1
|
Bell CA, Ko MW, Mackay DD, Bursztyn LLCD, Grossman SN. Spastic Paraplegia Type 7-Associated Optic Neuropathy: A Case Series. J Neuroophthalmol 2024; 44:488-496. [PMID: 37983191 DOI: 10.1097/wno.0000000000002039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
BACKGROUND Hereditary optic neuropathies comprise a group of clinically and genetically heterogeneous disorders. Optic neuropathy has been previously reported in families with spastic paraplegia type 7 ( SPG7) gene mutations. However, the typical time course and clinical presentation of SPG7 -associated optic neuropathy is poorly understood. We report a series of 5 patients harboring pathogenic SPG7 mutations who originally presented to a neuro-ophthalmology clinic with symptoms of optic neuropathy. METHODS Retrospective case series of 5 patients with pathogenic SPG7 mutations and optic atrophy from 3 neuro-ophthalmology clinics. Demographic, clinical, diagnostic, and treatment data were collected and reported by the clinician authors. RESULTS Five patients ranging in age from 8 to 48 years were evaluated in the neuro-ophthalmology clinic. Although there were variable clinical presentations for each subject, all noted progressive vision loss, typically bilateral, and several also had previous diagnoses of peripheral neuropathy (e.g., Guillain-Barré Syndrome). Patients underwent neuro-ophthalmic examinations and testing with visual fields and optic coherence tomography of the retinal nerve fiber layer. Genetic testing revealed pathogenic variants in the SPG7 gene. CONCLUSIONS Five patients presented to the neuro-ophthalmology clinic with progressive vision loss and were diagnosed with optic atrophy. Although each patient harbored an SPG7 mutation, this cohort was phenotypically and genotypically heterogeneous. Three patients carried the Ala510Val variant. The patients demonstrated varying degrees of visual acuity and visual field loss, although evaluations were completed during different stages of disease progression. Four patients had a previous diagnosis of peripheral neuropathy. This raises the prospect that a single pathogenic variant of SPG7 may be associated with peripheral neuropathy in addition to optic neuropathy. These results support the consideration of SPG7 testing in patients with high suspicion for genetic optic neuropathy, as manifested by symmetric papillomacular bundle damage without clear etiology on initial workup. Applied judiciously, genetic testing, including for SPG7 , may help clarify the cause of unexplained progressive optic neuropathies.
Collapse
Affiliation(s)
- Carter A Bell
- Department of Neurology (CAB, SNG), New York University Grossman School of Medicine, New York, New York; Departments of Neurology, Ophthalmology, and Neurosurgery (MWK, DDM), Indiana University School of Medicine, Indianapolis, Indiana; Department of Ophthalmology (LLCDB), Schulich School of Medicine & Dentistry, Western University, London, Canada; and Clinical Neurological Sciences (LLCDB), Western University, London, Canada
| | | | | | | | | |
Collapse
|
2
|
Wang C, Zhang L, Nie Z, Liang M, Liu H, Yi Q, Wang C, Ai C, Zhang J, Gao Y, Ji Y, Guan MX. Mutation of CRYAB encoding a conserved mitochondrial chaperone and antiapoptotic protein causes hereditary optic atrophy. JCI Insight 2024; 10:e182209. [PMID: 39561005 PMCID: PMC11721302 DOI: 10.1172/jci.insight.182209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 11/13/2024] [Indexed: 11/20/2024] Open
Abstract
The degeneration of retinal ganglion cells (RGC) due to mitochondrial dysfunctions manifests optic neuropathy. However, the molecular components of RGC linked to optic neuropathy manifestations remain largely unknown. Here, we identified a potentially novel optic atrophy-causative CRYAB gene encoding a highly conserved major lens protein acting as mitochondrial chaperone and possessing antiapoptotic activities. The heterozygous CRYAB mutation (c.313G>A, p. Glu105Lys) was cosegregated with autosomal dominant inheritance of optic atrophy in 3 Chinese families. The p.E105K mutation altered the structure and function of CRYAB, including decreased stability, reduced formation of oligomers, and decreased chaperone activity. Coimmunoprecipitation indicated that the p.E105K mutation reduced the interaction of CRYAB with apoptosis-associated cytochrome c and voltage-dependent anion channel protein. The cell lines carrying the p.E105K mutation displayed promotion of apoptosis and defective assembly, stability, and activities of oxidative phosphorylation system as well as imbalance of mitochondrial dynamics. Involvement of CRYAB in optic atrophy was confirmed by phenotypic evaluations of Cryabp.E105K-knockin mice. These mutant mice exhibited ocular lesions that included alteration of intraretinal layers, degeneration of RGCs, photoreceptor deficits, and abnormal retinal vasculature. Furthermore, Cryab-deficient mice displayed elevated apoptosis and mitochondrial dysfunctions. Our findings provide insight of pathophysiology of optic atrophy arising from RGC degeneration caused by CRYAB deficiency-induced elevated apoptosis and mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Chenghui Wang
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | | | - Zhipeng Nie
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Min Liang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | | | | | | | - Cheng Ai
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
| | - Juanjuan Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinglong Gao
- Department of Genetics, and
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Yanchun Ji
- Department of Genetics, and
- Division of Medical Genetics and Genomics, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
| | - Min-Xin Guan
- Center for Mitochondrial Biomedicine and Department of Ophthalmology, the Fourth Affiliated Hospital
- Department of Genetics, and
- Center for Genetic Medicine, Zhejiang University International Institute of Medicine, Yiwu, Zhejiang, China
- Joint Institute of Genetics and Genomic Medicine between Zhejiang University and University of Toronto, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Moisoi N. Mitochondrial proteases modulate mitochondrial stress signalling and cellular homeostasis in health and disease. Biochimie 2024; 226:165-179. [PMID: 38906365 DOI: 10.1016/j.biochi.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/16/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Maintenance of mitochondrial homeostasis requires a plethora of coordinated quality control and adaptations' mechanisms in which mitochondrial proteases play a key role. Their activation or loss of function reverberate beyond local mitochondrial biochemical and metabolic remodelling into coordinated cellular pathways and stress responses that feedback onto the mitochondrial functionality and adaptability. Mitochondrial proteolysis modulates molecular and organellar quality control, metabolic adaptations, lipid homeostasis and regulates transcriptional stress responses. Defective mitochondrial proteolysis results in disease conditions most notably, mitochondrial diseases, neurodegeneration and cancer. Here, it will be discussed how mitochondrial proteases and mitochondria stress signalling impact cellular homeostasis and determine the cellular decision to survive or die, how these processes may impact disease etiopathology, and how modulation of proteolysis may offer novel therapeutic strategies.
Collapse
Affiliation(s)
- Nicoleta Moisoi
- Leicester School of Pharmacy, Leicester Institute for Pharmaceutical Health and Social Care Innovations, Faculty of Health and Life Sciences, De Montfort University, The Gateway, Hawthorn Building 1.03, LE1 9BH, Leicester, UK.
| |
Collapse
|
4
|
Yang TH, Kang EYC, Lin PH, Yu BBC, Wang JHH, Chen V, Wang NK. Mitochondria in Retinal Ganglion Cells: Unraveling the Metabolic Nexus and Oxidative Stress. Int J Mol Sci 2024; 25:8626. [PMID: 39201313 PMCID: PMC11354650 DOI: 10.3390/ijms25168626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
This review explored the role of mitochondria in retinal ganglion cells (RGCs), which are essential for visual processing. Mitochondrial dysfunction is a key factor in the pathogenesis of various vision-related disorders, including glaucoma, hereditary optic neuropathy, and age-related macular degeneration. This review highlighted the critical role of mitochondria in RGCs, which provide metabolic support, regulate cellular health, and respond to cellular stress while also producing reactive oxygen species (ROS) that can damage cellular components. Maintaining mitochondrial function is essential for meeting RGCs' high metabolic demands and ensuring redox homeostasis, which is crucial for their proper function and visual health. Oxidative stress, exacerbated by factors like elevated intraocular pressure and environmental factors, contributes to diseases such as glaucoma and age-related vision loss by triggering cellular damage pathways. Strategies targeting mitochondrial function or bolstering antioxidant defenses include mitochondrial-based therapies, gene therapies, and mitochondrial transplantation. These advances can offer potential strategies for addressing mitochondrial dysfunction in the retina, with implications that extend beyond ocular diseases.
Collapse
Affiliation(s)
- Tsai-Hsuan Yang
- Department of Education, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11217, Taiwan
| | - Eugene Yu-Chuan Kang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
| | - Pei-Hsuan Lin
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- National Taiwan University Hospital, Yunlin 640203, Taiwan
| | - Benjamin Ben-Chi Yu
- Fu Foundation School of Engineering & Applied Science, Columbia University, New York, NY 10027, USA;
| | - Jason Hung-Hsuan Wang
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Columbian College of Arts and Sciences, George Washington University, Washington, DC 20052, USA
| | - Vincent Chen
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA; (P.-H.L.); (J.H.-H.W.); (V.C.)
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada
| | - Nan-Kai Wang
- Department of Ophthalmology, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Ophthalmology, Edward S. Harkness Eye Institute, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA
| |
Collapse
|
5
|
Lambiri DW, Levin LA. Maculopapillary Bundle Degeneration in Optic Neuropathies. Curr Neurol Neurosci Rep 2024; 24:203-218. [PMID: 38833037 DOI: 10.1007/s11910-024-01343-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Degeneration of the maculopapillary bundle (MPB) is a prominent feature in a spectrum of optic neuropathies. MPB-selective degeneration is seen in specific conditions, such as nutritional and toxic optic neuropathies, Leber hereditary optic neuropathy (LHON), and dominant optic atrophy (DOA). Despite their distinct etiologies and clinical presentations, which encompass variations in age of incidence and monocular or binocular onset, these disorders share a core molecular mechanism: compromised mitochondrial homeostasis. This disruption is characterized by dysfunctions in mitochondrial metabolism, biogenesis, and protein synthesis. This article provides a comprehensive understanding of the MPB's role in optic neuropathies, emphasizing the importance of mitochondrial mechanisms in the pathogenesis of these conditions. RECENT FINDINGS Optical coherence tomography studies have characterized the retinal nerve fiber layer changes accompanying mitochondrial-affiliated optic neuropathies. Selective thinning of the temporal optic nerve head is preceded by thickening in early stages of these disorders which correlates with reductions in macular ganglion cell layer thinning and vascular atrophy. A recently proposed mechanism underpinning the selective atrophy of the MPB involves the positive feedback of reactive oxygen species generation as a common consequence of mitochondrial dysfunction. Additionally, new research has revealed that the MPB can undergo degeneration in the early stages of glaucoma, challenging the historically held belief that this area was not involved in this common optic neuropathy. A variety of anatomical risk factors influence the propensity of glaucomatous MPB degeneration, and cases present distinct patterns of ganglion cell degeneration that are distinct from those observed in mitochondria-associated diseases. This review synthesizes clinical and molecular research on primary MPB disorders, highlighting the commonalities and differences in their pathogenesis. KEY POINTS (BOX) 1. Temporal degeneration of optic nerve fibers accompanied by cecocentral scotoma is a hallmark of maculopapillary bundle (MPB) degeneration. 2. Mechanisms of MPB degeneration commonly implicate mitochondrial dysfunction. 3. Recent research challenges the traditional belief that the MPB is uninvolved in glaucoma by showing degeneration in the early stages of this common optic neuropathy, yet with features distinct from other MPB-selective neuropathies. 4. Reactive oxygen species generation is a mechanism linking mitochondrial mechanisms of MPB-selective optic neuropathies, but in-vivo and in-vitro studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Darius W Lambiri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada
| | - Leonard A Levin
- Faculty of Medicine and Health Sciences, McGill University, Montreal, Canada.
- Department of Ophthalmology and Visual Sciences, McGill University, Montreal, Canada.
- Department of Neurology & Neurosurgery, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Ghosh Dastidar R, Banerjee S, Lal PB, Ghosh Dastidar S. Multifaceted Roles of AFG3L2, a Mitochondrial ATPase in Relation to Neurological Disorders. Mol Neurobiol 2024; 61:3788-3808. [PMID: 38012514 PMCID: PMC11236935 DOI: 10.1007/s12035-023-03768-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
AFG3L2 is a zinc metalloprotease and an ATPase localized in an inner mitochondrial membrane involved in mitochondrial quality control of several nuclear- and mitochondrial-encoded proteins. Mutations in AFG3L2 lead to diseases like slow progressive ataxia, which is a neurological disorder. This review delineates the cellular functions of AFG3L2 and its dysfunction that leads to major clinical outcomes, which include spinocerebellar ataxia type 28, spastic ataxia type 5, and optic atrophy type 12. It summarizes all relevant AFG3L2 mutations associated with the clinical outcomes to understand the detailed mechanisms attributable to its structure-related multifaceted roles in proteostasis and quality control. We face early diagnostic challenges of ataxia and optic neuropathy due to asymptomatic parents and variable clinical manifestations due to heterozygosity/homozygosity of AFG3L2 mutations. This review intends to promote AFG3L2 as a putative prognostic or diagnostic marker.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Saradindu Banerjee
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India
| | - Piyush Behari Lal
- Department of Microbiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| | - Somasish Ghosh Dastidar
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Madhava Nagar, Manipal, 576104, Karnataka, India.
| |
Collapse
|
7
|
Amore G, Romagnoli M, Carbonelli M, Cascavilla ML, De Negri AM, Carta A, Parisi V, Di Renzo A, Schiavi C, Lenzetti C, Zenesini C, Ormanbekova D, Palombo F, Fiorini C, Caporali L, Carelli V, Barboni P, La Morgia C. AFG3L2 and ACO2-Linked Dominant Optic Atrophy: Genotype-Phenotype Characterization Compared to OPA1 Patients. Am J Ophthalmol 2024; 262:114-124. [PMID: 38278202 DOI: 10.1016/j.ajo.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
PURPOSE Heterozygous mutations in the AFG3L2 gene (encoding a mitochondrial protease indirectly reflecting on OPA1 cleavage) and ACO2 gene (encoding the mitochondrial enzyme aconitase) are associated with isolated forms of Dominant Optic Atrophy (DOA). We aimed at describing their neuro-ophthalmological phenotype as compared with classic OPA1-related DOA. DESIGN Cross-sectional study. METHODS The following neuro-ophthalmological parameters were collected: logMAR visual acuity (VA), color vision, mean deviation and foveal threshold at visual fields, average and sectorial retinal nerve fiber layer (RNFL), and ganglion cell layer (GCL) thickness on optical coherence tomography. ACO2 and AFG3L2 patients were compared with an age- and sex-matched group of OPA1 patients with a 1:2 ratio. All eyes were analyzed using a clustered Wilcoxon rank sum test with the Rosner-Glynn-Lee method. RESULTS A total of 44 eyes from 23 ACO2 patients and 26 eyes from 13 AFG3L2 patients were compared with 143 eyes from 72 OPA1 patients. All cases presented with bilateral temporal-predominant optic atrophy with various degree of visual impairment. Comparison between AFG3L2 and OPA1 failed to reveal any significant difference. ACO2 patients compared to both AFG3L2 and OPA1 presented overall higher values of nasal RNFL thickness (P = .029, P = .023), average thickness (P = .012, P = .0007), and sectorial GCL thickness. These results were confirmed also comparing separately affected and subclinical patients. CONCLUSIONS Clinically, DOA remains a fairly homogeneous entity despite the growing genetic heterogeneity. ACO2 seems to be associated with an overall better preservation of retinal ganglion cells, probably depending on the different pathogenic mechanism involving mtDNA maintenance, as opposed to AFG3L2, which is involved in OPA1 processing and is virtually indistinguishable from classic OPA1-DOA.
Collapse
Affiliation(s)
- Giulia Amore
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Michele Carbonelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Arturo Carta
- Ophthalmology Unit (A.C.), University Hospital of Parma, University of Parma, Parma, Italy
| | | | | | - Costantino Schiavi
- Ophthalmology Unit (G.A., C.S.), IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Lenzetti
- Department of Surgery and Translational Medicine (C.L.), Eye Clinic, Careggi University Hospital, University of Florence, Florence, Italy
| | - Corrado Zenesini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (C.Z.), Unità di Epidemiologia e Statistica, Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Claudio Fiorini
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Valerio Carelli
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (M.R., D.O., F.P., C.F.L.C.V.C.), Programma di Neurogenetica, Bologna, Italy
| | - Piero Barboni
- Department of Ophthalmology (M.L.C., P.B.), University Vita-Salute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara La Morgia
- From the Department of Biomedical and Neuromotor Sciences (G.A., M.C., V.C., C.L.M.), University of Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna (C.L.M.), UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
8
|
Lopergolo D, Rosini F, Pretegiani E, Bargagli A, Serchi V, Rufa A. Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features. Front Integr Neurosci 2024; 17:1275794. [PMID: 38390227 PMCID: PMC10883068 DOI: 10.3389/fnint.2023.1275794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Rosini
- UOC Stroke Unit, Department of Emergenza-Urgenza, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elena Pretegiani
- Unit of Neurology, Centre Hospitalier Universitaire Vaudoise Lausanne, Unit of Neurology and Cognitive Neurorehabilitation, Universitary Hospital of Fribourg, Fribourg, Switzerland
| | - Alessia Bargagli
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valeria Serchi
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
9
|
Gazit I, Hecht I, Weiner C, Kotlyar A, Almer Z, Bakshi E, Or L, Volkov H, Feldman B, Maharshak I, Michelson M, Goldenberg-Cohen N, Pras E. Variants in the WDR45 Gene Within the OPA-2 Locus Associate With Isolated X-Linked Optic Atrophy. Invest Ophthalmol Vis Sci 2023; 64:17. [PMID: 37819743 PMCID: PMC10573587 DOI: 10.1167/iovs.64.13.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023] Open
Abstract
Purpose To describe clinical and molecular findings of two families with X-linked optic atrophy and present two new pathogenic variants in the WDR45 gene. Methods Case series and molecular analysis of two families of Jewish Ashkenazi descent with early onset bilateral optic atrophy. Whole-exome sequencing (WES) and bioinformatic analysis were performed, followed by Sanger sequencing and segregation analysis. Results In both families, male siblings (three in family 1, two in family 2) had early-onset isolated bilateral optic atrophy. The sibling's healthy mother (and in the second family also one healthy sister) had a mild presentation, suggesting a carrier state and an X-linked inheritance pattern. All participants were otherwise healthy, apart from mild learning disabilities and autism spectrum disorder in two siblings of the second family. Variants in known optic atrophy genes were excluded. Analysis revealed a point variant in the WDR45 gene-a missense variant in the first family, NM_001029896.2:c.107C>A; NP_001025067.1:p.Pro36His (variant ID: 1704205), and a splice site variant in the second family, NM_001029896.2:c.236-1G>T; NP_009006.2:p.Val80Leu (variant ID: 1704204), located on Xp11.23 (OPA2 locus). Both variants are novel and predicted as pathogenic. In both families, the variant was seen with full segregation with the disease, occurring in all affected male participants and in one allele of the carrier females, as well as none of the healthy participants. Conclusions Among two families with isolated X-linked optic atrophy, molecular analysis revealed novel variants in the WDR45 gene in full segregation with the disease. This gene resides within the OPA2 locus, previously described to associate with X-linked optic atrophy. Taken together, these findings suggest that certain pathogenic variants in the WDR45 gene are associated with isolated X-linked optic atrophy.
Collapse
Affiliation(s)
- Inbal Gazit
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idan Hecht
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| | - Chen Weiner
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| | - Alina Kotlyar
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| | - Zina Almer
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
| | - Erez Bakshi
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Lior Or
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Volkov
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Barak Feldman
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Idit Maharshak
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Ophthalmology, Edith Wolfson Medical Center, Holon, Israel
| | - Marina Michelson
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel Aviv, Israel
| | - Nitza Goldenberg-Cohen
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel, and the Department of Ophthalmology, Bnai Zion Medical Center, Haifa, Israel
| | - Eran Pras
- Department of Ophthalmology, Shamir Medical Center, Zerifin, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Matlow's Ophthalmo-genetics Laboratory, Shamir Medical Center, Zerifin, Israel
| |
Collapse
|
10
|
Fiorini C, Ormanbekova D, Palombo F, Carbonelli M, Amore G, Romagnoli M, d’Agati P, Valentino ML, Barboni P, Cascavilla ML, De Negri A, Sadun F, Carta A, Testa F, Petruzzella V, Guerriero S, Bianchi Marzoli S, Carelli V, La Morgia C, Caporali L. The Italian reappraisal of the most frequent genetic defects in hereditary optic neuropathies and the global top 10. Brain 2023; 146:e67-e70. [PMID: 36913248 PMCID: PMC10473554 DOI: 10.1093/brain/awad080] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 02/20/2023] [Indexed: 03/14/2023] Open
Affiliation(s)
- Claudio Fiorini
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
| | - Danara Ormanbekova
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
| | - Flavia Palombo
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
| | - Michele Carbonelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Giulia Amore
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
| | - Pietro d’Agati
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
| | - Maria Lucia Valentino
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Piero Barboni
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | - Maria Lucia Cascavilla
- Department of Ophthalmology, University Vita-Salute, IRCCS Ospedale San Raffaele, 20132 Milan, Italy
| | | | | | - Arturo Carta
- Ophthalmology Unit, University Hospital of Parma, 43126 Parma, Italy
| | - Francesco Testa
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Vittoria Petruzzella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Silvana Guerriero
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, 70121 Bari, Italy
| | - Stefania Bianchi Marzoli
- Neuroophthalmology Service and Ocular Electrophysiology Laboratory, Department of Ophthalmology, IRCCS Istituto Auxologico Italiano, 20122 Milan, Italy
| | - Valerio Carelli
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| | - Leonardo Caporali
- IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy
| |
Collapse
|
11
|
Rocatcher A, Desquiret-Dumas V, Charif M, Ferré M, Gohier P, Mirebeau-Prunier D, Verny C, Milea D, Lenaers G, Bonneau D, Reynier P, Amati-Bonneau P. The top 10 most frequently involved genes in hereditary optic neuropathies in 2186 probands. Brain 2023; 146:455-460. [PMID: 36317462 DOI: 10.1093/brain/awac395] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/15/2022] [Accepted: 09/25/2022] [Indexed: 12/12/2022] Open
Abstract
Hereditary optic neuropathies are caused by the degeneration of retinal ganglion cells whose axons form the optic nerves, with a consistent genetic heterogeneity. As part of our diagnostic activity, we retrospectively evaluated the combination of Leber hereditary optic neuropathy mutations testing with the exon sequencing of 87 nuclear genes on 2186 patients referred for suspected hereditary optic neuropathies. The positive diagnosis rate in individuals referred for Leber hereditary optic neuropathy testing was 18% (199/1126 index cases), with 92% (184/199) carrying one of the three main pathogenic variants of mitochondrial DNA (m.11778G>A, 66.5%; m.3460G>A, 15% and m.14484T>C, 11%). The positive diagnosis rate in individuals referred for autosomal dominant or recessive optic neuropathies was 27% (451/1680 index cases), with 10 genes accounting together for 96% of this cohort. This represents an overall positive diagnostic rate of 30%. The identified top 10 nuclear genes included OPA1, WFS1, ACO2, SPG7, MFN2, AFG3L2, RTN4IP1, TMEM126A, NR2F1 and FDXR. Eleven additional genes, each accounting for less than 1% of cases, were identified in 17 individuals. Our results show that 10 major genes account for more than 96% of the cases diagnosed with our nuclear gene panel.
Collapse
Affiliation(s)
- Aude Rocatcher
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Valérie Desquiret-Dumas
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
| | - Majida Charif
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda 60000, Morocco
| | - Marc Ferré
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
| | - Philippe Gohier
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Delphine Mirebeau-Prunier
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
| | - Christophe Verny
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Neurologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Dan Milea
- Département d'Ophtalmologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
- Singapore National Eye Centre, Singapore Eye Research Institute, Duke-NUS 169857, Singapore
| | - Guy Lenaers
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Neurologie, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Dominique Bonneau
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Génétique, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Pascal Reynier
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| | - Patrizia Amati-Bonneau
- Université d'Angers, Centre National de la Recherche Scientifique (CNRS 6015), Institut National de la Santé et de la Recherche Médicale (INSERM U1083), Unité Mixte de Recherche (UMR) MITOVASC, 49000 Angers, France
- Département de Biochimie et Biologie Moléculaire, Centre Hospitalier Universitaire d'Angers, 49933 Angers, France
| |
Collapse
|
12
|
Seo Y, Lim HT, Lee BJ, Han J. Expanding SPG7 dominant optic atrophy phenotype: Infantile nystagmus and optic atrophy without spastic paraplegia. Am J Med Genet A 2023; 191:582-585. [PMID: 36367250 DOI: 10.1002/ajmg.a.63037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022]
Abstract
Spastic paraplegia is a neurodegenerative disorder characterized by progressive leg weakness and spasticity due to degeneration of corticospinal axons. SPG7 encodes paraplegin, and pathogenic variants in the gene cause hereditary spastic paraplegia as an autosomal recessive trait. Various ophthalmological findings including optic atrophy, ophthalmoplegia, or nystagmus have been reported in patients with spastic paraplegia type 7. We report a 15-year-old male patient with a novel heterozygous variant, c.1224T>G:p.(Asp408Glu) in SPG7 (NM_003119.3) causing early onset isolated optic atrophy and infantile nystagmus prior to the onset of neurological symptoms. Therefore, SPG7 should be considered a cause of infantile nystagmus with optic atrophy.
Collapse
Affiliation(s)
- Yuri Seo
- Department of Ophthalmology, Institute of Vision Research, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin, South Korea
| | | | - Byung Joo Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Abstract
Mitochondrial optic neuropathies have a leading role in the field of mitochondrial medicine ever since 1988, when the first mutation in mitochondrial DNA was associated with Leber's hereditary optic neuropathy (LHON). Autosomal dominant optic atrophy (DOA) was subsequently associated in 2000 with mutations in the nuclear DNA affecting the OPA1 gene. LHON and DOA are both characterized by selective neurodegeneration of retinal ganglion cells (RGCs) triggered by mitochondrial dysfunction. This is centered on respiratory complex I impairment in LHON and defective mitochondrial dynamics in OPA1-related DOA, leading to distinct clinical phenotypes. LHON is a subacute, rapid, severe loss of central vision involving both eyes within weeks or months, with age of onset between 15 and 35 years old. DOA is a more slowly progressive optic neuropathy, usually apparent in early childhood. LHON is characterized by marked incomplete penetrance and a clear male predilection. The introduction of next-generation sequencing has greatly expanded the genetic causes for other rare forms of mitochondrial optic neuropathies, including recessive and X-linked, further emphasizing the exquisite sensitivity of RGCs to compromised mitochondrial function. All forms of mitochondrial optic neuropathies, including LHON and DOA, can manifest either as pure optic atrophy or as a more severe multisystemic syndrome. Mitochondrial optic neuropathies are currently at the forefront of a number of therapeutic programs, including gene therapy, with idebenone being the only approved drug for a mitochondrial disorder.
Collapse
Affiliation(s)
- Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy.
| | - Chiara La Morgia
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy; IRCCS Istituto di Scienze Neurologiche di Bologna, Programma di Neurogenetica, Bologna, Italy
| | - Patrick Yu-Wai-Man
- John van Geest Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, United Kingdom; Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom; Institute of Ophthalmology, University College London, London, United Kingdom
| |
Collapse
|
14
|
A novel mutation located in the intermembrane space domain of AFG3L2 causes dominant optic atrophy through decreasing the stability of the encoded protein. Cell Death Dis 2022; 8:361. [PMID: 35970831 PMCID: PMC9378676 DOI: 10.1038/s41420-022-01160-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/18/2022]
Abstract
Dominant optic atrophy (DOA) is the most common hereditary optic neuropathy. Although DOA is caused by mutations in several genes, there are still many cases that have not been diagnosed or misdiagnosed. Herein, we present a large family of 11 patients with DOA. To identify potential pathogenic mutations, whole exome sequencing (WES) was performed on the proband, a 35-year-old woman. WES revealed a novel pathogenic mutation (c.524T>C, p.F175S) in the AFG3L2 intermembrane space domain, rather than in the ATPase domain, which is the hot mutation region associated with most of the previously reported DOA cases. Functional studies on skin fibroblasts generated from patients and HEK293T cells showed that the mutation may impair mitochondrial function and decrease the ability of AFG3L2 protein to enter the mitochondrial inner membrane. In addition, this novel mutation led to protein degradation and reduced the stability of the AFG3L2 protein, which appeared to be associated with the proteasome-ubiquitin pathway.
Collapse
|
15
|
Patron M, Tarasenko D, Nolte H, Kroczek L, Ghosh M, Ohba Y, Lasarzewski Y, Ahmadi ZA, Cabrera-Orefice A, Eyiama A, Kellermann T, Rugarli EI, Brandt U, Meinecke M, Langer T. Regulation of mitochondrial proteostasis by the proton gradient. EMBO J 2022; 41:e110476. [PMID: 35912435 PMCID: PMC9379554 DOI: 10.15252/embj.2021110476] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria adapt to different energetic demands reshaping their proteome. Mitochondrial proteases are emerging as key regulators of these adaptive processes. Here, we use a multiproteomic approach to demonstrate the regulation of the m‐AAA protease AFG3L2 by the mitochondrial proton gradient, coupling mitochondrial protein turnover to the energetic status of mitochondria. We identify TMBIM5 (previously also known as GHITM or MICS1) as a Ca2+/H+ exchanger in the mitochondrial inner membrane, which binds to and inhibits the m‐AAA protease. TMBIM5 ensures cell survival and respiration, allowing Ca2+ efflux from mitochondria and limiting mitochondrial hyperpolarization. Persistent hyperpolarization, however, triggers degradation of TMBIM5 and activation of the m‐AAA protease. The m‐AAA protease broadly remodels the mitochondrial proteome and mediates the proteolytic breakdown of respiratory complex I to confine ROS production and oxidative damage in hyperpolarized mitochondria. TMBIM5 thus integrates mitochondrial Ca2+ signaling and the energetic status of mitochondria with protein turnover rates to reshape the mitochondrial proteome and adjust the cellular metabolism.
Collapse
Affiliation(s)
- Maria Patron
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Daryna Tarasenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Hendrik Nolte
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Lara Kroczek
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Yohsuke Ohba
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Zeinab Alsadat Ahmadi
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Akinori Eyiama
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Tim Kellermann
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Elena I Rugarli
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute for Genetics, University of Cologne, Cologne, Germany
| | - Ulrich Brandt
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
16
|
Charif M, Chevrollier A, Gueguen N, Kane S, Bris C, Goudenège D, Desquiret-Dumas V, Meunier I, Mochel F, Jeanjean L, Varenne F, Procaccio V, Reynier P, Bonneau D, Amati-Bonneau P, Lenaers G. Next-Generation Sequencing Identifies Novel PMPCA Variants in Patients with Late-Onset Dominant Optic Atrophy. Genes (Basel) 2022; 13:1202. [PMID: 35885985 PMCID: PMC9320445 DOI: 10.3390/genes13071202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Accepted: 07/01/2022] [Indexed: 02/01/2023] Open
Abstract
Dominant Optic Atrophy (DOA) is one of the most common inherited mitochondrial diseases, leading to blindness. It is caused by the chronic degeneration of the retinal ganglion cells (RGCs) and their axons forming the optic nerve. Until now, DOA has been mainly associated with genes encoding proteins involved in mitochondrial network dynamics. Using next-generation and exome sequencing, we identified for the first time heterozygous PMPCA variants having a causative role in the pathology of late-onset primary DOA in five patients. PMPCA encodes an α subunit of the mitochondrial peptidase (MPP), responsible for the cleavage and maturation of the mitochondrial precursor proteins imported from the cytoplasm into mitochondria. Recently, PMPCA has been identified as the gene responsible for Autosomal Recessive Cerebellar Ataxia type 2 (SCAR2) and another severe recessive mitochondrial disease. In this study, four PMPCA variants were identified, two are frameshifts (c.309delA and c.820delG) classified as pathogenic and two are missenses (c.1363G>A and c.1547G>A) classified with uncertain pathological significance. Functional assays on patients’ fibroblasts show a hyperconnection of the mitochondrial network and revealed that frameshift variants reduced α-MPP levels, while not significantly affecting the respiratory machinery. These results suggest that alterations in mitochondrial peptidase function can affect the fusion-fission balance, a key element in maintaining the physiology of retinal ganglion cells, and consequently lead to their progressive degeneration.
Collapse
Affiliation(s)
- Majida Charif
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda 60000, Morocco
| | - Arnaud Chevrollier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Naïg Gueguen
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Selma Kane
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
| | - Céline Bris
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - David Goudenège
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Valerie Desquiret-Dumas
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University Hospital of Montpellier, University of Montpellier, 34000 Montpellier, France;
- Institut des Neurosciences de Montpellier, INSERM U1051, Université de Montpellier, 34000 Montpellier, France
| | - Fanny Mochel
- Department of Genetics, AP-HP, Pitié-Salpêtrière University Hospital, 75013 Paris, France;
| | - Luc Jeanjean
- Department of Ophthalmology, Nîmes University Hospital, CEDEX 9, 30900 Nîmes, France;
| | - Fanny Varenne
- Department of Ophthalmology, Hôpital Pierre Paul Riquet CHU Purpan, 31300 Toulouse, France;
| | - Vincent Procaccio
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Dominique Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Genetics, University Hospital Angers, 49933 Angers, France
| | - Patrizia Amati-Bonneau
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Departments of Biochemistry and Molecular Biology, University Hospital Angers, 49933 Angers, France
| | - Guy Lenaers
- MitoLab Team, UMR CNRS 6015-INSERM U1083, Institut MitoVasc, SFR ICAT, Université d’Angers, 49933 Angers, France; (M.C.); (A.C.); (N.G.); (S.K.); (C.B.); (D.G.); (V.D.-D.); (V.P.); (P.R.); (D.B.); (P.A.-B.)
- Service de Neurologie, University Hospital Angers, 49933 Angers, France
| |
Collapse
|
17
|
Tăbăcaru B, Stanca HT. Further advances in the diagnosis and treatment of Leber's Hereditary Optic Neuropathy - a review. Rom J Ophthalmol 2022; 66:13-16. [PMID: 35531455 PMCID: PMC9022147 DOI: 10.22336/rjo.2022.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2022] [Indexed: 11/18/2022] Open
Abstract
Leber's Hereditary Optic Neuropathy (LHON), is one of the most frequent mitochondrial diseases characterized by Retinal Ganglion Cells degeneration. Pathogenic gene mutations in LHON induces mitochondrial impairment, which in turn leads to insufficient mitochondrial ATP production. The pathologic hallmark of the disease is primary degeneration of retinal ganglion cells, which results in optic nerve atrophy. The paper reviews some of the recent advances in the understanding of LHON: new genetics discoveries and novel therapeutic approaches.
Collapse
Affiliation(s)
- Bogdana Tăbăcaru
- Clinical Department of Ophthalmology, “Prof. Dr. Agrippa Ionescu” Emergency Hospital, Bucharest, Romania
| | - Horia Tudor Stanca
- Clinic of Ophthalmology, “Carol Davila” Medicine and Pharmacy University, Bucharest, Romania
| |
Collapse
|
18
|
Zeviani M, Carelli V. Mitochondrial Retinopathies. Int J Mol Sci 2021; 23:210. [PMID: 35008635 PMCID: PMC8745158 DOI: 10.3390/ijms23010210] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/18/2021] [Indexed: 12/13/2022] Open
Abstract
The retina is an exquisite target for defects of oxidative phosphorylation (OXPHOS) associated with mitochondrial impairment. Retinal involvement occurs in two ways, retinal dystrophy (retinitis pigmentosa) and subacute or chronic optic atrophy, which are the most common clinical entities. Both can present as isolated or virtually exclusive conditions, or as part of more complex, frequently multisystem syndromes. In most cases, mutations of mtDNA have been found in association with mitochondrial retinopathy. The main genetic abnormalities of mtDNA include mutations associated with neurogenic muscle weakness, ataxia and retinitis pigmentosa (NARP) sometimes with earlier onset and increased severity (maternally inherited Leigh syndrome, MILS), single large-scale deletions determining Kearns-Sayre syndrome (KSS, of which retinal dystrophy is a cardinal symptom), and mutations, particularly in mtDNA-encoded ND genes, associated with Leber hereditary optic neuropathy (LHON). However, mutations in nuclear genes can also cause mitochondrial retinopathy, including autosomal recessive phenocopies of LHON, and slowly progressive optic atrophy caused by dominant or, more rarely, recessive, mutations in the fusion/mitochondrial shaping protein OPA1, encoded by a nuclear gene on chromosome 3q29.
Collapse
Affiliation(s)
- Massimo Zeviani
- Department of Neurosciences, The Clinical School, University of Padova, 35128 Padova, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35128 Padova, Italy
| | - Valerio Carelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
- Programma di Neurogenetica, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 6, 40139 Bologna, Italy
| |
Collapse
|
19
|
Strachan EL, Mac White-Begg D, Crean J, Reynolds AL, Kennedy BN, O’Sullivan NC. The Role of Mitochondria in Optic Atrophy With Autosomal Inheritance. Front Neurosci 2021; 15:784987. [PMID: 34867178 PMCID: PMC8634724 DOI: 10.3389/fnins.2021.784987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Optic atrophy (OA) with autosomal inheritance is a form of optic neuropathy characterized by the progressive and irreversible loss of vision. In some cases, this is accompanied by additional, typically neurological, extra-ocular symptoms. Underlying the loss of vision is the specific degeneration of the retinal ganglion cells (RGCs) which form the optic nerve. Whilst autosomal OA is genetically heterogenous, all currently identified causative genes appear to be associated with mitochondrial organization and function. However, it is unclear why RGCs are particularly vulnerable to mitochondrial aberration. Despite the relatively high prevalence of this disorder, there are currently no approved treatments. Combined with the lack of knowledge concerning the mechanisms through which aberrant mitochondrial function leads to RGC death, there remains a clear need for further research to identify the underlying mechanisms and develop treatments for this condition. This review summarizes the genes known to be causative of autosomal OA and the mitochondrial dysfunction caused by pathogenic mutations. Furthermore, we discuss the suitability of available in vivo models for autosomal OA with regards to both treatment development and furthering the understanding of autosomal OA pathology.
Collapse
Affiliation(s)
- Elin L. Strachan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Delphi Mac White-Begg
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - John Crean
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Alison L. Reynolds
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Breandán N. Kennedy
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Niamh C. O’Sullivan
- UCD Conway Institute, University College Dublin, Dublin, Ireland
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
20
|
Baviera-Muñoz R, Campins-Romeu M, Carretero-Vilarroig L, Sastre-Bataller I, Martínez-Torres I, Vázquez-Costa JF, Muelas N, Sevilla T, Vílchez JJ, Aller E, Jaijo T, Bataller L, Espinós C. Clinical and genetic characteristics of 21 Spanish patients with biallelic pathogenic SPG7 mutations. J Neurol Sci 2021; 429:118062. [PMID: 34500365 DOI: 10.1016/j.jns.2021.118062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
Spastic paraplegia type 7 (SPG7) is one of the most common hereditary spastic paraplegias. SPG7 mutations most often lead to spastic paraparesis (HSP) and/or hereditary cerebellar ataxia (HCA), frequently with mixed phenotypes. We sought to clinically and genetically characterize a Spanish cohort of SPG7 patients. Patients were recruited from our HCA and HSP cohorts. We identified twenty-one patients with biallelic pathogenic SPG7 mutations. Mean age at onset was 37.4 years (SD ± 14.3). The most frequent phenotype was spastic ataxia (57%), followed by pure spastic paraplegia (19%) and complex phenotypes (19%). Isolated patients presented with focal or multifocal dystonia, subclinical myopathy or ophthalmoplegia. p.Ala510Val was the most frequent pathogenic variant encountered. Compound heterozygous for p.Ala510Val displayed younger onset (p < 0.05) and more complex phenotypes (p < 0.05) than p.Ala510Val homozygotes. Two novel variants were found: p.Lys559Argfs*33 and p.Ala312Glu. In conclusion, spastic ataxia is the most common phenotype found in Spanish patients. Nonetheless, SPG7 analysis should also be considered in patients with less frequent clinical findings such as dystonia or ophthalmoplegia especially when these symptoms are associated with mild spastic ataxia.
Collapse
Affiliation(s)
- Raquel Baviera-Muñoz
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Marina Campins-Romeu
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Lidón Carretero-Vilarroig
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Cell Biology Department, University of Valencia, Valencia, Spain
| | - Isabel Sastre-Bataller
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Irene Martínez-Torres
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Juan F Vázquez-Costa
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Nuria Muelas
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain
| | - Teresa Sevilla
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Juan J Vílchez
- Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain
| | - Elena Aller
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Department of Genetics, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Teresa Jaijo
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Department of Genetics, Hospital Universitari I Politècnic La Fe, Valencia, Spain
| | - Luis Bataller
- Department of Neurology, Hospital Universitari I Politècnic La Fe, Valencia, Spain; Neuromuscular and Ataxias Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain; Department of Medicine, University of Valencia, Valencia, Spain.
| | - Carmen Espinós
- Rare Diseases Joint Unit, CIPF-IIS La Fe, Valencia, Spain; Department of Medicine, University of Valencia, Valencia, Spain; Laboratory of Rare Neurodegenerative Diseases, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| |
Collapse
|
21
|
Sahin I, Saat H. Hereditary spastic paraplegia: new insights into clinical variability and spasticity-ataxia phenotype, and novel mutations. Acta Neurol Belg 2021; 122:1529-1535. [PMID: 34420199 DOI: 10.1007/s13760-021-01779-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Hereditary spastic paraplegias (HSPs), a genetically heterogeneous group of neurodegenerative diseases, have an incidence of around 3 to 9 individuals every 100,000. Due to the broad clinical and genetic variability of HSPs, it is challenging to diagnose the disorder quickly and precisely. Hereditary spastic ataxias (HSAs) and HSPs are overlapping diseases, and their intersection has been gradually identified by next-generation sequencing. The idea of the spasticity-ataxia phenotype (SAP) spectrum is further substantiated by the similarities in phenotypes and underlying genes in ataxias and inherited spastic paraplegias and the related cellular processes and disease mechanisms these disorders exhibit. METHODS Whole-exome sequencing was performed on the 25 spastic or spastic-ataxic gait patients. RESULTS Twenty-two specific HSPs-HSAs-SAP mutations, including 14 novel mutations, were found in 25 cases from 18 Turkish and 2 Syrian families. This research discovers many novel hereditary spastic paraplegia (HSP) mutations and shows a robust genotype-phenotype heterogeneity in the disease. CONCLUSIONS This research helped expand the clinical and molecular scope of HSP and clarified the concept of the spasticity-ataxia phenotype, further enhancing our understanding of the complicated form of HSP and its association with ataxia. Our data broadens the spectrum of HSPs and HSAs related gene mutations and provides insights for genotype-phenotype correlations for HSPs and HSAs.
Collapse
|
22
|
Mitochondrial HSP70 Chaperone System-The Influence of Post-Translational Modifications and Involvement in Human Diseases. Int J Mol Sci 2021; 22:ijms22158077. [PMID: 34360841 PMCID: PMC8347752 DOI: 10.3390/ijms22158077] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/25/2023] Open
Abstract
Since their discovery, heat shock proteins (HSPs) have been identified in all domains of life, which demonstrates their importance and conserved functional role in maintaining protein homeostasis. Mitochondria possess several members of the major HSP sub-families that perform essential tasks for keeping the organelle in a fully functional and healthy state. In humans, the mitochondrial HSP70 chaperone system comprises a central molecular chaperone, mtHSP70 or mortalin (HSPA9), which is actively involved in stabilizing and importing nuclear gene products and in refolding mitochondrial precursor proteins, and three co-chaperones (HSP70-escort protein 1-HEP1, tumorous imaginal disc protein 1-TID-1, and Gro-P like protein E-GRPE), which regulate and accelerate its protein folding functions. In this review, we summarize the roles of mitochondrial molecular chaperones with particular focus on the human mtHsp70 and its co-chaperones, whose deregulated expression, mutations, and post-translational modifications are often considered to be the main cause of neurological disorders, genetic diseases, and malignant growth.
Collapse
|
23
|
Weisschuh N, Schimpf-Linzenbold S, Mazzola P, Kieninger S, Xiao T, Kellner U, Neuhann T, Kelbsch C, Tonagel F, Wilhelm H, Kohl S, Wissinger B. Mutation spectrum of the OPA1 gene in a large cohort of patients with suspected dominant optic atrophy: Identification and classification of 48 novel variants. PLoS One 2021; 16:e0253987. [PMID: 34242285 PMCID: PMC8270428 DOI: 10.1371/journal.pone.0253987] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/17/2021] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant optic atrophy is one of the most common inherited optic neuropathies. This disease is genetically heterogeneous, but most cases are due to pathogenic variants in the OPA1 gene: depending on the population studied, 32–90% of cases harbor pathogenic variants in this gene. The aim of this study was to provide a comprehensive overview of the entire spectrum of likely pathogenic variants in the OPA1 gene in a large cohort of patients. Over a period of 20 years, 755 unrelated probands with a diagnosis of bilateral optic atrophy were referred to our laboratory for molecular genetic investigation. Genetic testing of the OPA1 gene was initially performed by a combined analysis using either single-strand conformation polymorphism or denaturing high performance liquid chromatography followed by Sanger sequencing to validate aberrant bands or melting profiles. The presence of copy number variations was assessed using multiplex ligation-dependent probe amplification. Since 2012, genetic testing was based on next-generation sequencing platforms. Genetic screening of the OPA1 gene revealed putatively pathogenic variants in 278 unrelated probands which represent 36.8% of the entire cohort. A total of 156 unique variants were identified, 78% of which can be considered null alleles. Variant c.2708_2711del/p.(V903Gfs*3) was found to constitute 14% of all disease-causing alleles. Special emphasis was placed on the validation of splice variants either by analyzing cDNA derived from patients´ blood samples or by heterologous splice assays using minigenes. Splicing analysis revealed different aberrant splicing events, including exon skipping, activation of exonic or intronic cryptic splice sites, and the inclusion of pseudoexons. Forty-eight variants that we identified were novel. Nine of them were classified as pathogenic, 34 as likely pathogenic and five as variant of uncertain significance. Our study adds a significant number of novel variants to the mutation spectrum of the OPA1 gene and will thereby facilitate genetic diagnostics of patients with suspected dominant optic atrophy.
Collapse
Affiliation(s)
- Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Simone Schimpf-Linzenbold
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany.,CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Pascale Mazzola
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sinja Kieninger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ting Xiao
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ulrich Kellner
- Zentrum für seltene Netzhauterkrankungen, AugenZentrum Siegburg, MVZ Augenärztliches Diagnostik- und Therapiecentrum Siegburg GmbH, Siegburg, Germany.,RetinaScience, Bonn, Germany
| | | | - Carina Kelbsch
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Felix Tonagel
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Helmut Wilhelm
- Centre for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Susanne Kohl
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Lenaers G, Neutzner A, Le Dantec Y, Jüschke C, Xiao T, Decembrini S, Swirski S, Kieninger S, Agca C, Kim US, Reynier P, Yu-Wai-Man P, Neidhardt J, Wissinger B. Dominant optic atrophy: Culprit mitochondria in the optic nerve. Prog Retin Eye Res 2021; 83:100935. [PMID: 33340656 DOI: 10.1016/j.preteyeres.2020.100935] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022]
Abstract
Dominant optic atrophy (DOA) is an inherited mitochondrial disease leading to specific degeneration of retinal ganglion cells (RGCs), thus compromising transmission of visual information from the retina to the brain. Usually, DOA starts during childhood and evolves to poor vision or legal blindness, affecting the central vision, whilst sparing the peripheral visual field. In 20% of cases, DOA presents as syndromic disorder, with secondary symptoms affecting neuronal and muscular functions. Twenty years ago, we demonstrated that heterozygous mutations in OPA1 are the most frequent molecular cause of DOA. Since then, variants in additional genes, whose functions in many instances converge with those of OPA1, have been identified by next generation sequencing. OPA1 encodes a dynamin-related GTPase imported into mitochondria and located to the inner membrane and intermembrane space. The many OPA1 isoforms, resulting from alternative splicing of three exons, form complex homopolymers that structure mitochondrial cristae, and contribute to fusion of the outer membrane, thus shaping the whole mitochondrial network. Moreover, OPA1 is required for oxidative phosphorylation, maintenance of mitochondrial genome, calcium homeostasis and regulation of apoptosis, thus making OPA1 the Swiss army-knife of mitochondria. Understanding DOA pathophysiology requires the understanding of RGC peculiarities with respect to OPA1 functions. Besides the tremendous energy requirements of RGCs to relay visual information from the eye to the brain, these neurons present unique features related to their differential environments in the retina, and to the anatomical transition occurring at the lamina cribrosa, which parallel major adaptations of mitochondrial physiology and shape, in the pre- and post-laminar segments of the optic nerve. Three DOA mouse models, with different Opa1 mutations, have been generated to study intrinsic mechanisms responsible for RGC degeneration, and these have further revealed secondary symptoms related to mitochondrial dysfunctions, mirroring the more severe syndromic phenotypes seen in a subgroup of patients. Metabolomics analyses of cells, mouse organs and patient plasma mutated for OPA1 revealed new unexpected pathophysiological mechanisms related to mitochondrial dysfunction, and biomarkers correlated quantitatively to the severity of the disease. Here, we review and synthesize these data, and propose different approaches for embracing possible therapies to fulfil the unmet clinical needs of this disease, and provide hope to affected DOA patients.
Collapse
Affiliation(s)
- Guy Lenaers
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France.
| | - Albert Neutzner
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland.
| | - Yannick Le Dantec
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France
| | - Christoph Jüschke
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ting Xiao
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Sarah Decembrini
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Ophthalmology University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sebastian Swirski
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany
| | - Sinja Kieninger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey; Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| | - Ungsoo S Kim
- Kim's Eye Hospital, Seoul, South Korea; Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK
| | - Pascal Reynier
- MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, Angers University and Hospital, Angers, France; Department of Biochemistry, University Hospital of Angers, Angers, France
| | - Patrick Yu-Wai-Man
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Cambridge Eye Unit, Addenbrooke's Hospital, Cambridge University Hospitals, Cambridge, UK; Moorfields Eye Hospital, London, UK; UCL Institute of Ophthalmology, University College London, London, UK
| | - John Neidhardt
- Human Genetics, Faculty VI - School of Medicine and Health Sciences, University of Oldenburg, Oldenburg, Germany; Research Center Neurosensory Science, University Oldenburg, Oldenburg, Germany.
| | - Bernd Wissinger
- Molecular Genetics Laboratory, Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
25
|
Bogdanova-Mihaylova P, Chen H, Plapp HM, Gorman C, Alexander MD, McHugh JC, Moran S, Early A, Cassidy L, Lynch T, Murphy SM, Walsh RA. Neurophysiological and ophthalmological findings of SPG7-related spastic ataxia: a phenotype study in an Irish cohort. J Neurol 2021; 268:3897-3907. [PMID: 33774748 DOI: 10.1007/s00415-021-10507-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Mutations in SPG7 are increasingly identified as a common cause of spastic ataxia. We describe a cohort of Irish patients with recessive SPG7-associated phenotype. METHODS Comprehensive phenotyping was performed with documentation of clinical, neurophysiological, optical coherence tomography (OCT) and genetic data from individuals with SPG7 attending two academic neurology units in Dublin, including the National Ataxia Clinic. RESULTS Thirty-two symptomatic individuals from 25 families were identified. Mean age at onset was 39.1 years (range 12-61), mean disease duration 17.8 years (range 5-45), mean disease severity as quantified with the scale for the assessment and rating of ataxia 9/40 (range 3-29). All individuals displayed variable ataxia and spasticity within a spastic-ataxic phenotype, and additional ocular abnormalities. Two had spasmodic dysphonia and three had colour vision deficiency. Brain imaging consistently revealed cerebellar atrophy (n = 29); neurophysiology demonstrated a length-dependent large-fibre axonal neuropathy in 2/27 studied. The commonest variant was c.1529C > T (p.Ala510Val), present in 21 families. Five novel variants were identified. No significant thinning of average retinal nerve fibre layer (RNFL) was demonstrated on OCT (p = 0.61), but temporal quadrant reduction was evident compared to controls (p < 0.05), with significant average and temporal RNFL decline over time. Disease duration, severity and visual acuity were not correlated with RNFL thickness. CONCLUSIONS Our results highlight that recessive SPG7 mutations may account for spastic ataxia with peripheral neuropathy in only a small proportion of patients. RNFL abnormalities with predominant temporal RNFL reduction are common and OCT should be considered part of the routine assessment in spastic ataxia.
Collapse
Affiliation(s)
- Petya Bogdanova-Mihaylova
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland.
| | - Hongying Chen
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Ciara Gorman
- Department of Clinical Neurophysiology, Tallaght University Hospital, Dublin 24, Ireland
| | - Michael D Alexander
- Department of Clinical Neurophysiology, Tallaght University Hospital, Dublin 24, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - John C McHugh
- Department of Clinical Neurophysiology, Tallaght University Hospital, Dublin 24, Ireland
| | - Sharon Moran
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| | - Anne Early
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland
| | - Lorraine Cassidy
- Department of Ophthalmology, Tallaght University Hospital, Dublin 24, Ireland
| | - Timothy Lynch
- Dublin Neurological Institute at the Mater Hospital, University College Dublin, Dublin, Ireland.,Health Affairs, University College Dublin, Dublin, Ireland
| | - Sinéad M Murphy
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| | - Richard A Walsh
- National Ataxia Clinic, Department of Neurology, Tallaght University Hospital, Tallaght, Dublin 24, Ireland.,Dublin Neurological Institute at the Mater Hospital, University College Dublin, Dublin, Ireland.,Academic Unit of Neurology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Charif M, Bris C, Goudenège D, Desquiret-Dumas V, Colin E, Ziegler A, Procaccio V, Reynier P, Bonneau D, Lenaers G, Amati-Bonneau P. Use of Next-Generation Sequencing for the Molecular Diagnosis of 1,102 Patients With a Autosomal Optic Neuropathy. Front Neurol 2021; 12:602979. [PMID: 33841295 PMCID: PMC8027346 DOI: 10.3389/fneur.2021.602979] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
Advances in next-generation sequencing (NGS) facilitate the diagnosis of genetic disorders. To evaluate its use for the molecular diagnosis of inherited optic neuropathy (ION), a blinding disease caused by the degeneration of retinal ganglion cells, we performed genetic analysis using targeted NGS of 22 already known and candidate genes in a cohort of 1,102 affected individuals. The panel design, library preparation, and sequencing reactions were performed using the Ion AmpliSeq technology. Pathogenic variants were detected in 16 genes in 245 patients (22%), including 186 (17%) and 59 (5%) dominant and recessive cases, respectively. Results confirmed that OPA1 variants are responsible for the majority of dominant IONs, whereas ACO2 and WFS1 variants are also frequently involved in both dominant and recessive forms of ION. All pathogenic variants were found in genes encoding proteins involved in the mitochondrial function, highlighting the importance of mitochondria in the survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Majida Charif
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Céline Bris
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - David Goudenège
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Valérie Desquiret-Dumas
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Estelle Colin
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Alban Ziegler
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Vincent Procaccio
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Guy Lenaers
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France
| | - Patrizia Amati-Bonneau
- University Angers, MitoLab team, UMR CNRS 6015-INSERM U1083, Unité MitoVasc, SFR ICAT, Angers, France.,Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| |
Collapse
|
27
|
Maresca A, Carelli V. Molecular Mechanisms behind Inherited Neurodegeneration of the Optic Nerve. Biomolecules 2021; 11:496. [PMID: 33806088 PMCID: PMC8064499 DOI: 10.3390/biom11040496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 01/01/2023] Open
Abstract
Inherited neurodegeneration of the optic nerve is a paradigm in neurology, as many forms of isolated or syndromic optic atrophy are encountered in clinical practice. The retinal ganglion cells originate the axons that form the optic nerve. They are particularly vulnerable to mitochondrial dysfunction, as they present a peculiar cellular architecture, with axons that are not myelinated for a long intra-retinal segment, thus, very energy dependent. The genetic landscape of causative mutations and genes greatly enlarged in the last decade, pointing to common pathways. These mostly imply mitochondrial dysfunction, which leads to a similar outcome in terms of neurodegeneration. We here critically review these pathways, which include (1) complex I-related oxidative phosphorylation (OXPHOS) dysfunction, (2) mitochondrial dynamics, and (3) endoplasmic reticulum-mitochondrial inter-organellar crosstalk. These major pathogenic mechanisms are in turn interconnected and represent the target for therapeutic strategies. Thus, their deep understanding is the basis to set and test new effective therapies, an urgent unmet need for these patients. New tools are now available to capture all interlinked mechanistic intricacies for the pathogenesis of optic nerve neurodegeneration, casting hope for innovative therapies to be rapidly transferred into the clinic and effectively cure inherited optic neuropathies.
Collapse
Affiliation(s)
- Alessandra Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
| | - Valerio Carelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Programma di Neurogenetica, 40139 Bologna, Italy;
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40139 Bologna, Italy
| |
Collapse
|
28
|
Charif M, Wong YC, Kim S, Guichet A, Vignal C, Zanlonghi X, Bensaid P, Procaccio V, Bonneau D, Amati-Bonneau P, Reynier P, Krainc D, Lenaers G. Dominant mutations in MIEF1 affect mitochondrial dynamics and cause a singular late onset optic neuropathy. Mol Neurodegener 2021; 16:12. [PMID: 33632269 PMCID: PMC7905578 DOI: 10.1186/s13024-021-00431-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/08/2021] [Indexed: 02/01/2023] Open
Abstract
Inherited optic neuropathies are the most common mitochondrial diseases, leading to neurodegeneration involving the irreversible loss of retinal ganglion cells, optic nerve degeneration and central visual loss. Importantly, properly regulated mitochondrial dynamics are critical for maintaining cellular homeostasis, and are further regulated by MIEF1 (mitochondrial elongation factor 1) which encodes for MID51 (mitochondrial dynamics protein 51), an outer mitochondrial membrane protein that acts as an adaptor protein to regulate mitochondrial fission. However, dominant mutations in MIEF1 have not been previously linked to any human disease. Using targeted sequencing of genes involved in mitochondrial dynamics, we report the first heterozygous variants in MIEF1 linked to disease, which cause an unusual form of late-onset progressive optic neuropathy characterized by the initial loss of peripheral visual fields. Pathogenic MIEF1 variants linked to optic neuropathy do not disrupt MID51's localization to the outer mitochondrial membrane or its oligomerization, but rather, significantly disrupt mitochondrial network dynamics compared to wild-type MID51 in high spatial and temporal resolution confocal microscopy live imaging studies. Together, our study identifies dominant MIEF1 mutations as a cause for optic neuropathy and further highlights the important role of properly regulated mitochondrial dynamics in neurodegeneration.
Collapse
Affiliation(s)
- Majida Charif
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Agnès Guichet
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Catherine Vignal
- Neuroophthalmology Department, Rothschild Ophthalmologic Foundation, Paris, France
| | - Xavier Zanlonghi
- Centre de Compétence Maladies Rares, Clinique Pluridisciplinaire Jules Verne, Nantes, France
| | | | - Vincent Procaccio
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dominique Bonneau
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Patrizia Amati-Bonneau
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Pascal Reynier
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
- Departments of Biochemistry and Genetics, University Hospital Angers, Angers, France
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Guy Lenaers
- Université d’Angers, MitoLab team, UMR CNRS 6015 - INSERM U1083, Unité MitoVasc, Angers, France
| |
Collapse
|
29
|
Estiar MA, Yu E, Haj Salem I, Ross JP, Mufti K, Akçimen F, Leveille E, Spiegelman D, Ruskey JA, Asayesh F, Dagher A, Yoon G, Tarnopolsky M, Boycott KM, Dupre N, Dion PA, Suchowersky O, Trempe JF, Rouleau GA, Gan-Or Z. Evidence for Non-Mendelian Inheritance in Spastic Paraplegia 7. Mov Disord 2021; 36:1664-1675. [PMID: 33598982 DOI: 10.1002/mds.28528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Although the typical inheritance of spastic paraplegia 7 is recessive, several reports have suggested that SPG7 variants may also cause autosomal dominant hereditary spastic paraplegia (HSP). OBJECTIVES We aimed to conduct an exome-wide genetic analysis on a large Canadian cohort of HSP patients and controls to examine the association of SPG7 and HSP. METHODS We analyzed 585 HSP patients from 372 families and 1175 controls, including 580 unrelated individuals. Whole-exome sequencing was performed on 400 HSP patients (291 index cases) and all 1175 controls. RESULTS The frequency of heterozygous pathogenic/likely pathogenic SPG7 variants (4.8%) among unrelated HSP patients was higher than among unrelated controls (1.7%; OR 2.88, 95% CI 1.24-6.66, P = 0.009). The heterozygous SPG7 p.(Ala510Val) variant was found in 3.7% of index patients versus 0.85% in unrelated controls (OR 4.42, 95% CI 1.49-13.07, P = 0.005). Similar results were obtained after including only genetically-undiagnosed patients. We identified four heterozygous SPG7 variant carriers with an additional pathogenic variant in known HSP genes, compared to zero in controls (OR 19.58, 95% CI 1.05-365.13, P = 0.0031), indicating potential digenic inheritance. We further identified four families with heterozygous variants in SPG7 and SPG7-interacting genes (CACNA1A, AFG3L2, and MORC2). Of these, there is especially compelling evidence for epistasis between SPG7 and AFG3L2. The p.(Ile705Thr) variant in AFG3L2 is located at the interface between hexamer subunits, in a hotspot of mutations associated with spinocerebellar ataxia type 28 that affect its proteolytic function. CONCLUSIONS Our results provide evidence for complex inheritance in SPG7-associated HSP, which may include recessive and possibly dominant and digenic/epistasis forms of inheritance. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mehrdad A Estiar
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Eric Yu
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | | | - Jay P Ross
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Kheireddin Mufti
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Fulya Akçimen
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Etienne Leveille
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Dan Spiegelman
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Jennifer A Ruskey
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Farnaz Asayesh
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada
| | - Grace Yoon
- Divisions of Neurology and Clinical and Metabolic Genetics, Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Nicolas Dupre
- Neuroscience Axis, CHU de Québec, Université Laval, Québec City, Québec, Canada.,Department of Medicine, Faculty of Medicine, Université Laval, Québec City, Québec, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Oksana Suchowersky
- Departments of Medicine (Neurology) and Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | - Jean-Francois Trempe
- Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec, Canada.,Centre de Recherche en Biologie Structurale, McGill University, Montréal, Québec, Canada
| | - Guy A Rouleau
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| | - Ziv Gan-Or
- Department of Human Genetics, McGill University, Montréal, Québec, Canada.,The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montréal, Québec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
| |
Collapse
|
30
|
Gomez-Fabra Gala M, Vögtle FN. Mitochondrial proteases in human diseases. FEBS Lett 2021; 595:1205-1222. [PMID: 33453058 DOI: 10.1002/1873-3468.14039] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria contain more than 1000 different proteins, including several proteolytic enzymes. These mitochondrial proteases form a complex system that performs limited and terminal proteolysis to build the mitochondrial proteome, maintain, and control its functions or degrade mitochondrial proteins and peptides. During protein biogenesis, presequence proteases cleave and degrade mitochondrial targeting signals to obtain mature functional proteins. Processing by proteases also exerts a regulatory role in modulation of mitochondrial functions and quality control enzymes degrade misfolded, aged, or superfluous proteins. Depending on their different functions and substrates, defects in mitochondrial proteases can affect the majority of the mitochondrial proteome or only a single protein. Consequently, mutations in mitochondrial proteases have been linked to several human diseases. This review gives an overview of the components and functions of the mitochondrial proteolytic machinery and highlights the pathological consequences of dysfunctional mitochondrial protein processing and turnover.
Collapse
Affiliation(s)
- Maria Gomez-Fabra Gala
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,Faculty of Biology, University of Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, University of Freiburg, Germany
| | - Friederike-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Germany.,CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Germany
| |
Collapse
|
31
|
Charif M, Gueguen N, Ferré M, Elkarhat Z, Khiati S, LeMao M, Chevrollier A, Desquiret-Dumas V, Goudenège D, Bris C, Kane S, Alban J, Chupin S, Wetterwald C, Caporali L, Tagliavini F, LaMorgia C, Carbonelli M, Jurkute N, Barakat A, Gohier P, Verny C, Barth M, Procaccio V, Bonneau D, Zanlonghi X, Meunier I, Weisschuh N, Schimpf-Linzenbold S, Tonagel F, Kellner U, Yu-Wai-Man P, Carelli V, Wissinger B, Amati-Bonneau P, Reynier P, Lenaers G. Dominant ACO2 mutations are a frequent cause of isolated optic atrophy. Brain Commun 2021; 3:fcab063. [PMID: 34056600 PMCID: PMC8152918 DOI: 10.1093/braincomms/fcab063] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/24/2022] Open
Abstract
Biallelic mutations in ACO2, encoding the mitochondrial aconitase 2, have been identified in individuals with neurodegenerative syndromes, including infantile cerebellar retinal degeneration and recessive optic neuropathies (locus OPA9). By screening European cohorts of individuals with genetically unsolved inherited optic neuropathies, we identified 61 cases harbouring variants in ACO2, among whom 50 carried dominant mutations, emphasizing for the first time the important contribution of ACO2 monoallelic pathogenic variants to dominant optic atrophy. Analysis of the ophthalmological and clinical data revealed that recessive cases are affected more severely than dominant cases, while not significantly earlier. In addition, 27% of the recessive cases and 11% of the dominant cases manifested with extraocular features in addition to optic atrophy. In silico analyses of ACO2 variants predicted their deleterious impacts on ACO2 biophysical properties. Skin derived fibroblasts from patients harbouring dominant and recessive ACO2 mutations revealed a reduction of ACO2 abundance and enzymatic activity, and the impairment of the mitochondrial respiration using citrate and pyruvate as substrates, while the addition of other Krebs cycle intermediates restored a normal respiration, suggesting a possible short-cut adaptation of the tricarboxylic citric acid cycle. Analysis of the mitochondrial genome abundance disclosed a significant reduction of the mitochondrial DNA amount in all ACO2 fibroblasts. Overall, our data position ACO2 as the third most frequently mutated gene in autosomal inherited optic neuropathies, after OPA1 and WFS1, and emphasize the crucial involvement of the first steps of the Krebs cycle in the maintenance and survival of retinal ganglion cells.
Collapse
Affiliation(s)
- Majida Charif
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Genetics and Immuno-Cell Therapy Team, Mohammed First University, Oujda, Morocco
| | - Naïg Gueguen
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Marc Ferré
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Zouhair Elkarhat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Salim Khiati
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Morgane LeMao
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Arnaud Chevrollier
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Valerie Desquiret-Dumas
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - David Goudenège
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Céline Bris
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Selma Kane
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Jennifer Alban
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Stéphanie Chupin
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | | | - Leonardo Caporali
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Francesca Tagliavini
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Chiara LaMorgia
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Michele Carbonelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
| | - Neringa Jurkute
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Abdelhamid Barakat
- Laboratory of Genomics and Human Genetics, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Philippe Gohier
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
| | - Christophe Verny
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Centre de référence des Maladies Neurogénétiques, Département de Neurologie, CHU d’Angers, Angers, France
| | - Magalie Barth
- Department of Pediatrics, Competence Center of Inherited Metabolic Disorders, Angers Hospital, Angers, France
| | - Vincent Procaccio
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Dominique Bonneau
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | | | - Isabelle Meunier
- National Center for Rare Diseases, Genetics of Sensory Diseases, University Hospital, Montpellier, France
| | - Nicole Weisschuh
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | | | - Felix Tonagel
- Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Ulrich Kellner
- Rare Retinal Disease Center, AugenZentrum Siegburg, MVZ ADTC Siegburg GmbH, Siegburg, Germany
- RetinaScience, 53113 Bonn, Germany
| | - Patrick Yu-Wai-Man
- Moorfields Eye Hospital, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
- Cambridge Eye Unit, Addenbrooke’s Hospital, Cambridge University Hospitals, Cambridge, UK
- Cambridge Centre for Brain Repair and MRC Mitochondrial Biology Unit, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Valerio Carelli
- Unit of Neurology, Department of Biomedical and NeuroMotor Sciences (DIBINEM), University of Bologna, Bologna, Italy
- IRCCS Institute of Neurological Sciences of Bologna, Bellaria Hospital, Bologna, Italy
| | - Bernd Wissinger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Patrizia Amati-Bonneau
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | - Pascal Reynier
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Département de Biochimie et Génétique, CHU d'Angers, Angers, France
| | | | - Guy Lenaers
- Université Angers, MitoLab Team, UMR CNRS 6015 - INSERM U1083, Institut MitoVasc, SFR ICAT, Angers, France
- Correspondence to: Guy Lenaers MitoLab Team, Mitochondrial Medicine Research Centre, MitoVasc Unit, Université d'Angers UMR CNRS 6015, INSERM U1083, CHU Bât IRIS/IBS, Rue des Capucins 49933 Angers cedex 9, France E-mail:
| |
Collapse
|
32
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V, La Morgia C. Therapeutic Options in Hereditary Optic Neuropathies. Drugs 2021; 81:57-86. [PMID: 33159657 PMCID: PMC7843467 DOI: 10.1007/s40265-020-01428-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Options for the effective treatment of hereditary optic neuropathies have been a long time coming. The successful launch of the antioxidant idebenone for Leber's Hereditary Optic Neuropathy (LHON), followed by its introduction into clinical practice across Europe, was an important step forward. Nevertheless, other options, especially for a variety of mitochondrial optic neuropathies such as dominant optic atrophy (DOA), are needed, and a number of pharmaceutical agents, acting on different molecular pathways, are currently under development. These include gene therapy, which has reached Phase III development for LHON, but is expected to be developed also for DOA, whilst most of the other agents (other antioxidants, anti-apoptotic drugs, activators of mitobiogenesis, etc.) are almost all at Phase II or at preclinical stage of research. Here, we review proposed target mechanisms, preclinical evidence, available clinical trials with primary endpoints and results, of a wide range of tested molecules, to give an overview of the field, also providing the landscape of future scenarios, including gene therapy, gene editing, and reproductive options to prevent transmission of mitochondrial DNA mutations.
Collapse
Affiliation(s)
- Giulia Amore
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Martina Romagnoli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Michele Carbonelli
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | | | - Valerio Carelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy
| | - Chiara La Morgia
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Via Altura 3, 40139, Bologna, Italy.
| |
Collapse
|