1
|
Guilleminault L, Mazzone SB, Chazelas P, Frachet S, Lia AS, Magy L. Cerebellar ataxia, neuropathy and vestibular areflexia syndrome: a neurogenic cough prototype. ERJ Open Res 2024; 10:00024-2024. [PMID: 39076534 PMCID: PMC11284589 DOI: 10.1183/23120541.00024-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/08/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic cough is a frequent disorder that is defined by cough of more than 8 weeks duration. Despite extensive investigation, some patients exhibit no aetiology and others do not respond to specific treatments directed against apparent causes of cough. Such patients are identified as having unexplained or refractory chronic cough. Recently, a high proportion of patients with chronic cough in the context of cerebellar ataxia, neuropathy and vestibular areflexia syndrome (CANVAS) was highlighted. CANVAS is a rare neurological disorder with a biallelic variation in the replication factor C subunit 1 (RFC1) gene corresponding mostly to an intronic AAGGG repeat expansion. Chronic cough in patients with CANVAS shares similar characteristics with cough hypersensitivity syndrome. The high prevalence of chronic cough in CANVAS gives the opportunity to better understand the neurogenic mechanism of chronic cough. In this review, we will describe the characteristics and mechanisms of CANVAS. We will also address the potential mechanisms responsible for chronic cough in CANVAS. Finally, we will address chronic cough management in the context of CANVAS.
Collapse
Affiliation(s)
- Laurent Guilleminault
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291, CNRS UMR5051, University Toulouse III, Toulouse, France
- Department of Respiratory Medicine, Faculty of Medicine, Toulouse University Hospital, Toulouse, France
- These authors contributed equally to this work
| | - Stuart B. Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
- These authors contributed equally to this work
| | - Pauline Chazelas
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, Limoges, France
- NeurIT-UR20218, Université de Limoges, Limoges, France
| | - Simon Frachet
- NeurIT-UR20218, Université de Limoges, Limoges, France
- Service et Laboratoire de Neurologie, Centre de Référence “Neuropathies Périphériques Rares (NNerf)”, CHU Limoges, Limoges, France
| | - Anne-Sophie Lia
- Service de Biochimie et Génétique Moléculaire, CHU Limoges, Limoges, France
- NeurIT-UR20218, Université de Limoges, Limoges, France
- Service de Bioinformatique, CHU Limoges, Limoges, France
| | - Laurent Magy
- NeurIT-UR20218, Université de Limoges, Limoges, France
- Service et Laboratoire de Neurologie, Centre de Référence “Neuropathies Périphériques Rares (NNerf)”, CHU Limoges, Limoges, France
| |
Collapse
|
2
|
Tyagi N, Uppili B, Sharma P, Parveen S, Saifi S, Jain A, Sonakar A, Ahmed I, Sahni S, Shamim U, Anand A, Suroliya V, Asokachandran V, Srivastava A, Sivasubbu S, Scaria V, Faruq M. Investigation of RFC1 tandem nucleotide repeat locus in diverse neurodegenerative outcomes in an Indian cohort. Neurogenetics 2024; 25:13-25. [PMID: 37917284 DOI: 10.1007/s10048-023-00736-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/10/2023] [Indexed: 11/04/2023]
Abstract
An intronic bi-allelic pentanucleotide repeat expansion mutation, (AAGGG)400-2000, at AAAAG repeat locus in RFC1 gene, is known as underlying genetic cause in cases with cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) and late-onset sporadic ataxia. Biallelic positive cases carry a common recessive risk haplotype, "AAGA," spanning RFC1 gene. In this study, our aim is to find prevalence of bi-allelic (AAGGG)exp in Indian ataxia and other neurological disorders and investigate the complexity of RFC1 repeat locus and its potential association with neurodegenerative diseases in Indian population-based cohorts. We carried out repeat number and repeat type estimation using flanking PCR and repeat primed PCR (AAAAG/AAAGG/AAGGG) in four Indian disease cohorts and healthy controls. Haplotype assessment of suspected cases was done by genotyping and confirmed by Sanger sequencing. Blood samples and consent of all the cases and detailed clinical details of positive cases were collected in collaboration with A.I.I.M.S. Furthermore, comprehension of RFC1 repeat locus and risk haplotype analysis in Indian background was performed on the NGS data of Indian healthy controls by ExpansionHunter, ExpansionHunter Denovo, and PHASE analysis, respectively. Genetic screening of RFC1-TNR locus in 1998 uncharacterized cases (SCA12: 87; uncharacterized ataxia: 1818, CMT: 93) and 564 heterogenous controls showed that the frequency of subjects with bi-allelic (AAGGG)exp are 1.15%, < 0.05%, 2.15%, and 0% respectively. Two RFC1 positive sporadic late-onset ataxia cases, one bi-allelic (AAGGG)exp and another, (AAAGG)~700/(AAGGG)exp, had recessive risk haplotype and CANVAS symptoms. Long normal alleles, 15-27, are significantly rare in ataxia cohort. In IndiGen control population (IndiGen; N = 1029), long normal repeat range, 15-27, is significantly associated with A3G3 and some rare repeat motifs, AGAGG, AACGG, AAGAG, and AAGGC. Risk-associated "AAGA" haplotype of the original pathogenic expansion of A2G3 was found associated with the A3G3 representing alleles in background population. Apart from bi-allelic (AAGGG)exp, we report cases with a new pathogenic expansion of (AAAGG)exp/(AAGGG)exp in RFC1 and recessive risk haplotype. We found different repeat motifs at RFC1 TNR locus, like AAAAG, AAAGG, AAAGGG, AAAAGG, AAGAG, AACGG, AAGGC, AGAGG, and AAGGG, in Indian background population except ACAGG and (AAAGG)n/(AAGGG)n. Our findings will help in further understanding the role of long normal repeat size and different repeat motifs, specifically AAAGG, AAAGGG, and other rare repeat motifs, at the RFC1 locus.
Collapse
Affiliation(s)
- Nishu Tyagi
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bharathram Uppili
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Sharma
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shaista Parveen
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Sheeba Saifi
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Abhinav Jain
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Akhilesh Sonakar
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences (AIIMS), 110608, New Delhi, India
| | - Istaq Ahmed
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Shweta Sahni
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences (AIIMS), 110608, New Delhi, India
| | - Uzma Shamim
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Avni Anand
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Varun Suroliya
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences (AIIMS), 110608, New Delhi, India
| | - Vivekanand Asokachandran
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Achal Srivastava
- Department of Neurology, Neuroscience Centre, All India Institute of Medical Sciences (AIIMS), 110608, New Delhi, India
| | - Sridhar Sivasubbu
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Vinod Scaria
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
4
|
Movement disorders and neuropathies: overlaps and mimics in clinical practice. J Neurol 2022; 269:4646-4662. [PMID: 35657406 DOI: 10.1007/s00415-022-11200-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
Movement disorders as well as peripheral neuropathies are extremely frequent in the general population; therefore, it is not uncommon to encounter patients with both these conditions. Often, the coexistence is coincidental, due to the high incidence of common causes of peripheral neuropathy, such as diabetes and other age-related disorders, as well as of Parkinson disease (PD), which has a typical late onset. Nonetheless, there is broad evidence that PD patients may commonly develop a sensory and/or autonomic polyneuropathy, triggered by intrinsic and/or extrinsic mechanisms. Similarly, some peripheral neuropathies may develop some movement disorders in the long run, such as tremor, and rarely dystonia and myoclonus, suggesting that central mechanisms may ensue in the pathogenesis of these diseases. Although rare, several acquired or hereditary causes may be responsible for the combination of movement and peripheral nerve disorders as a unique entity, some of which are potentially treatable, including paraneoplastic, autoimmune and nutritional aetiologies. Finally, genetic causes should be pursued in case of positive family history, young onset or multisystemic involvement, and examined for neuroacanthocytosis, spinocerebellar ataxias, mitochondrial disorders and less common causes of adult-onset cerebellar ataxias and spastic paraparesis. Deep phenotyping in terms of neurological and general examination, as well as laboratory tests, neuroimaging, neurophysiology, and next-generation genetic analysis, may guide the clinician toward the correct diagnosis and management.
Collapse
|
5
|
Strupp M, Frenzel C, Goldschagg N, Halmagyi GM. Teaching Video NeuroImage: One Bedside Test, 2 Clinical Signs: One Vestibular, the Other Ocular Motor. Neurology 2021; 97:e541-e542. [PMID: 33893196 DOI: 10.1212/wnl.0000000000012080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Michael Strupp
- From the Department of Neurology and German Center for Vertigo and Balance Disorders (M.S., C.F., N.G.), Ludwig Maximilians University, Campus Grosshadern, Munich, Germany; and Department of Neurology (G.M.H.), Royal Prince Alfred Hospital, University of Sydney, Australia.
| | - Claudia Frenzel
- From the Department of Neurology and German Center for Vertigo and Balance Disorders (M.S., C.F., N.G.), Ludwig Maximilians University, Campus Grosshadern, Munich, Germany; and Department of Neurology (G.M.H.), Royal Prince Alfred Hospital, University of Sydney, Australia
| | - Nicolina Goldschagg
- From the Department of Neurology and German Center for Vertigo and Balance Disorders (M.S., C.F., N.G.), Ludwig Maximilians University, Campus Grosshadern, Munich, Germany; and Department of Neurology (G.M.H.), Royal Prince Alfred Hospital, University of Sydney, Australia
| | - G Michael Halmagyi
- From the Department of Neurology and German Center for Vertigo and Balance Disorders (M.S., C.F., N.G.), Ludwig Maximilians University, Campus Grosshadern, Munich, Germany; and Department of Neurology (G.M.H.), Royal Prince Alfred Hospital, University of Sydney, Australia
| |
Collapse
|