1
|
Mohamed AAB, Algahalan HA, Thabit MN. Correlation between functional MRI techniques and early disability in ambulatory patients with relapsing–remitting MS. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Abstract
Background
Multiple sclerosis (MS) is a common neurological disorder which can lead to an occasional damage to the central nervous system. Conventional magnetic resonance imaging (cMRI) is an important modality in the diagnosis of MS; however, correlation between cMRI findings and clinical impairment is weak. Non-conventional MRI techniques including apparent diffusion coefficient (ADC) and magnetic resonance spectroscopy (MRS) investigate the metabolic changes over the course of MS and overcome the limits of cMRI.
A total of 80 patients with MS and 20 age and sex-matched healthy control subjects were enrolled in this cross-sectional study. Ambulatory patients with relapsing–remitting MS (RRMS) were recruited. Expanded Disability Status Scale (EDSS) was used to assess the disability and the patients were categorized into three groups “no disability”, “minimal disability” and “moderate disability”. All patients underwent cMRI techniques. ADC was measured in MS plaques and in normal appearing white matter (NAWM) adjacent and around the plaque. All metabolites concentrations were expressed as ratios including N-acetyl-aspartate/creatine (NAA/Cr), choline/N-acetyl-aspartate (Cho/NAA) and choline/creatine (Cho/Cr). ADC and metabolite concentrations were measured in the normal white matter of 20 healthy control subjects.
Results
The study was carried on 80 MS patients [36 males (45%) and 44 females (55%)] and 20 healthy control [8 males (40%) and 12 females (60%)]. The ADC values and MRS parameters in NAWM of patients with MS were significantly different from those of the control group. The number of the plaques on T2 images and black holes were significantly higher at “Minimal disability” group. Most of the enhanced plaques were at the “Moderate disability” group with P value < 0.001. The mean of ADC in the group 1, 2 and 3 of disability was 1.12 ± 0.19, 1.50 ± 0.35, 1.51 ± 0.36, respectively, with P value < 0. 001. In the group 1, 2 and 3 of disability, the mean of NAA/Cr ratio at the plaque was 1.34 ± 0.44, 1.59 ± 0.51 and 1.11 ± 0.15, respectively, with P value equal 0.001.
Conclusion
The non-conventional quantitative MRI techniques are useful tools for detection of early disability in MS patients.
Collapse
|
2
|
Quadrelli S, Ribbons K, Arm J, Al-Iedani O, Lechner-Scott J, Lea R, Ramadan S. 2D in-vivo L-COSY spectroscopy identifies neurometabolite alterations in treated multiple sclerosis. Ther Adv Neurol Disord 2019; 12:1756286419877081. [PMID: 31666809 PMCID: PMC6801886 DOI: 10.1177/1756286419877081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 08/15/2019] [Indexed: 11/16/2022] Open
Abstract
Background We have applied in vivo two-dimensional (2D) localized correlation spectroscopy (2D L-COSY), in treated relapsing relapsing-remitting multiple sclerosis (RRMS) to identify novel biomarkers in normal-appearing brain parenchyma. Methods 2D L-COSY magnetic resonance spectroscopy (MRS) spectra were prospectively acquired from the posterior cingulate cortex (PCC) in 45 stable RRMS patients undergoing treatment with Fingolimod, and 40 age and sex-matched healthy control (HC) participants. Average metabolite ratios and clinical symptoms including, disability, cognition, fatigue, and mental health parameters were measured, and compared using parametric and nonparametric tests. Whole brain volume and MRS voxel morphometry were evaluated using SIENAX and the SPM LST toolbox. Results Despite the mean whole brain lesion volume being low in this RRMS group (6.8 ml) a significant reduction in PCC metabolite to tCr ratios were identified for multiple N-acetylaspartate (NAA) signatures, gamma-aminobutyric acid (GABA), glutamine and glutamate (Glx), threonine, and isoleucine/lipid. Of the clinical symptoms measured, visuospatial function, attention, and memory were correlated with NAA signatures, Glx, and isoleucine/lipid in the brain. Conclusions 2D L-COSY has the potential to detect metabolic alterations in the normal-appearing MS brain. Despite examining only a localised region, we could detect metabolic variability associated with symptoms.
Collapse
Affiliation(s)
- Scott Quadrelli
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Karen Ribbons
- Department of Neurology, John Hunter Hospital, Newcastle, NSW, Australia
| | - Jameen Arm
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Oun Al-Iedani
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | | | - Rodney Lea
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Saadallah Ramadan
- School of Health Sciences, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
3
|
Bisulca J, De Lury A, Coyle PK, Syritsyna O, Peyster R, Bangiyev L, Duong TQ. MRI features associated with high likelihood of conversion of radiologically isolated syndrome to multiple sclerosis. Mult Scler Relat Disord 2019; 36:101381. [PMID: 31518773 DOI: 10.1016/j.msard.2019.101381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
Abstract
Radiologically isolated syndrome (RIS) is the asymptomatic precursor to clinically isolated syndrome, relapsing-remitting multiple sclerosis (MS) or primary progressive MS. RIS is frequently diagnosed when an individual gets an MRI for an unrelated medical issue, such as headache or trauma. Treating RIS patients is controversial, but physicians may be inclined to offer prophylactic treatment for high-risk RIS patients. Identifying imaging and clinical features associated with high likelihood of early clinical conversion may prove helpful to identify a high-risk subset for potential MS therapy. The goal of this paper is to review current literatures to identify imaging and clinical features that predict early (within 5 years) conversion from RIS to MS.
Collapse
Affiliation(s)
- Joseph Bisulca
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Amy De Lury
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Patricia K Coyle
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Olga Syritsyna
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Robert Peyster
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Lev Bangiyev
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA
| | - Tim Q Duong
- Departments of Radiology and Neurology, Stony Brook Medicine, 101 Nicolls Rd, Stony Brook, NY 11794, USA.
| |
Collapse
|
4
|
Amaral LLFD, Fragoso DC, Rocha AJD. Improving acute demyelinating lesion detection: which T1-weighted magnetic resonance acquisition is more sensitive to gadolinium enhancement? ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 77:485-492. [PMID: 31365640 DOI: 10.1590/0004-282x20190082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/14/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Because of the need for a standardized and accurate method for detecting multiple sclerosis (MS) inflammatory activity, different magnetic resonance (MR) acquisitions should be compared in order to choose the most sensitive sequence for clinical routine. To compare the sensitivity of a T1-weighted image to a single dose of gadolinium (Gd) administration both with and without magnetization transfer to detect contrast enhancement in active demyelinating focal lesions. METHODS A sample of relapsing-remitting MS patients were prospectively examined separately by two neuroradiologists using a 1.5 Tesla scanner. The outcome parameters were focused on Gd-enhancement detection attributed to acute demyelination. All MR examinations with at least one Gd-enhancing lesion were considered positive (MR+) and each lesion was analyzed according to its size and contrast ratio. RESULTS Thirty-six MR examinations were analyzed with a high inter-observer agreement for MR+ detection (k coefficient > 0.8), which was excellent for the number of Gd-enhancing lesions (0.91 T1 spin-echo (SE), 0.88 T1 magnetization transfer contrast (MTC) sequence and 0.99 magnetization-prepared rapid acquisition with gradient-echo (MPRAGE). Significantly more MR+ were reported on the T1 MTC scans, followed by the T1 SE, and MPRAGE scans. Confidently, the T1 MTC sequence demonstrated higher accuracy in the detection of Gd-enhancing lesions, followed by the T1 SE and MPRAGE sequences. Further comparisons showed that there was a statistically significant increase in the contrast ratio and area of Gd-enhancement on the T1 MTC images when compared with both the SE and MPRAGE images. CONCLUSION Single-dose Gd T1 MTC sequence was confirmed to be the most sensitive acquisition for predicting inflammatory active lesions using a 1.5 T magnet in this sample of MS patients.
Collapse
Affiliation(s)
- Lázaro Luiz Faria do Amaral
- Hospital Beneficência Portuguesa de São Paulo, BP Medicina Diagnóstica, Departamento de Neurorradiologia, São Paulo SP, Brasil.,Irmandade da Santa Casa de Misericórdia de São Paulo, Departamento de Radiologia, São Paulo SP, Brasil
| | - Diego Cardoso Fragoso
- Irmandade da Santa Casa de Misericórdia de São Paulo, Departamento de Radiologia, São Paulo SP, Brasil
| | - Antonio José da Rocha
- Irmandade da Santa Casa de Misericórdia de São Paulo, Departamento de Radiologia, São Paulo SP, Brasil
| |
Collapse
|
5
|
Characterizing Fatigue-Related White Matter Changes in MS: A Proton Magnetic Resonance Spectroscopy Study. Brain Sci 2019; 9:brainsci9050122. [PMID: 31137831 PMCID: PMC6562940 DOI: 10.3390/brainsci9050122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/20/2019] [Accepted: 05/20/2019] [Indexed: 12/20/2022] Open
Abstract
Few cross-sectional studies have investigated the correlation between neurochemical changes and multiple sclerosis (MS) fatigue, but little is known on the fatigue-related white matter differences between time points. We aim to investigate the longitudinal neurometabolite profile of white matter in MS fatigue. Forty-eight relapsing remitting multiple sclerosis (RRMS) patients with an expanded disability status scale (EDSS) ≤ 4 underwent high field 1H-multivoxel magnetic resonance spectroscopy (MRS) at baseline and year 1. Fatigue severity was evaluated by the fatigue severity scale (FSS). Patients were divided into low (LF, FSS ≤ 3), moderate (MF, FSS = 3.1–5), and high fatigue (HF, FSS ≥ 5.1) groups. In a two-way analysis of variance (ANOVA), we observed a decline in the ratio of the sum of N-acetylaspartate (NAA) and N-acetylaspartylglutamate (NAAG) to the sum of creatine (Cr) and phosphocreatine (PCr) in the right anterior quadrant (RAQ) and left anterior quadrant (LAQ) of the MRS grid in the HF group at baseline and year 1. This decline was significant when compared with the LF group (p = 0.018 and 0.020). In a one-way ANOVA, the fatigue group effect was significant and the ratio difference in the right posterior quadrant (RPQ) and left posterior quadrant (LPQ) of the HF group was also significant (p = 0.012 and 0.04). Neurochemical changes in the bilateral frontal white matter and possibly parietooccipital areas were noted in the HF group at two different time points. Our findings may shed some light on the pathology of MS fatigue.
Collapse
|
6
|
Spanò B, Giulietti G, Pisani V, Morreale M, Tuzzi E, Nocentini U, Francia A, Caltagirone C, Bozzali M, Cercignani M. Disruption of neurite morphology parallels MS progression. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2018; 5:e502. [PMID: 30345330 PMCID: PMC6192688 DOI: 10.1212/nxi.0000000000000502] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/07/2018] [Indexed: 12/31/2022]
Abstract
Objectives To apply advanced diffusion MRI methods to the study of normal-appearing brain tissue in MS and examine their correlation with measures of clinical disability. Methods A multi-compartment model of diffusion MRI called neurite orientation dispersion and density imaging (NODDI) was used to study 20 patients with relapsing-remitting MS (RRMS), 15 with secondary progressive MS (SPMS), and 20 healthy controls. Maps of NODDI were analyzed voxel-wise to assess the presence of abnormalities within the normal-appearing brain tissue and the association with disease severity. Standard diffusion tensor imaging (DTI) parameters were also computed for comparing the 2 techniques. Results Patients with MS showed reduced neurite density index (NDI) and increased orientation dispersion index (ODI) compared with controls in several brain areas (p < 0.05), with patients with SPMS having more widespread abnormalities. DTI indices were also sensitive to some changes. In addition, patients with SPMS showed reduced ODI in the thalamus and caudate nucleus. These abnormalities were associated with scores of disease severity (p < 0.05). The association with the MS functional composite score was higher in patients with SPMS compared with patients with RRMS. Conclusions NODDI and DTI findings are largely overlapping. Nevertheless, NODDI helps interpret previous findings of increased anisotropy in the thalamus of patients with MS and are consistent with the degeneration of selective axon populations.
Collapse
Affiliation(s)
- Barbara Spanò
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Giovanni Giulietti
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Valerio Pisani
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Manuela Morreale
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Elisa Tuzzi
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Ugo Nocentini
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Ada Francia
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Carlo Caltagirone
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Marco Bozzali
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| | - Mara Cercignani
- Neuroimaging Laboratory (B.S., G.G., M.B., M.C.), Santa Lucia Foundation, IRCCS; Department of Clinical and Behavioural Neurology (V.P., U.N., C.C.), Santa Lucia Foundation, IRCCS; Neurovascular Diagnosis Unit (M.M.), Department of Medical and Surgical Sciences and Biotechnology, Section of Neurology, Sapienza, University of Rome; Department of Neurology and Psychiatry (M.M., A.F.), Multiple Sclerosis Center, Sapienza, University of Rome, Italy; High Field Magnetic Resonance (E.T.), Max Planck Institute for Biological Cybernetics, Tuebingen, Germany; Department of System Medicine (U.N., C.C.), University of Rome "Tor Vergata," Italy; and Department of Neuroscience (M.B., M.C.), Brighton & Sussex Medical School, Falmer, United Kingdom
| |
Collapse
|
7
|
Castellazzi G, Debernard L, Melzer TR, Dalrymple-Alford JC, D'Angelo E, Miller DH, Gandini Wheeler-Kingshott CAM, Mason DF. Functional Connectivity Alterations Reveal Complex Mechanisms Based on Clinical and Radiological Status in Mild Relapsing Remitting Multiple Sclerosis. Front Neurol 2018; 9:690. [PMID: 30177910 PMCID: PMC6109785 DOI: 10.3389/fneur.2018.00690] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/30/2018] [Indexed: 11/13/2022] Open
Abstract
Resting state functional MRI (rs-fMRI) has provided important insights into functional reorganization in subjects with Multiple Sclerosis (MS) at different stage of disease. In this cross-sectional study we first assessed, by means of rs-fMRI, the impact of overall T2 lesion load (T2LL) and MS severity score (MSSS) on resting state networks (RSNs) in 62 relapsing remitting MS (RRMS) patients with mild disability (MSSS < 3). Independent Component Analysis (ICA) followed by dual regression analysis confirmed functional connectivity (FC) alterations of many RSNs in RRMS subjects compared to healthy controls. The anterior default mode network (DMNa) and the superior precuneus network (PNsup) showed the largest areas of decreased FC, while the sensory motor networks area M1 (SMNm1) and the medial visual network (MVN) showed the largest areas of increased FC. In order to better understand the nature of these alterations as well as the mechanisms of functional alterations in MS we proposed a method, based on linear regression, that takes into account FC changes and their correlation with T2LL and MSSS. Depending on the sign of the correlation between FC and T2LL, and furthermore the sign of the correlation with MSSS, we suggested the following possible underlying mechanisms to interpret altered FC: (1) FC reduction driven by MS lesions, (2) "true" functional compensatory mechanism, (3a) functional compensation attempt, (3b) "false" functional compensation, (4a) neurodegeneration, (4b) pre-symptomatic condition (damage precedes MS clinical manifestation). Our data shows areas satisfying 4 of these 6 conditions (i.e., 1,2,3b,4b), supporting the suggestion that increased FC has a complex nature that may exceed the simplistic assumption of an underlying compensatory mechanism attempting to limit the brain damage caused by MS progression. Exploring differences between RRMS subjects with short disease duration (MSshort) and RRMS with similar disability but longer disease duration (MSlong), we found that MSshort and MSlong were characterized by clearly distinct pattern of FC, involving predominantly sensory and cognitive networks respectively. Overall, these results suggest that the analysis of FC alterations in multiple large-scale networks in relation to radiological (T2LL) and clinical (MSSS, disease duration) status may provide new insights into the pathophysiology of relapse onset MS evolution.
Collapse
Affiliation(s)
- Gloria Castellazzi
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Laetitia Debernard
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Tracy R Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Brain Research New Zealand, Auckland, New Zealand
| | - John C Dalrymple-Alford
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Brain Research New Zealand, Auckland, New Zealand.,Department of Psychology, University of Canterbury, Christchurch, New Zealand
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| | - David H Miller
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom.,New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, United Kingdom.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Deborah F Mason
- New Zealand Brain Research Institute, Christchurch, New Zealand.,Department of Medicine, University of Otago, Christchurch, New Zealand.,Department of Neurology, Christchurch Hospital, Christchurch, New Zealand
| |
Collapse
|
8
|
Jafari-Khouzani K, Paynabar K, Hajighasemi F, Rosen B. Effect of Region of Interest Size on the Repeatability of Quantitative Brain Imaging Biomarkers. IEEE Trans Biomed Eng 2018; 66:864-872. [PMID: 30059291 DOI: 10.1109/tbme.2018.2860928] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
In the repeatability analysis, when the measurement is the mean value of a parametric map within a region of interest (ROI), the ROI size becomes important as by increasing the size, the measurement will have a smaller variance. This is important in decision-making in prospective clinical studies of brain when the ROI size is variable, e.g., in monitoring the effect of treatment on lesions by quantitative MRI, and in particular when the ROI is small, e.g., in the case of brain lesions in multiple sclerosis. Thus, methods to estimate repeatability measures for arbitrary sizes of ROI are desired. We propose a statistical model of the values of parametric map within the ROI and a method to approximate the model parameters, based on which we estimate a number of repeatability measures including repeatability coefficient, coefficient of variation, and intraclass correlation coefficient for an ROI with an arbitrary size. We also show how this gives an insight into related problems such as spatial smoothing in voxel-wise analysis. Experiments are conducted on simulated data as well as on scan-rescan brain MRI of healthy subjects. The main application of this study is the adjustment of the decision threshold based on the lesion size in treatment monitoring.
Collapse
|
9
|
Londoño AC, Mora CA. Evidence of disease control: a realistic concept beyond NEDA in the treatment of multiple sclerosis. F1000Res 2017; 6:566. [PMID: 28588765 PMCID: PMC5446020 DOI: 10.12688/f1000research.11349.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 12/21/2022] Open
Abstract
Although no evidence of disease activity (NEDA) permits evaluation of response to treatment in the systematic follow-up of patients with multiple sclerosis (MS), its ability to accomplish detection of surreptitious activity of disease is limited, thus being unable to prevent patients from falling into a non-reversible progressive phase of disease. A protocol of evaluation based on the use of validated biomarkers that is conducted at an early stage of disease would permit the capture of abnormal neuroimmunological phenomena and lead towards intervention with modifying therapy before tissue damage has been reached.
Collapse
Affiliation(s)
- Ana C Londoño
- Instituto Neurológico de Colombia (INDEC), Medellín, Colombia
| | - Carlos A Mora
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
10
|
Londoño AC, Mora CA. Evidence of disease control: a realistic concept beyond NEDA in the treatment of multiple sclerosis. F1000Res 2017; 6:566. [PMID: 28588765 PMCID: PMC5446020 DOI: 10.12688/f1000research.11349.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/16/2017] [Indexed: 10/13/2023] Open
Abstract
Although no evidence of disease activity (NEDA) permits evaluation of response to treatment in the systematic follow-up of patients with multiple sclerosis (MS), its ability to accomplish detection of surreptitious activity of disease is limited, thus being unable to prevent patients from falling into a non-reversible progressive phase of disease. A protocol of evaluation based on the use of validated biomarkers that is conducted at an early stage of disease would permit the capture of abnormal neuroimmunological phenomena and lead towards intervention with modifying therapy before tissue damage has been reached.
Collapse
Affiliation(s)
- Ana C. Londoño
- Instituto Neurológico de Colombia (INDEC), Medellín, Colombia
| | - Carlos A. Mora
- Department of Neurology, MedStar Georgetown University Hospital, Washington, DC, USA
| |
Collapse
|
11
|
Harris VK, Tuddenham JF, Sadiq SA. Biomarkers of multiple sclerosis: current findings. Degener Neurol Neuromuscul Dis 2017; 7:19-29. [PMID: 30050375 PMCID: PMC6053099 DOI: 10.2147/dnnd.s98936] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease affecting the brain and spinal cord that is associated with chronic inflammation leading to demyelination and neurodegeneration. With the recent increase in the number of available therapies for MS, optimal treatment will be based on a personalized approach determined by an individual patient's prognosis and treatment risks. An integral part of such therapeutic decisions will be the use of molecular biomarkers to predict disability progression, monitor ongoing disease activity, and assess treatment response. This review describes current published findings within the past 3 years in biomarker research in MS, specifically highlighting recent advances in the validation of cerebrospinal fluid biomarkers such as neurofilaments (light and heavy chains), chitinases and chitinase 3-like proteins, soluble surface markers of innate immunity, and oligoclonal immunoglobulin M antibodies. Current research in circulating miRNAs as biomarkers of MS is also discussed. Continued validation and testing will be required before MS biomarkers are routinely applied in a clinical setting.
Collapse
Affiliation(s)
- Violaine K Harris
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, USA,
| | - John F Tuddenham
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, USA,
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, New York, NY, USA,
| |
Collapse
|
12
|
Morrow SA, Menon S, Rosehart H, Sharma M. Developing easy to perform routine MRI measurements as potential surrogates for cognitive impairment in MS. Clin Neurol Neurosurg 2017; 153:73-78. [PMID: 28061362 DOI: 10.1016/j.clineuro.2016.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 12/22/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES One of the most frequently disabling symptoms in Multiple Sclerosis (MS) is cognitive impairment which is often insidious in onset and therefore difficult to recognize in the early stages, for both persons with MS and clinicians. A biomarker that would help identify those at risk of cognitive impairment, or with only mild impairment, would be a useful tool for clinicians. Using MRI, already an integral tool in the diagnosis and monitoring of disease activity in MS, would be ideal. Thus, this study aimed to determine if simple measures on routine MRI could serve as potential biomarkers for cognitive impairment in MS. PATIENTS AND METHODS We retrospectively identified 51 persons with MS who had a cognitive assessment and MRI within six months of the MRI. Simple linear measurements of the hippocampi, bifrontral and third ventricular width, bicaudate width and the anterior, mid and posterior corpus callosum were made. Pearson's correlations examined the relationship between these MRI measures and cognitive tests, and MRI measures were compared in persons with MS who were either normal or cognitively impaired on objective cognitive tests using Analysis of Covariance (ANCOVA). RESULTS Bicaudate span and third ventricular width were both negatively correlated, while corpus callosal measures were positive correlated with cognitive test performance. After controlling for potential confounders, bicaudate span was significant different on measures of immediate recall. Both anterior and posterior corpus collosal measure were significantly different on measures of verbal fluency, immediate recall and higher executive function; while the anterior corpus callosum was also significantly different on processing speed. The middle corpus collosal measure was significantly different on immediate recall and higher executive function. CONCLUSION This study presents data demonstrating that simple to apply MRI measures of atrophy may serve as biomarkers for cognitive impairment in persons with MS. Further prospective studies are needed to validate these findings.
Collapse
Affiliation(s)
- Sarah A Morrow
- University of Western Ontario (Western), London Health Sciences Center, University Hospital, Department of Clinical Neurological Sciences, LHSC-UH, 339 Windermere Road, London, ON N5A 5A5, Canada; St. Joseph's Health Care, Parkwood Institute, Department of Cognitive Neurology, 550 Wellington Road, London, ON N6C 0A7, Canada.
| | - Suresh Menon
- University of Western Ontario (Western), London Health Sciences Center, University Hospital, Department of Clinical Neurological Sciences, LHSC-UH, 339 Windermere Road, London, ON N5A 5A5, Canada; Present Address: McMaster University, Hamilton General Hospital, 237 Barton Street East, Department of Medicine, Division of Neurology, Hamilton, ON L8L 2X2, Canada
| | - Heather Rosehart
- University of Western Ontario (Western), London Health Sciences Center, University Hospital, Department of Clinical Neurological Sciences, LHSC-UH, 339 Windermere Road, London, ON N5A 5A5, Canada
| | - Manas Sharma
- University of Western Ontario (Western), London Health Sciences Center, University Hospital, Department of Radiology/Medical Imaging, LHSC-UH, 339 Windermere Road B10-006, London, ON N5A 5A5, Canada
| |
Collapse
|
13
|
Yetkin MF, Mirza M, Dönmez H. Monitoring interferon β treatment response with magnetic resonance spectroscopy in relapsing remitting multiple sclerosis. Medicine (Baltimore) 2016; 95:e4782. [PMID: 27603381 PMCID: PMC5023904 DOI: 10.1097/md.0000000000004782] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS.
Collapse
Affiliation(s)
- Mehmet Fatih Yetkin
- Department of Neurology, Faculty of Medicine, Erciyes University
- Correspondence: Mehmet Fatih Yetkin, Department of Neurology, Faculty of Medicine, Erciyes University, Kayseri, Turkey (e-mail: )
| | - Meral Mirza
- Department of Neurology, Faculty of Medicine, Erciyes University
| | - Halil Dönmez
- Department of Radiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
14
|
Sinnecker T, Kuchling J, Dusek P, Dörr J, Niendorf T, Paul F, Wuerfel J. Ultrahigh field MRI in clinical neuroimmunology: a potential contribution to improved diagnostics and personalised disease management. EPMA J 2015; 6:16. [PMID: 26312125 PMCID: PMC4549950 DOI: 10.1186/s13167-015-0038-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/20/2015] [Indexed: 12/29/2022]
Abstract
Conventional magnetic resonance imaging (MRI) at 1.5 Tesla (T) is limited by modest spatial resolution and signal-to-noise ratio (SNR), impeding the identification and classification of inflammatory central nervous system changes in current clinical practice. Gaining from enhanced susceptibility effects and improved SNR, ultrahigh field MRI at 7 T depicts inflammatory brain lesions in great detail. This review summarises recent reports on 7 T MRI in neuroinflammatory diseases and addresses the question as to whether ultrahigh field MRI may eventually improve clinical decision-making and personalised disease management.
Collapse
Affiliation(s)
- Tim Sinnecker
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Department of Neurology, Asklepios Fachklinikum Teupitz, Buchholzer Str. 21, 15755 Teupitz, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Petr Dusek
- Institute of Neuroradiology, Universitaetsmedizin Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany.,Department of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital in Prague, Kateřinská 30, 128 21 Praha 2, Czech Republic
| | - Jan Dörr
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Experimental and Clinical Research Center, Charité - Universitaetsmedizin Berlin and Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.,Department of Neurology, Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jens Wuerfel
- NeuroCure Clinical Research Center (NCRC), Charité - Universitaetsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.,Institute of Neuroradiology, Universitaetsmedizin Goettingen, Robert-Koch-Straße 40, 37075 Goettingen, Germany.,Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.,Medical Image Analysis Center, Mittlere Strasse 83, CH-4031 Basel, Switzerland
| |
Collapse
|
15
|
Recent imaging advances in neurology. J Neurol 2015; 262:2182-94. [PMID: 25808503 DOI: 10.1007/s00415-015-7711-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 01/08/2023]
Abstract
Over the recent years, the application of neuroimaging techniques such as magnetic resonance imaging (MRI) and positron emission tomography (PET) has considerably advanced the understanding of complex neurological disorders. PET is a powerful molecular imaging tool, which investigates the distribution and binding of radiochemicals attached to biologically relevant molecules; as such, this technique is able to give information on biochemistry and metabolism of the brain in health and disease. MRI uses high intensity magnetic fields and radiofrequency pulses to provide structural and functional information on tissues and organs in intact or diseased individuals, including the evaluation of white matter integrity, grey matter thickness and brain perfusion. The aim of this article is to review the most recent advances in neuroimaging research in common neurological disorders such as movement disorders, dementia, epilepsy, traumatic brain injury and multiple sclerosis, and to evaluate their contribution in the diagnosis and management of patients.
Collapse
|