1
|
Cengiz Winter N, Karakaya M, Mosen P, Brusius I, Anlar B, Haliloglu G, Winter D, Wirth B. Proteomic Investigation of Differential Interactomes of Glypican 1 and a Putative Disease-Modifying Variant of Ataxia. J Proteome Res 2023; 22:3081-3095. [PMID: 37585105 PMCID: PMC10476613 DOI: 10.1021/acs.jproteome.3c00402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 08/17/2023]
Abstract
In a currently 13-year-old girl of consanguineous Turkish parents, who developed unsteady gait and polyneuropathy at the ages of 3 and 6 years, respectively, we performed whole genome sequencing and identified a biallelic missense variant c.424C>T, p.R142W in glypican 1 (GPC1) as a putative disease-associated variant. Up to date, GPC1 has not been associated with a neuromuscular disorder, and we hypothesized that this variant, predicted as deleterious, may be causative for the disease. Using mass spectrometry-based proteomics, we investigated the interactome of GPC1 WT and the missense variant. We identified 198 proteins interacting with GPC1, of which 16 were altered for the missense variant. This included CANX as well as vacuolar ATPase (V-ATPase) and the mammalian target of rapamycin complex 1 (mTORC1) complex members, whose dysregulation could have a potential impact on disease severity in the patient. Importantly, these proteins are novel interaction partners of GPC1. At 10.5 years, the patient developed dilated cardiomyopathy and kyphoscoliosis, and Friedreich's ataxia (FRDA) was suspected. Given the unusually severe phenotype in a patient with FRDA carrying only 104 biallelic GAA repeat expansions in FXN, we currently speculate that disturbed GPC1 function may have exacerbated the disease phenotype. LC-MS/MS data are accessible in the ProteomeXchange Consortium (PXD040023).
Collapse
Affiliation(s)
- Nur Cengiz Winter
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
| | - Mert Karakaya
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
- Center
for Rare Diseases Cologne, University Hospital
of Cologne, 50931 Cologne, Germany
| | - Peter Mosen
- Institute
for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Isabell Brusius
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
| | - Banu Anlar
- Department
of Pediatrics, Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey
| | - Goknur Haliloglu
- Department
of Pediatrics, Division of Pediatric Neurology, Hacettepe University Faculty of Medicine, 06230 Ankara, Turkey
| | - Dominic Winter
- Institute
for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, 53115 Bonn, Germany
| | - Brunhilde Wirth
- Institute
of Human Genetics, University Hospital Cologne, 50931 Cologne, Germany
- Center
for Molecular Medicine Cologne, University
of Cologne, 50931 Cologne, Germany
- Center
for Rare Diseases Cologne, University Hospital
of Cologne, 50931 Cologne, Germany
| |
Collapse
|
2
|
Pedroso JL, Vale TC, França Junior MC, Kauffman MA, Teive H, Barsottini OGP, Munhoz RP. A Diagnostic Approach to Spastic ataxia Syndromes. CEREBELLUM (LONDON, ENGLAND) 2022; 21:1073-1084. [PMID: 34782953 DOI: 10.1007/s12311-021-01345-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Spastic ataxia is characterized by the combination of cerebellar ataxia with spasticity and other pyramidal features. It is the hallmark of some hereditary ataxias, but it can also occur in some spastic paraplegias and acquired conditions. It often presents with heterogenous clinical features with other neurologic and non-neurological symptoms, resulting in complex phenotypes. In this review, the differential diagnosis of spastic ataxias are discussed and classified in accordance with inheritance. Establishing an organized classification method based on mode inheritance is fundamental for the approach to patients with these syndromes. For each differential, the clinical features, neuroimaging and genetic aspects are reviewed. A diagnostic approach for spastic ataxias is then proposed.
Collapse
Affiliation(s)
- José Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Thiago Cardoso Vale
- Department of Internal Medicine, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | | | - Marcelo A Kauffman
- Laboratorio de Neurogenética, Centro Universitario de Neurología "José María Ramos Mejía" y División Neurología, Hospital JM Ramos Mejía, Facultad de Medicina, UBA, Buenos Aires, Argentina
| | - Helio Teive
- Department of Neurology, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | | |
Collapse
|
3
|
Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia G, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Di Schiavi E, Gatti M, Artandi S, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022; 50:12400-12424. [PMID: 35947650 PMCID: PMC9757054 DOI: 10.1093/nar/gkac659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Ludovico Rizzuti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | | | - Ivan Gallotta
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Marie A Kobin
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gian Gaetano Tartaglia
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Alessio Colantoni
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Gabriele Proietti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Yunming Wu
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
- Department of Neurology, Columbia University, NY 10032, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, IBBR, CNR, Naples, Italy
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
4
|
Muinos-Bühl A, Rombo R, Janzen E, Ling KK, Hupperich K, Rigo F, Bennett CF, Wirth B. Combinatorial ASO-mediated therapy with low dose SMN and the protective modifier Chp1 is not sufficient to ameliorate SMA pathology hallmarks. Neurobiol Dis 2022; 171:105795. [PMID: 35724821 DOI: 10.1016/j.nbd.2022.105795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/17/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating genetically inherited neuromuscular disorder characterized by the progressive loss of motor neurons in the spinal cord, leading to muscle atrophy and weakness. Although SMA is caused by homozygous mutations in SMN1, the disease severity is mainly determined by the copy number of SMN2, an almost identical gene that produces ~10% correctly spliced SMN transcripts. Recently, three FDA- and EMA-approved therapies that either increase correctly spliced SMN2 transcripts (nusinersen and risdiplam) or replace SMN1 (onasemnogen abeparvovec-xioi) have revolutionized the clinical outcome in SMA patients. However, for severely affected SMA individuals carrying only two SMN2 copies even a presymptomatic therapy might be insufficient to fully counteract disease development. Therefore, SMN-independent compounds supporting SMN-dependent therapies represent a promising therapeutic approach. Recently, we have shown a significant amelioration of SMA disease hallmarks in a severely affected SMA mouse carrying a mutant Chp1 allele when combined with low-dose of SMN antisense oligonucleotide (ASO) treatment. CHP1 is a direct interacting partner of PLS3, a strong protective modifier of SMA. Both proteins ameliorate impaired endocytosis in SMA and significantly restore pathological hallmarks in mice. Here, we aimed to pharmacologically reduce CHP1 levels in an ASO-based combinatorial therapy targeting SMN and Chp1. Chp1 modulation is a major challenge since its genetic reduction to ~50% has shown to ameliorate SMA pathology, while the downregulation below that level causes cerebellar ataxia. Efficacy and tolerability studies determined that a single injection of 30 μg Chp1-ASO4 in the CNS is a safe dosage that significantly reduced CHP1 levels to ~50% at postnatal day (PND)14. Unfortunately, neither electrophysiological predictors such as compound muscle action potential (CMAP) or motor unit number estimation (MUNE) nor histological hallmarks of SMA in neuromuscular junction (NMJ), spinal cord or muscle were ameliorated in SMA mice treated with Chp1-ASO4 compared to CTRL-ASO at PND21. Surprisingly, CHP1 levels were almost at control level 4-weeks post injection, indicating a rather short-term effect of the ASO. Therefore, we re-administrated Chp1-ASO4 by i.c.v. bolus injection at PND28. However, no significant improvement of SMA hallmarks were seen at 2 month-of-age either. In conclusion, in contrast to the protective effect of genetically-induced Chp1 reduction on SMA, combinatorial therapy with Chp1- and SMN-ASOs failed to significantly ameliorate the SMA pathology. Chp1-ASOs compared to SMN-ASO proved to have rather short-term effect and even reinjection had no significant impact on SMA progression, suggesting that further optimization of the ASO may be required to fully explore the combination.
Collapse
Affiliation(s)
- A Muinos-Bühl
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany.
| | - R Rombo
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany.
| | - E Janzen
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - K K Ling
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | - K Hupperich
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - F Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | - C F Bennett
- Ionis Pharmaceuticals, Carlsbad, CA 92008, USA.
| | - B Wirth
- Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany; Institute for Genetics, University of Cologne, 50674 Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
5
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
6
|
Dong Y, Gao Y, Ilie A, Kim D, Boucher A, Li B, Zhang XC, Orlowski J, Zhao Y. Structure and mechanism of the human NHE1-CHP1 complex. Nat Commun 2021; 12:3474. [PMID: 34108458 PMCID: PMC8190280 DOI: 10.1038/s41467-021-23496-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/29/2021] [Indexed: 02/05/2023] Open
Abstract
Sodium/proton exchanger 1 (NHE1) is an electroneutral secondary active transporter present on the plasma membrane of most mammalian cells and plays critical roles in regulating intracellular pH and volume homeostasis. Calcineurin B-homologous protein 1 (CHP1) is an obligate binding partner that promotes NHE1 biosynthetic maturation, cell surface expression and pH-sensitivity. Dysfunctions of either protein are associated with neurological disorders. Here, we elucidate structures of the human NHE1-CHP1 complex in both inward- and inhibitor (cariporide)-bound outward-facing conformations. We find that NHE1 assembles as a symmetrical homodimer, with each subunit undergoing an elevator-like conformational change during cation exchange. The cryo-EM map reveals the binding site for the NHE1 inhibitor cariporide, illustrating how inhibitors block transport activity. The CHP1 molecule differentially associates with these two conformational states of each NHE1 monomer, and this association difference probably underlies the regulation of NHE1 pH-sensitivity by CHP1.
Collapse
Affiliation(s)
- Yanli Dong
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiwei Gao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Alina Ilie
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - DuSik Kim
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Annie Boucher
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Bin Li
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejun C. Zhang
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - John Orlowski
- grid.14709.3b0000 0004 1936 8649Department of Physiology, McGill University, Montreal, QC Canada
| | - Yan Zhao
- grid.9227.e0000000119573309National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Plastin 3 in health and disease: a matter of balance. Cell Mol Life Sci 2021; 78:5275-5301. [PMID: 34023917 PMCID: PMC8257523 DOI: 10.1007/s00018-021-03843-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/06/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
For a long time, PLS3 (plastin 3, also known as T-plastin or fimbrin) has been considered a rather inconspicuous protein, involved in F-actin-binding and -bundling. However, in recent years, a plethora of discoveries have turned PLS3 into a highly interesting protein involved in many cellular processes, signaling pathways, and diseases. PLS3 is localized on the X-chromosome, but shows sex-specific, inter-individual and tissue-specific expression variability pointing towards skewed X-inactivation. PLS3 is expressed in all solid tissues but usually not in hematopoietic cells. When escaping X-inactivation, PLS3 triggers a plethora of different types of cancers. Elevated PLS3 levels are considered a prognostic biomarker for cancer and refractory response to therapies. When it is knocked out or mutated in humans and mice, it causes osteoporosis with bone fractures; it is the only protein involved in actin dynamics responsible for osteoporosis. Instead, when PLS3 is upregulated, it acts as a highly protective SMN-independent modifier in spinal muscular atrophy (SMA). Here, it seems to counteract reduced F-actin levels by restoring impaired endocytosis and disturbed calcium homeostasis caused by reduced SMN levels. In contrast, an upregulation of PLS3 on wild-type level might cause osteoarthritis. This emphasizes that the amount of PLS3 in our cells must be precisely balanced; both too much and too little can be detrimental. Actin-dynamics, regulated by PLS3 among others, are crucial in a lot of cellular processes including endocytosis, cell migration, axonal growth, neurotransmission, translation, and others. Also, PLS3 levels influence the infection with different bacteria, mycosis, and other pathogens.
Collapse
|
8
|
Yahia A, Stevanin G. The History of Gene Hunting in Hereditary Spinocerebellar Degeneration: Lessons From the Past and Future Perspectives. Front Genet 2021; 12:638730. [PMID: 33833777 PMCID: PMC8021710 DOI: 10.3389/fgene.2021.638730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/02/2021] [Indexed: 01/02/2023] Open
Abstract
Hereditary spinocerebellar degeneration (SCD) encompasses an expanding list of rare diseases with a broad clinical and genetic heterogeneity, complicating their diagnosis and management in daily clinical practice. Correct diagnosis is a pillar for precision medicine, a branch of medicine that promises to flourish with the progressive improvements in studying the human genome. Discovering the genes causing novel Mendelian phenotypes contributes to precision medicine by diagnosing subsets of patients with previously undiagnosed conditions, guiding the management of these patients and their families, and enabling the discovery of more causes of Mendelian diseases. This new knowledge provides insight into the biological processes involved in health and disease, including the more common complex disorders. This review discusses the evolution of the clinical and genetic approaches used to diagnose hereditary SCD and the potential of new tools for future discoveries.
Collapse
Affiliation(s)
- Ashraf Yahia
- Department of Biochemistry, Faculty of Medicine, University of Khartoum, Khartoum, Sudan
- Department of Biochemistry, Faculty of Medicine, National University, Khartoum, Sudan
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| | - Giovanni Stevanin
- Institut du Cerveau, INSERM U1127, CNRS UMR7225, Sorbonne Université, Paris, France
- Ecole Pratique des Hautes Etudes, EPHE, PSL Research University, Paris, France
| |
Collapse
|
9
|
Novel CHP1 mutation in autosomal-recessive cerebellar ataxia: autopsy features of two siblings. Acta Neuropathol Commun 2020; 8:134. [PMID: 32787936 PMCID: PMC7425070 DOI: 10.1186/s40478-020-01008-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 11/10/2022] Open
|
10
|
Almatrafi A, Umair M, Eldardear A, Al-Luqmani M, Hashmi JA, Albalawi AM, Alfadhel M, Ramzan K, Basit S. A homozygous missense variant in the homeobox domain of the NKX6-2 results in progressive spastic ataxia type 8 associated with lower limb weakness and neurological manifestations. J Gene Med 2020; 22:e3196. [PMID: 32246862 DOI: 10.1002/jgm.3196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Progressive spastic ataxia is a heterogeneous disorder characterized by cerebellar ataxia and limb spasticity associated with other severe neurological complications. Spastic ataxia is classified into pure and complex types, inherited in both an autosomal recessive and autosomal dominant manner. It is caused by pathogenic variants in at least eight different genes, including NKX6-2 (MIM 607063) located on chromosome 10q26.3. The present study aimed to identify the genetic variant(s) underlying progressive spastic ataxia and to establish the genotype-phenotype correlation. METHODS We collected a large consanguineous family having four affected individuals segregating progressive spastic ataxia in an autosomal recessive manner. To investigate the molecular cause of the disease, genomic DNA of three affected individuals underwent whole exome sequencing. RESULTS All of the affected individuals showed progressive clinical features such as spastic ataxia, lower limb weakness and other mild neurological abnormalities. Whole exome sequencing data were analyzed using different filters. Filtering of rare and shared homozygous variants revealed a novel homozygous missense variant (c.545C>T; p.Ala182Val) in a highly conserved homeobox domain of the NKX6-2 protein. CONCLUSIONS The findings of the present study add a novel variant to the NKX6-2 mutation spectrum and provide evidence that homozygous variants in the NKX6-2 cause progressive spastic ataxia associated with other abnormalities.
Collapse
Affiliation(s)
- Ahmad Almatrafi
- Department of Biology, College of Science, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Muhammad Umair
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Amr Eldardear
- College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Majid Al-Luqmani
- College of Medicine, Taibah University, Almadinah Almunawwarah, Saudi Arabia
| | - Jamil A Hashmi
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| | - Alia M Albalawi
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia.,Department of Biology, College of Science, King Abdulaziz University Jeddah, Jeddah, Saudi Arabia
| | - Majid Alfadhel
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia.,Division of Genetics, Department of Pediatrics, King Abdullah Specialized Children's Hospital (KASCH), King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sulman Basit
- Center for Genetics and Inherited Diseases, Taibah University, Medina, Saudi Arabia
| |
Collapse
|
11
|
Liang S, Fuchs S, Mymrikov EV, Stulz A, Kaiser M, Heerklotz H, Hunte C. Calcium affects CHP1 and CHP2 conformation and their interaction with sodium/proton exchanger 1. FASEB J 2020; 34:3253-3266. [DOI: 10.1096/fj.201902093r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Shuo Liang
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Simon Fuchs
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- Faculty of Biology University of Freiburg Freiburg Germany
| | - Evgeny V. Mymrikov
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
| | - Anja Stulz
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
| | - Michael Kaiser
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
| | - Heiko Heerklotz
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
- Department of Pharmaceutical Technology and Biopharmacy University of Freiburg Freiburg Germany
- Leslie Dan Faculty of Pharmacy University of Toronto Toronto Canada
- BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology ZBMZ, Faculty of Medicine University of Freiburg Freiburg Germany
- CIBSS ‐ Centre for Integrative Biological Signalling Studies University of Freiburg Freiburg Germany
- BIOSS Centre for Biological Signalling Studies University of Freiburg Freiburg Germany
| |
Collapse
|
12
|
Pedersen SF, Counillon L. The SLC9A-C Mammalian Na +/H + Exchanger Family: Molecules, Mechanisms, and Physiology. Physiol Rev 2019; 99:2015-2113. [PMID: 31507243 DOI: 10.1152/physrev.00028.2018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Na+/H+ exchangers play pivotal roles in the control of cell and tissue pH by mediating the electroneutral exchange of Na+ and H+ across cellular membranes. They belong to an ancient family of highly evolutionarily conserved proteins, and they play essential physiological roles in all phyla. In this review, we focus on the mammalian Na+/H+ exchangers (NHEs), the solute carrier (SLC) 9 family. This family of electroneutral transporters constitutes three branches: SLC9A, -B, and -C. Within these, each isoform exhibits distinct tissue expression profiles, regulation, and physiological roles. Some of these transporters are highly studied, with hundreds of original articles, and some are still only rudimentarily understood. In this review, we present and discuss the pioneering original work as well as the current state-of-the-art research on mammalian NHEs. We aim to provide the reader with a comprehensive view of core knowledge and recent insights into each family member, from gene organization over protein structure and regulation to physiological and pathophysiological roles. Particular attention is given to the integrated physiology of NHEs in the main organ systems. We provide several novel analyses and useful overviews, and we pinpoint main remaining enigmas, which we hope will inspire novel research on these highly versatile proteins.
Collapse
Affiliation(s)
- S F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| | - L Counillon
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark; and Université Côte d'Azur, CNRS, Laboratoire de Physiomédecine Moléculaire, LP2M, France, and Laboratories of Excellence Ion Channel Science and Therapeutics, Nice, France
| |
Collapse
|
13
|
Janzen E, Wolff L, Mendoza-Ferreira N, Hupperich K, Delle Vedove A, Hosseinibarkooie S, Kye MJ, Wirth B. PLS3 Overexpression Delays Ataxia in Chp1 Mutant Mice. Front Neurosci 2019; 13:993. [PMID: 31607845 PMCID: PMC6761326 DOI: 10.3389/fnins.2019.00993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022] Open
Abstract
Many neurodegenerative disorders share common pathogenic pathways such as endocytic defects, Ca2+ misregulation and defects in actin dynamics. Factors acting on these shared pathways are highly interesting as a therapeutic target. Plastin 3 (PLS3), a proven protective modifier of spinal muscular atrophy across species, is a remarkable example of the former, and thereby offers high potential as a cross-disease modifier. Importantly, PLS3 has been linked to numerous proteins associated with various neurodegenerative diseases. Among them, PLS3 directly interacts with calcineurin like EF-hand protein 1 (CHP1), whose loss-of-function results in ataxia. In this study, we aimed to determine whether PLS3 is a cross-disease modifier for ataxia caused by Chp1 mutation in mice. For this purpose, we generated Chp1 mutant mice, named vacillator mice, overexpressing a PLS3 transgene. Here, we show that PLS3 overexpression (OE) delays the ataxic phenotype of the vacillator mice at an early but not later disease stage. Furthermore, we demonstrated that PLS3 OE ameliorates axon hypertrophy and axonal swellings in Purkinje neurons thereby slowing down neurodegeneration. Mechanistically, we found that PLS3 OE in the cerebellum shows a trend of increased membrane targeting and/or expression of Na+/H+ exchanger (NHE1), an important CHP1 binding partner and a causative gene for ataxia, when mutated in humans and mice. This data supports the hypothesis that PLS3 is a cross-disease genetic modifier for CHP1-causing ataxia and spinal muscular atrophy.
Collapse
Affiliation(s)
- Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Lisa Wolff
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Andrea Delle Vedove
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Janzen E, Mendoza-Ferreira N, Hosseinibarkooie S, Schneider S, Hupperich K, Tschanz T, Grysko V, Riessland M, Hammerschmidt M, Rigo F, Bennett CF, Kye MJ, Torres-Benito L, Wirth B. CHP1 reduction ameliorates spinal muscular atrophy pathology by restoring calcineurin activity and endocytosis. Brain 2019; 141:2343-2361. [PMID: 29961886 PMCID: PMC6061875 DOI: 10.1093/brain/awy167] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Autosomal recessive spinal muscular atrophy (SMA), the leading genetic cause of infant lethality, is caused by homozygous loss of the survival motor neuron 1 (SMN1) gene. SMA disease severity inversely correlates with the number of SMN2 copies, which in contrast to SMN1, mainly produce aberrantly spliced transcripts. Recently, the first SMA therapy based on antisense oligonucleotides correcting SMN2 splicing, namely SPINRAZATM, has been approved. Nevertheless, in type I SMA-affected individuals—representing 60% of SMA patients—the elevated SMN level may still be insufficient to restore motor neuron function lifelong. Plastin 3 (PLS3) and neurocalcin delta (NCALD) are two SMN-independent protective modifiers identified in humans and proved to be effective across various SMA animal models. Both PLS3 overexpression and NCALD downregulation protect against SMA by restoring impaired endocytosis; however, the exact mechanism of this protection is largely unknown. Here, we identified calcineurin-like EF-hand protein 1 (CHP1) as a novel PLS3 interacting protein using a yeast-two-hybrid screen. Co-immunoprecipitation and pull-down assays confirmed a direct interaction between CHP1 and PLS3. Although CHP1 is ubiquitously present, it is particularly abundant in the central nervous system and at SMA-relevant sites including motor neuron growth cones and neuromuscular junctions. Strikingly, we found elevated CHP1 levels in SMA mice. Congruently, CHP1 downregulation restored impaired axonal growth in Smn-depleted NSC34 motor neuron-like cells, SMA zebrafish and primary murine SMA motor neurons. Most importantly, subcutaneous injection of low-dose SMN antisense oligonucleotide in pre-symptomatic mice doubled the survival rate of severely-affected SMA mice, while additional CHP1 reduction by genetic modification prolonged survival further by 1.6-fold. Moreover, CHP1 reduction further ameliorated SMA disease hallmarks including electrophysiological defects, smaller neuromuscular junction size, impaired maturity of neuromuscular junctions and smaller muscle fibre size compared to low-dose SMN antisense oligonucleotide alone. In NSC34 cells, Chp1 knockdown tripled macropinocytosis whereas clathrin-mediated endocytosis remained unaffected. Importantly, Chp1 knockdown restored macropinocytosis in Smn-depleted cells by elevating calcineurin phosphatase activity. CHP1 is an inhibitor of calcineurin, which collectively dephosphorylates proteins involved in endocytosis, and is therefore crucial in synaptic vesicle endocytosis. Indeed, we found marked hyperphosphorylation of dynamin 1 in SMA motor neurons, which was restored to control level by the heterozygous Chp1 mutant allele. Taken together, we show that CHP1 is a novel SMA modifier that directly interacts with PLS3, and that CHP1 reduction ameliorates SMA pathology by counteracting impaired endocytosis. Most importantly, we demonstrate that CHP1 reduction is a promising SMN-independent therapeutic target for a combinatorial SMA therapy.
Collapse
Affiliation(s)
- Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Svenja Schneider
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Kristina Hupperich
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Theresa Tschanz
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Vanessa Grysko
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Markus Riessland
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | | | | | - Min Jeong Kye
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Laura Torres-Benito
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
15
|
Aslam F, Naz S. Ataxia and dysarthria due to an ABCA2 variant: Extension of the phenotypic spectrum. Parkinsonism Relat Disord 2019; 64:328-331. [PMID: 31047799 DOI: 10.1016/j.parkreldis.2019.04.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Ataxias are heterogeneous disorders that are caused by variants in a large number of genes. The study was conducted to identify the molecular basis of a movement disorder in a consanguineous Pakistani family. METHODS We performed clinical assessments and magnetic resonance imaging of the older of two siblings affected with a movement disorder. Molecular analyses included whole-exome sequencing in order to delineate the underlying pathology of the disorder. Segregation of variants with the phenotype was checked by Sanger sequencing. RESULTS Symptoms of the two affected subjects were consistent with cerebellar ataxia with dysarthria. Magnetic resonance imaging did not reveal brain abnormalities. The levels of low density lipid proteins were elevated in blood samples of both affected individuals. Whole-exome sequencing data analyses identified a frameshift variant, c.4993delG:p.(Val1665TyrfsTer36) in ABCA2 (NM_212533.2) which segregated with the disorder and was absent from all publicly available databases and ethnically matched controls. Although recessively inherited ABCA2 variants have been reported in two patients who had intellectual disability with global developmental delays, our study demonstrates the role of an ABCA2 variant in the pathogenesis of ataxia with dysarthria. The phenotype observed in our patients shows high concordance with that observed in Abca2 knockout mice. CONCLUSION Our research links an ABCA2 variant with a distinct form of ataxia with dysarthria in humans and demonstrates pleiotropic effects due to the gene mutation. The findings further delineate the importance of low density lipid metabolism and intracellular sterol trafficking in brain function.
Collapse
Affiliation(s)
- Faiza Aslam
- School of Biological Sciences, University of the Punjab, Lahore, FA, Pakistan.
| | - Sadaf Naz
- School of Biological Sciences, University of the Punjab, Lahore, FA, Pakistan.
| |
Collapse
|
16
|
Zhu XG, Nicholson Puthenveedu S, Shen Y, La K, Ozlu C, Wang T, Klompstra D, Gultekin Y, Chi J, Fidelin J, Peng T, Molina H, Hang HC, Min W, Birsoy K. CHP1 Regulates Compartmentalized Glycerolipid Synthesis by Activating GPAT4. Mol Cell 2019; 74:45-58.e7. [PMID: 30846317 DOI: 10.1016/j.molcel.2019.01.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/26/2018] [Accepted: 01/25/2019] [Indexed: 01/10/2023]
Abstract
Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.
Collapse
Affiliation(s)
- Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shirony Nicholson Puthenveedu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, Graz 8036, Austria
| | - Yihui Shen
- Department of Chemistry and Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Can Ozlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tim Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Diana Klompstra
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yetis Gultekin
- Laboratory of Apoptosis and Cancer Biology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jingyi Chi
- Laboratory of Molecular Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Justine Fidelin
- The Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tao Peng
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Henrik Molina
- The Proteomics Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Wei Min
- Department of Chemistry and Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
17
|
Fuchs S, Hansen SC, Markones M, Mymrikov EV, Heerklotz H, Hunte C. Calcineurin B homologous protein 3 binds with high affinity to the CHP binding domain of the human sodium/proton exchanger NHE1. Sci Rep 2018; 8:14837. [PMID: 30287853 PMCID: PMC6172220 DOI: 10.1038/s41598-018-33096-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/21/2018] [Indexed: 12/26/2022] Open
Abstract
The Na+/H+ exchanger NHE1 is critical for cell vitality as it controls intracellular pH and cell volume. Its functionality is influenced by calcineurin B homologous proteins (CHPs). The human isoform CHP3 is important for transport of NHE1 to the plasma membrane and for its activity. Here, we characterized the binding interaction of human CHP3 with the regulatory domain of NHE1. The exact binding site of CHP3 was previously debated. CHP3 as well as both regions of NHE1 in question were produced and purified. CHP3 specifically formed stable complexes with the CHP-binding region (CBD) of NHE1 (residues 503-545) in size-exclusion chromatography (SEC), but not with the C-terminal region (CTD, residues 633-815). CTD was functional as shown by Ca2+-dependent binding of calmodulin in SEC analysis. CHP3 bound with high affinity to CBD with an equilibrium dissociation constant (KD) of 56 nM determined by microscale thermophoresis. The high affinity was substantiated by isothermal calorimetry analysis (KD = 3 nM), which also revealed that the interaction with CBD is strongly exothermic (ΔG° = -48.6 kJ/mol, ΔH = -75.3 kJ/mol, -TΔS° = 26.7 kJ/mol). The data provide insights in the molecular mechanisms that underlie the regulatory interaction of CHP3 and NHE1 and more general of calcineurin homologous proteins with their target proteins.
Collapse
Affiliation(s)
- Simon Fuchs
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104, Freiburg, Germany
| | - Sierra C Hansen
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
| | - Marie Markones
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, D-79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
| | - Heiko Heerklotz
- Department of Pharmaceutical Technology and Biopharmacy, University of Freiburg, D-79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Carola Hunte
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, D-79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104, Freiburg, Germany.
| |
Collapse
|
18
|
|