treatments for disordered thoughts, moods, and behaviors. One new path of brain therapeutics is in the deployment of noninvasive approaches designed to reprogram brain function at the cellular level. Treatment at the cellular level may be considered for a wide array of disorders, ranging from mood disorders to neurodegenerative disorders. Brain-targeted biological therapy may provide minimally invasive and accurate delivery of treatment. The present article discusses the hurdles and advances that characterize the pathway to this goal.
Collapse
|
10
|
Pagan FL, Torres‐Yaghi Y, Hebron ML, Wilmarth B, Turner RS, Matar S, Ferrante D, Ahn J, Moussa C. Safety, target engagement, and biomarker effects of bosutinib in dementia with Lewy bodies. ALZHEIMER'S & DEMENTIA: TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2022; 8:e12296. [PMID: 35662832 PMCID: PMC9157583 DOI: 10.1002/trc2.12296] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/16/2022] [Accepted: 03/24/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Fernando L. Pagan
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - Yasar Torres‐Yaghi
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - Michaeline L. Hebron
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Barbara Wilmarth
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
- MedStar Georgetown University Hospital Movement Disorders Clinic Department of Neurology Washington DC USA
| | - R. Scott Turner
- Memory Disorders Program Department of Neurology Georgetown University Medical Center Washington DC USA
| | - Sara Matar
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Dalila Ferrante
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| | - Jaeil Ahn
- Department of Biostatistics Bioinformatics and Biomathematics Georgetown University Medical Center Washington DC USA
| | - Charbel Moussa
- Translational Neurotherapeutics Program Laboratory for Dementia and Parkinsonism Department of Neurology Lewy Body Dementia Association Research Center of Excellence Georgetown University Medical Center Washington DC USA
| |
Collapse
|