1
|
Bruijstens AL, Stingl C, Güzel C, Stoop MP, Wong YYM, van Pelt ED, Banwell BL, Bar-Or A, Luider TM, Neuteboom RF. Neurodegeneration and humoral response proteins in cerebrospinal fluid associate with pediatric-onset multiple sclerosis and not monophasic demyelinating syndromes in childhood. Mult Scler 2023; 29:52-62. [PMID: 36154753 PMCID: PMC9896265 DOI: 10.1177/13524585221125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pediatric-onset multiple sclerosis (POMS) represents the earliest stage of disease pathogenesis. Investigating the cerebrospinal fluid (CSF) proteome in POMS may provide novel insights into early MS processes. OBJECTIVE To analyze CSF obtained from children at time of initial central nervous system (CNS) acquired demyelinating syndrome (ADS), to compare CSF proteome of those subsequently ascertained as having POMS versus monophasic acquired demyelinating syndrome (mADS). METHODS Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry (LC-MS) was performed in a Dutch discovery cohort (POMS n = 28; mADS n = 39). Parallel reaction monitoring-mass spectrometry (PRM-MS) was performed on selected proteins more abundant in POMS in a combined Dutch and Canadian validation cohort (POMS n = 48; mADS n = 106). RESULTS Discovery identified 5580 peptides belonging to 576 proteins; 58 proteins were differentially abundant with ⩾2 peptides between POMS and mADS, of which 28 more abundant in POMS. Fourteen had increased abundance in POMS with ⩾8 unique peptides. Five selected proteins were all confirmed within validation. Adjusted for age, 2 out of 5 proteins remained more abundant in POMS, that is, Carboxypeptidase E (CPE) and Semaphorin-7A (SEMA7A). CONCLUSION This exploratory study identified several CSF proteins associated with POMS and not mADS, potentially reflecting neurodegeneration, compensatory neuroprotection, and humoral response in POMS. The proteins associated with POMS highly correlated with age at CSF sampling.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- AL Bruijstens Department of Neurology, Erasmus University Medical Center, Room Ee-2230, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Christoph Stingl
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yu Yi M Wong
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Daniëlle van Pelt
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
2
|
Yoon H, Triplet EM, Simon WL, Choi CI, Kleppe LS, De Vita E, Miller AK, Scarisbrick IA. Blocking Kallikrein 6 promotes developmental myelination. Glia 2022; 70:430-450. [PMID: 34626143 PMCID: PMC8732303 DOI: 10.1002/glia.24100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/12/2022]
Abstract
Kallikrein related peptidase 6 (Klk6) is a secreted serine protease highly expressed in oligodendrocytes and implicated in demyelinating conditions. To gain insights into the significance of Klk6 to oligodendrocyte biology, we investigated the impact of global Klk6 gene knockout on CNS developmental myelination using the spinal cord of male and female mice as a model. Results demonstrate that constitutive loss of Klk6 expression accelerates oligodendrocyte differentiation developmentally, including increases in the expression of myelin proteins such as MBP, PLP and CNPase, in the number of CC-1+ mature oligodendrocytes, and myelin thickness by the end of the first postnatal week. Co-ordinate elevations in the pro-myelinating signaling pathways ERK and AKT, expression of fatty acid 2-hydroxylase, and myelin regulatory transcription factor were also observed in the spinal cord of 7d Klk6 knockouts. LC/MS/MS quantification of spinal cord lipids showed sphingosine and sphingomyelins to be elevated in Klk6 knockouts at the peak of myelination. Oligodendrocyte progenitor cells (OPCs)-derived from Klk6 knockouts, or wild type OPCs-treated with a Klk6 inhibitor (DFKZ-251), also showed increased MBP and PLP. Moreover, inhibition of Klk6 in OPC cultures enhanced brain derived neurotrophic factor-driven differentiation. Altogether, these findings suggest that oligodendrocyte-derived Klk6 may operate as an autocrine or paracrine rheostat, or brake, on pro-myelinating signaling serving to regulate myelin homeostasis developmentally and in the adult. These findings document for the first time that inhibition of Klk6 globally, or specifically in oligodendrocyte progenitors, is a strategy to increase early stages of oligodendrocyte differentiation and myelin production in the CNS.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Erin M. Triplet
- Regenerative Sciences Program, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Whitney L. Simon
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Chan-Il Choi
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Laurel S. Kleppe
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
| | - Elena De Vita
- University of Heidelberg, Faculty of Biosciences, 69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Aubry K. Miller
- German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Isobel A. Scarisbrick
- Department of Physical Medicine and Rehabilitation, Mayo Clinic School of Biomedical Sciences Rochester 55905
- Regenerative Sciences Program, Mayo Clinic School of Biomedical Sciences Rochester 55905
- Department of Physiology and Biomedical Engineering, Minnesota USA 55905
| |
Collapse
|
3
|
Salazar IL, Lourenço AST, Manadas B, Baldeiras I, Ferreira C, Teixeira AC, Mendes VM, Novo AM, Machado R, Batista S, Macário MDC, Grãos M, Sousa L, Saraiva MJ, Pais AACC, Duarte CB. Posttranslational modifications of proteins are key features in the identification of CSF biomarkers of multiple sclerosis. J Neuroinflammation 2022; 19:44. [PMID: 35135578 PMCID: PMC8822857 DOI: 10.1186/s12974-022-02404-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Background Multiple sclerosis is an inflammatory and degenerative disease of the central nervous system (CNS) characterized by demyelination and concomitant axonal loss. The lack of a single specific test, and the similarity to other inflammatory diseases of the central nervous system, makes it difficult to have a clear diagnosis of multiple sclerosis. Therefore, laboratory tests that allows a clear and definite diagnosis, as well as to predict the different clinical courses of the disease are of utmost importance. Herein, we compared the cerebrospinal fluid (CSF) proteome of patients with multiple sclerosis (in the relapse–remitting phase of the disease) and other diseases of the CNS (inflammatory and non-inflammatory) aiming at identifying reliable biomarkers of multiple sclerosis. Methods CSF samples from the discovery group were resolved by 2D-gel electrophoresis followed by identification of the protein spots by mass spectrometry. The results were analyzed using univariate (Student’s t test) and multivariate (Hierarchical Cluster Analysis, Principal Component Analysis, Linear Discriminant Analysis) statistical and numerical techniques, to identify a set of protein spots that were differentially expressed in CSF samples from patients with multiple sclerosis when compared with other two groups. Validation of the results was performed in samples from a different set of patients using quantitative (e.g., ELISA) and semi-quantitative (e.g., Western Blot) experimental approaches. Results Analysis of the 2D-gels showed 13 protein spots that were differentially expressed in the three groups of patients: Alpha-1-antichymotrypsin, Prostaglandin-H2-isomerase, Retinol binding protein 4, Transthyretin (TTR), Apolipoprotein E, Gelsolin, Angiotensinogen, Agrin, Serum albumin, Myosin-15, Apolipoprotein B-100 and EF-hand calcium-binding domain—containing protein. ELISA experiments allowed validating part of the results obtained in the proteomics analysis and showed that some of the alterations in the CSF proteome are also mirrored in serum samples from multiple sclerosis patients. CSF of multiple sclerosis patients was characterized by TTR oligomerization, thus highlighting the importance of analyzing posttranslational modifications of the proteome in the identification of novel biomarkers of the disease. Conclusions The model built based on the results obtained upon analysis of the 2D-gels and in the validation phase attained an accuracy of about 80% in distinguishing multiple sclerosis patients and the other two groups. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02404-2.
Collapse
Affiliation(s)
- Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Ana S T Lourenço
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Cláudia Ferreira
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Anabela Claro Teixeira
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Vera M Mendes
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Margarida Novo
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Rita Machado
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Sónia Batista
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria do Carmo Macário
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Mário Grãos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal.,Biocant-Associação de Transferência de Tecnologia, Cantanhede, Portugal
| | - Lívia Sousa
- Neurology Department, CHUC-Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Maria João Saraiva
- Molecular Neurobiology Group, Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Alberto A C C Pais
- Coimbra Chemistry Centre, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal. .,Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Jafari A, Babajani A, Rezaei-Tavirani M. Multiple Sclerosis Biomarker Discoveries by Proteomics and Metabolomics Approaches. Biomark Insights 2021; 16:11772719211013352. [PMID: 34017167 PMCID: PMC8114757 DOI: 10.1177/11772719211013352] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory disorder of the central nervous system (CNS) resulting in demyelination and axonal loss in the brain and spinal cord. The precise pathogenesis and etiology of this complex disease are still a mystery. Despite many studies that have been aimed to identify biomarkers, no protein marker has yet been approved for MS. There is urgently needed for biomarkers, which could clarify pathology, monitor disease progression, response to treatment, and prognosis in MS. Proteomics and metabolomics analysis are powerful tools to identify putative and novel candidate biomarkers. Different human compartments analysis using proteomics, metabolomics, and bioinformatics approaches has generated new information for further clarification of MS pathology, elucidating the mechanisms of the disease, finding new targets, and monitoring treatment response. Overall, omics approaches can develop different therapeutic and diagnostic aspects of complex disorders such as multiple sclerosis, from biomarker discovery to personalized medicine.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
5
|
Kalafatakis I, Savvaki M, Velona T, Karagogeos D. Implication of Contactins in Demyelinating Pathologies. Life (Basel) 2021; 11:life11010051. [PMID: 33451101 PMCID: PMC7828632 DOI: 10.3390/life11010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
Demyelinating pathologies comprise of a variety of conditions where either central or peripheral myelin is attacked, resulting in white matter lesions and neurodegeneration. Myelinated axons are organized into molecularly distinct domains, and this segregation is crucial for their proper function. These defined domains are differentially affected at the different stages of demyelination as well as at the lesion and perilesion sites. Among the main players in myelinated axon organization are proteins of the contactin (CNTN) group of the immunoglobulin superfamily (IgSF) of cell adhesion molecules, namely Contactin-1 and Contactin-2 (CNTN1, CNTN2). The two contactins perform their functions through intermolecular interactions, which are crucial for myelinated axon integrity and functionality. In this review, we focus on the implication of these two molecules as well as their interactors in demyelinating pathologies in humans. At first, we describe the organization and function of myelinated axons in the central (CNS) and the peripheral (PNS) nervous system, further analyzing the role of CNTN1 and CNTN2 as well as their interactors in myelination. In the last section, studies showing the correlation of the two contactins with demyelinating pathologies are reviewed, highlighting the importance of these recognition molecules in shaping the function of the nervous system in multiple ways.
Collapse
|
6
|
Jankovska E, Lipcseyova D, Svrdlikova M, Pavelcova M, Kubala Havrdova E, Holada K, Petrak J. Quantitative proteomic analysis of cerebrospinal fluid of women newly diagnosed with multiple sclerosis. Int J Neurosci 2020; 132:724-734. [PMID: 33059501 DOI: 10.1080/00207454.2020.1837801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The lack of reliable diagnostic and/or prognostic biomarkers for multiple sclerosis (MS) is the major obstacle to timely and accurate patient diagnosis in MS patients. To identify new proteins associated with MS we performed a detailed proteomic analysis of cerebrospinal fluid (CSF) of patients newly diagnosed with relapsing-remitting MS (RRMS) and healthy controls. MATERIAL Reflecting significantly higher prevalence of MS in women we included only women patients and controls in the study. To eliminate a potential effect of therapy on the CSF composition, only the therapy-naïve patients were included. METHODS Pooled CSF samples were processed in a technical duplicate, and labeled with stable-isotope coded TMT tags. To maximize the proteome coverage, peptide fractionation using 2D-LC preceded mass analysis using Orbitrap Fusion Tribrid Mass Spectrometer. Differential concentration of selected identified proteins between patients and controls was verified using specific antibodies. RESULTS Of the identified 900 CSF proteins, we found 69 proteins to be differentially abundant between patients and controls. In addition to several proteins identified as differentially abundant in MS patients previously, we observed several linked to MS for the first time, namely eosinophil-derived neurotoxin and Nogo receptor. CONCLUSIONS Our data confirm differential abundance of several previously proposed protein markers, and provide indirect support for involvement of copper-iron disbalance in MS. Most importantly, we identified two new differentially abundant CSF proteins that seem to be directly connected with myelin loss and axonal damage via TLR2 signaling and Nogo-receptor pathway in women newly diagnosed with RRMS.
Collapse
Affiliation(s)
- Eliska Jankovska
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Denisa Lipcseyova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Michaela Svrdlikova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Miluse Pavelcova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Kubala Havrdova
- Department of Neurology and Center for Clinical Neuroscience, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Holada
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiri Petrak
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| |
Collapse
|
7
|
Wong YYM, Bruijstens AL, Barro C, Michalak Z, Melief MJ, Wierenga AF, van Pelt ED, Neuteboom RF, Kuhle J, Hintzen RQ. Serum neurofilament light chain in pediatric MS and other acquired demyelinating syndromes. Neurology 2019; 93:e968-e974. [DOI: 10.1212/wnl.0000000000008057] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
ObjectiveTo explore the correlation between serum and CSF neurofilament light chain (NfL) and the association of NfL levels and future disease activity in pediatric patients with a first attack of acquired demyelinating syndromes (ADS).MethodsIn total, 102 children <18 years with a first attack of CNS demyelination and 23 age-matched controls were included. Clinically definite multiple sclerosis (CDMS) was set as an endpoint for analysis. CSF NfL was tested by the commercially available ELISA (UmanDiagnostics); serum NfL (sNfL) was tested with a Simoa assay. Hazard ratios (HR) were calculated with Cox regression analysis.ResultsOf the 102 patients, 47 (46%) were tested for CSF NfL. CSF and serum NfL correlated significantly in the total group (ρ 0.532, p < 0.001) and even more significantly in the subgroup of patients with future CDMS diagnosis (ρ 0.773, p < 0.001). sNfL was higher in patients than in controls (geometric mean 6.1 pg/mL, p < 0.001), and was highest in ADS presenting with encephalopathy (acute disseminated encephalomyelitis, n = 28, 100.4 pg/mL), followed by patients without encephalopathy (ADS−) with future CDMS diagnosis (n = 40, 32.5 pg/mL), and ADS− who remained monophasic (n = 34, 17.6 pg/mL). sNfL levels higher than a median of 26.7 pg/mL at baseline are associated with a shorter time to CDMS diagnosis in ADS− (p = 0.045). HR for CDMS diagnosis was 1.09 for each 10 pg/mL increase of sNfL, after correction for age, oligoclonal bands, and MRI measures (p = 0.012).ConclusionThe significant correlation between CSF and serum NfL strengthens its reliability as a peripheral marker of neuroaxonal damage. Higher sNfL levels at baseline were associated with higher probability of future CDMS diagnosis in ADS−.
Collapse
|
8
|
Singh V, Tripathi A, Dutta R. Proteomic Approaches to Decipher Mechanisms Underlying Pathogenesis in Multiple Sclerosis Patients. Proteomics 2019; 19:e1800335. [PMID: 31119864 PMCID: PMC6690771 DOI: 10.1002/pmic.201800335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 05/15/2019] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). The cause of MS is unknown, with no effective therapies available to halt the progressive neurological disability. Development of new and improvement of existing therapeutic strategies therefore require a better understanding of MS pathogenesis, especially during the progressive phase of the disease. This can be achieved through development of biomarkers that can help to identify disease pathophysiology and monitor disease progression. Proteomics is a powerful and promising tool to accelerate biomarker detection and contribute to novel therapeutics. In this review, an overview of how proteomic technology using CNS tissues and biofluids from MS patients has provided important clues to the pathogenesis of MS is provided. Current publications, pitfalls, as well as directions of future research involving proteomic approaches to understand the pathogenesis of MS are discussed.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ajai Tripathi
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Ranjan Dutta
- Department of Neurosciences, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
9
|
Chatterjee M, Schild D, Teunissen CE. Contactins in the central nervous system: role in health and disease. Neural Regen Res 2019; 14:206-216. [PMID: 30530999 PMCID: PMC6301169 DOI: 10.4103/1673-5374.244776] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/17/2018] [Indexed: 01/06/2023] Open
Abstract
Contactins are a group of cell adhesion molecules that are mainly expressed in the brain and play pivotal roles in the organization of axonal domains, axonal guidance, neuritogenesis, neuronal development, synapse formation and plasticity, axo-glia interactions and neural regeneration. Contactins comprise a family of six members. Their absence leads to malformed axons and impaired nerve conduction. Contactin mediated protein complex formation is critical for the organization of the axon in early central nervous system development. Mutations and differential expression of contactins have been identified in neuro-developmental or neurological disorders. Taken together, contactins are extensively studied in the context of nervous system development. This review summarizes the physiological roles of all six members of the Contactin family in neurodevelopment as well as their involvement in neurological/neurodevelopmental disorders.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Detlev Schild
- Institute of Neurophysiology and Cellular Biophysics, University of Göttingen, Göttingen, Germany
- DFG Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
- DFG Excellence Cluster 171, University of Göttingen, Göttingen, Germany
| | - Charlotte E. Teunissen
- Amsterdam UMC, VU University Medical Center, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Chatterjee M, Koel-Simmelink MJ, Verberk IM, Killestein J, Vrenken H, Enzinger C, Ropele S, Fazekas F, Khalil M, Teunissen CE. Contactin-1 and contactin-2 in cerebrospinal fluid as potential biomarkers for axonal domain dysfunction in multiple sclerosis. Mult Scler J Exp Transl Clin 2018; 4:2055217318819535. [PMID: 30627437 PMCID: PMC6305953 DOI: 10.1177/2055217318819535] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 01/06/2023] Open
Abstract
Background Contactin-1 and contactin-2 are important for the maintenance of axonal integrity. Objective To investigate the cerebrospinal fluid levels of contactin-1 and contactin-2 in multiple sclerosis patients and controls, and their potential use as prognostic markers for neurodegeneration. Methods Cerebrospinal fluid contactin-1 and contactin-2 were measured in relapsing–remitting multiple sclerosis (n = 41), secondary progressive multiple sclerosis (n = 26) and primary progressive multiple sclerosis patients (n = 13) and controls (n = 18), and in a second cohort with clinically isolated syndrome patients (n = 88, median clinical follow-up period of 2.3 years) and controls (n = 20). Correlations/linear regressions were analysed with other baseline cerebrospinal fluid axonal damage markers and cross-sectional/longitudinal magnetic resonance imaging features. Results Contactin-1 and contactin-2 levels were up to 1.4-fold reduced in relapsing–remitting multiple sclerosis (contactin-1: p = 0.01, contactin-2: p = 0.02) and secondary progressive multiple sclerosis (contactin-1: p = 0.05, contactin-2: p = 0.02) compared to controls. In clinically isolated syndrome patients, contactin-1 tended to increase when compared to controls (p = 0.07). Both contactin-1 and contactin-2 correlated with neurofilament light, neurofilament heavy and magnetic resonance imaging metrics differently depending on the disease stage. In clinically isolated syndrome patients, baseline contactin-2 level (β = –0.42, p = 0.04) predicted the longitudinal decline in cortex volume. Conclusion Cerebrospinal fluid contactin-1 and contactin-2 reveal axonal dysfunction in various stages of multiple sclerosis and their inclusion to the biomarker panel may provide better insight into the extent of axonal damage/dysfunction.
Collapse
Affiliation(s)
- Madhurima Chatterjee
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Marleen Ja Koel-Simmelink
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Inge Mw Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Joep Killestein
- Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Hugo Vrenken
- Department of Radiology, VU University Medical Center, Amsterdam UMC, The Netherlands
| | | | - Stefan Ropele
- Department of Neurology, Medical University of Graz, Austria
| | - Franz Fazekas
- Department of Neurology, Medical University of Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, Austria
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| |
Collapse
|
11
|
van Huizen NA, Coebergh van den Braak RRJ, Doukas M, Dekker LJM, IJzermans JNM, Luider TM. Up-regulation of collagen proteins in colorectal liver metastasis compared with normal liver tissue. J Biol Chem 2018; 294:281-289. [PMID: 30409905 DOI: 10.1074/jbc.ra118.005087] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/07/2018] [Indexed: 01/30/2023] Open
Abstract
Changes to extracellular matrix (ECM) structures are linked to tumor cell proliferation and metastasis. We previously reported that naturally occurring peptides of collagen type I are elevated in urine of patients with colorectal liver metastasis (CRLM). In the present study, we took an MS-based proteomic approach to identify specific collagen types that are up-regulated in CRLM tissues compared with healthy, adjacent liver tissues from the same patients. We found that 19 of 22 collagen-α chains are significantly up-regulated (p < 0.05) in CRLM tissues compared with the healthy tissues. At least four collagen-α chains were absent or had low expression in healthy colon and adjacent tissues, but were highly abundant in both colorectal cancer (CRC) and CRLM tissues. This expression pattern was also observed for six noncollagen colon-specific proteins, two of which (CDH17 and PPP1R1B/DARP-32) had not previously been linked to CRLM. Furthermore, we observed CRLM-associated up-regulation of 16 proteins (of 20 associated proteins identified) known to be required for collagen synthesis, indicating increased collagen production in CRLM. Immunohistochemistry validated that collagen type XII is significantly up-regulated in CRLM. The results of this study indicate that most collagen isoforms are up-regulated in CRLM compared with healthy tissues, most likely as a result of an increased collagen production in the metastatic cells. Our findings provide further insight into morphological changes in the ECM in CRLM and help explain the finding of tumor metastasis-associated proteins and peptides in urine, suggesting their utility as metastasis biomarkers.
Collapse
Affiliation(s)
- Nick A van Huizen
- Department of Surgery, Erasmus University Medical Center, P.O. Box 1738, 3015 GE Rotterdam, The Netherlands; Department of Neurology, Erasmus University Medical Center, P.O. Box 1738, 3015 GE Rotterdam, The Netherlands
| | | | - Michael Doukas
- Department of Pathology, Erasmus University Medical Center, P.O. Box 1738, 3015 GE Rotterdam, The Netherlands
| | - Lennard J M Dekker
- Department of Neurology, Erasmus University Medical Center, P.O. Box 1738, 3015 GE Rotterdam, The Netherlands
| | - Jan N M IJzermans
- Department of Surgery, Erasmus University Medical Center, P.O. Box 1738, 3015 GE Rotterdam, The Netherlands
| | - Theo M Luider
- Department of Neurology, Erasmus University Medical Center, P.O. Box 1738, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Choi CI, Yoon H, Drucker KL, Langley MR, Kleppe L, Scarisbrick IA. The Thrombin Receptor Restricts Subventricular Zone Neural Stem Cell Expansion and Differentiation. Sci Rep 2018; 8:9360. [PMID: 29921916 PMCID: PMC6008392 DOI: 10.1038/s41598-018-27613-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/06/2018] [Indexed: 01/05/2023] Open
Abstract
Thrombin is frequently increased in the CNS after injury yet little is known regarding its effects on neural stem cells. Here we show that the subventricular zone (SVZ) of adult mice lacking the high affinity receptor for thrombin, proteinase activated receptor 1 (PAR1), show increased numbers of Sox2+ and Ki-67+ self-renewing neural stem cells (NSCs) and Olig2+ oligodendrocyte progenitors. SVZ NSCs derived from PAR1-knockout mice, or treated with a PAR1 small molecule inhibitor (SCH79797), exhibited enhanced capacity for self-renewal in vitro, including increases in neurosphere formation and BrdU incorporation. PAR1-knockout SVZ monolayer cultures contained more Nestin, NG2+ and Olig2+ cells indicative of enhancements in expansion and differentiation towards the oligodendrocyte lineage. Cultures of NSCs lacking PAR1 also expressed higher levels of myelin basic protein, proteolipid protein and glial fibrillary acidic protein upon differentiation. Complementing these findings, the corpus callosum and anterior commissure of adult PAR1-knockout mice contained greater numbers of Olig2+ progenitors and CC1+ mature oligodendrocytes. Together these findings highlight PAR1 inhibition as a means to expand adult SVZ NSCs and to promote an increased number of mature myelinating oligodendrocytes in vivo that may be of particular benefit in the context of neural injury where PAR1 agonists such as thrombin are deregulated.
Collapse
Affiliation(s)
- Chan-Il Choi
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA.,Department of Physiology Mayo Clinic, Rochester, MN, 55905, USA
| | - Hyesook Yoon
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA.,Department of Physiology Mayo Clinic, Rochester, MN, 55905, USA
| | - Kristen L Drucker
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA
| | - Monica R Langley
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA
| | - Laurel Kleppe
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA.,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation Mayo Clinic, Rochester, MN, 55905, USA. .,Rehabilitation Medicine Research Center Mayo Clinic, Rochester, MN, 55905, USA. .,Department of Physiology Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
13
|
Stoop MP, Runia TF, Stingl C, van der Vuurst de Vries RM, Luider TM, Hintzen RQ. Decreased Neuro-Axonal Proteins in CSF at First Attack of Suspected Multiple Sclerosis. Proteomics Clin Appl 2017; 11. [PMID: 28941200 DOI: 10.1002/prca.201700005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 08/23/2017] [Indexed: 01/10/2023]
Abstract
The pathology of multiple sclerosis is located in the central nervous system, therefore cerebrospinal fluid (CSF) is an attractive biofluid for biomarker research for proteins related to the early stages of this disease. In this study, the CSF proteome of patients with a clinically isolated syndrome of demyelination (CIS, a first attack of multiple sclerosis) is compared to the CSF proteome of control patients to identify differentially abundant proteins. CSF samples of 47 CIS patients and 45 control subjects are enzymatically digested and subsequently measured by LC-MS/MS (LTQ-Orbitrap). Following mass spectrometry differential abundances of the identified proteins between groups are investigated. A total of 3159 peptides are identified, relating to 485 proteins. One protein is significantly more abundant in CSF of CIS patients than in controls: Ig kappa chain C region. In contrast, 35 proteins are significantly lower in CIS patients than controls, most of them with functions in nervous system development and function, such as amyloid-like protein 1 (validated by ELISA in an independent sample set (p < 0.01)), contactin 1, contactin 2 and neuronal cell adhesion molecule. A remarkably lower abundance of neuro-axonal proteins is observed in patients with a first demyelinating event compared to controls.
Collapse
Affiliation(s)
- Marcel P Stoop
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Tessel F Runia
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Christoph Stingl
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | | | - Theo M Luider
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands
| | - Rogier Q Hintzen
- Departments of Neurology, Erasmus MC, Rotterdam, the Netherlands.,Departments of Immunology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
14
|
Yoon H, Radulovic M, Walters G, Paulsen AR, Drucker K, Starski P, Wu J, Fairlie DP, Scarisbrick IA. Protease activated receptor 2 controls myelin development, resiliency and repair. Glia 2017; 65:2070-2086. [PMID: 28921694 DOI: 10.1002/glia.23215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 12/22/2022]
Abstract
Oligodendrocytes are essential regulators of axonal energy homeostasis and electrical conduction and emerging target cells for restoration of neurological function. Here we investigate the role of protease activated receptor 2 (PAR2), a unique protease activated G protein-coupled receptor, in myelin development and repair using the spinal cord as a model. Results demonstrate that genetic deletion of PAR2 accelerates myelin production, including higher proteolipid protein (PLP) levels in the spinal cord at birth and higher levels of myelin basic protein and thickened myelin sheaths in adulthood. Enhancements in spinal cord myelin with PAR2 loss-of-function were accompanied by increased numbers of Olig2- and CC1-positive oligodendrocytes, as well as in levels of cyclic adenosine monophosphate (cAMP), and extracellular signal related kinase 1/2 (ERK1/2) signaling. Parallel promyelinating effects were observed after blocking PAR2 expression in purified oligodendrocyte cultures, whereas inhibiting adenylate cyclase reversed these effects. Conversely, PAR2 activation reduced PLP expression and this effect was prevented by brain derived neurotrophic factor (BDNF), a promyelinating growth factor that signals through cAMP. PAR2 knockout mice also showed improved myelin resiliency after traumatic spinal cord injury and an accelerated pattern of myelin regeneration after focal demyelination. These findings suggest that PAR2 is an important controller of myelin production and regeneration, both in the developing and adult spinal cord.
Collapse
Affiliation(s)
- Hyesook Yoon
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905
| | - Maja Radulovic
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Grant Walters
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Alex R Paulsen
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Kristen Drucker
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - Phillip Starski
- Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| | - Jianmin Wu
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905
| | - David P Fairlie
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Isobel A Scarisbrick
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Rochester, Minnesota, 55905.,Department of Physiology and Biomedical Engineering, Rochester, Minnesota, 55905.,Neurobiology of Disease Program, Mayo Clinic, Rochester, Minnesota, 55905
| |
Collapse
|
15
|
Yoon H, Scarisbrick IA. Kallikrein-related peptidase 6 exacerbates disease in an autoimmune model of multiple sclerosis. Biol Chem 2017; 397:1277-1286. [PMID: 27533119 DOI: 10.1515/hsz-2016-0239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022]
Abstract
Kallikrein-related peptidase 6 (Klk6) is elevated in the serum of multiple sclerosis (MS) patients and is hypothesized to participate in inflammatory and neuropathogenic aspects of the disease. To test this hypothesis, we investigated the impact of systemic administration of recombinant Klk6 on the development and progression of MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). First, we determined that Klk6 expression is elevated in the spinal cord of mice with EAE at the peak of clinical disease and in immune cells upon priming with the disease-initiating peptide in vitro. Systemic administration of recombinant Klk6 to mice during the priming phase of disease resulted in an exacerbation of clinical symptoms, including earlier onset of disease and higher levels of spinal cord inflammation and pathology. Treatment of MOG35-55-primed immune cells with Klk6 in culture enhanced expression of pro-inflammatory cytokines, interferon-γ, tumor necrosis factor, and interleukin-17, while reducing anti-inflammatory cytokines interleukin-4 and interleukin-5. Together these findings provide evidence that elevations in systemic Klk6 can bias the immune system towards pro-inflammatory responses capable of exacerbating the development of neuroinflammation and paralytic neurological deficits. We suggest that Klk6 represents an important target for conditions in which pro-inflammatory responses play a critical role in disease development, including MS.
Collapse
|
16
|
Axonal transport deficits in multiple sclerosis: spiraling into the abyss. Acta Neuropathol 2017; 134:1-14. [PMID: 28315956 PMCID: PMC5486629 DOI: 10.1007/s00401-017-1697-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/13/2017] [Accepted: 03/14/2017] [Indexed: 12/16/2022]
Abstract
The transport of mitochondria and other cellular components along the axonal microtubule cytoskeleton plays an essential role in neuronal survival. Defects in this system have been linked to a large number of neurological disorders. In multiple sclerosis (MS) and associated models such as experimental autoimmune encephalomyelitis (EAE), alterations in axonal transport have been shown to exist before neurodegeneration occurs. Genome-wide association (GWA) studies have linked several motor proteins to MS susceptibility, while neuropathological studies have shown accumulations of proteins and organelles suggestive for transport deficits. A reduced effectiveness of axonal transport can lead to neurodegeneration through inhibition of mitochondrial motility, disruption of axoglial interaction or prevention of remyelination. In MS, demyelination leads to dysregulation of axonal transport, aggravated by the effects of TNF-alpha, nitric oxide and glutamate on the cytoskeleton. The combined effect of all these pathways is a vicious cycle in which a defective axonal transport system leads to an increase in ATP consumption through loss of membrane organization and a reduction in available ATP through inhibition of mitochondrial transport, resulting in even further inhibition of transport. The persistent activity of this positive feedback loop contributes to neurodegeneration in MS.
Collapse
|
17
|
Bamm VV, Geist AM, Harauz G. Correlation of geographic distributions of haptoglobin alleles with prevalence of multiple sclerosis (MS) - a narrative literature review. Metab Brain Dis 2017; 32:19-34. [PMID: 27807673 DOI: 10.1007/s11011-016-9923-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/19/2016] [Indexed: 12/15/2022]
Abstract
We have proposed that the myelin damage observed in multiple sclerosis (MS) may be partly mediated through the long-term release and degradation of extracellular hemoglobin (Hb) and the products of its oxidative degradation [Cellular and Molecular Life Sciences, 71, 1789-1798, 2014]. The protein haptoglobin (Hpt) binds extracellular Hb as a first line of defense, and can serve as a vascular antioxidant. Humans have two different Hpt alleles: Hpt1 and Hpt2, giving either homozygous Hpt1-1 or Hpt2-2 phenotypes, or a heterozygous Hpt1-2 phenotype. We questioned whether those geographic regions with higher frequency of the Hpt2 allele (conversely, lower frequency of Hpt1 allele) would correlate with an increased incidence of MS, because different Hpt phenotypes will have variable anti-oxidative potentials in protecting myelin from damage inflicted by extracellular Hb and its degradation products. To test this hypothesis, we undertook a systematic analysis of the literature on reported geographic distributions of Hpt alleles to compare them with data reported in the World Health Organization Atlas of worldwide MS prevalence. We found the frequency of the Hpt1 allele to be low in European and North American countries with a high prevalence of MS, consistent with our hypothesis. However, this correlation was not observed in China and India, countries with the lowest Hpt1 frequencies, yet low reported prevalence of MS. Nevertheless, this work shows the need for continued refinement of geographic patterns of MS prevalence, including data on ethnic or racial origin, and for new clinical studies to probe the observed correlation and evaluate Hpt phenotype as a predictor of disease variability and progression, severity, and/or comorbidity with cardiovascular disorders.
Collapse
Affiliation(s)
- Vladimir V Bamm
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Arielle M Geist
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - George Harauz
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
18
|
Feng X, Liu J, Fan S, Liu F, Li Y, Jin Y, Bai L, Yang Z. The identification of goat peroxiredoxin-5 and the evaluation and enhancement of its stability by nanoparticle formation. Sci Rep 2016; 6:24467. [PMID: 27074889 PMCID: PMC4830999 DOI: 10.1038/srep24467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/23/2016] [Indexed: 11/23/2022] Open
Abstract
An anticancer bioactive peptide (ACBP), goat peroxiredoxin-5 (gPRDX5), was identified from goat-spleen extract after immunizing the goat with gastric cancer-cell lysate. Its amino acid sequence was determined by employing 2D nano-LC-ESI-LTQ-Orbitrap MS/MS combined with Mascot database search in the goat subset of the Uniprot database. The recombinant gPRDX5 protein was acquired by heterogeneous expression in Escherichia coli. Subsequently, the anti-cancer bioactivity of the peptide was measured by several kinds of tumor cells. The results indicated that the gPRDX5 was a good anti-cancer candidate, especially for killing B16 cells. However, the peptide was found to be unstable without modification with pharmaceutical excipients, which would be a hurdle for future medicinal application. In order to overcome this problem and find an effective way to evaluate the gPRDX5, nanoparticle formation, which has been widely used in drug delivery because of its steadiness in application, less side-effects and enhancement of drug accumulation in target issues, was used here to address the issues. In this work, the gPRDX5 was dispersed into nanoparticles before delivered to B16 cells. By the nanotechnological method, the gPRDX5 was stabilized by a fast and accurate procedure, which suggests a promising way for screening the peptide for further possible medicinal applications.
Collapse
Affiliation(s)
- Xiaozhou Feng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Juanjuan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Shuai Fan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Fan Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yadong Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yuanyuan Jin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Liping Bai
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Zhaoyong Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|