1
|
Maggi P, Absinta M. Emerging MRI biomarkers for the diagnosis of multiple sclerosis. Mult Scler 2024:13524585241293579. [PMID: 39511991 DOI: 10.1177/13524585241293579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The need to improve diagnostic precision in multiple sclerosis (MS) is widely recognized. In recent years, several novel magnetic resonance imaging (MRI) biomarkers have been proposed to enhance diagnostic specificity and reduce misdiagnosis. Some of these imaging biomarkers are deemed highly specific for MS and are likely ready to enter the MS diagnostic work-up, while others are still in their exploratory phase. In addition, new synthetic MRI contrasts and artificial intelligence-based diagnostic algorithms are being tested to reduce the time burden related to imaging data acquisition and analysis. In this review, we summarize the most recent advancement in the field, focusing on the adoption of these novel MRI biomarkers-whether used alone or in combination-for the differential diagnosis of MS.
Collapse
Affiliation(s)
- Pietro Maggi
- Neuroinflammation Imaging Lab (NIL), Institute of NeuroScience, Université catholique de Louvain, Brussels, Belgium
| | - Martina Absinta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Experimental Neuropathology Lab, Neuro Center, IRCCS Humanitas Research Hospital, Milan, Italy
| |
Collapse
|
2
|
Zhou X, Cao S, Hou J, Gui T, Zhu F, Xue Q. Association between myasthenia gravis and cognitive disorders: a PRISMA-compliant meta-analysis. Int J Neurosci 2023; 133:987-998. [PMID: 35285401 DOI: 10.1080/00207454.2022.2031183] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/28/2021] [Accepted: 01/06/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE This meta-analysis assessed the association between myasthenia gravis (MG) and cognitive disorders. METHODS The PubMed, Web of Science, OVID, EMBASE, CNKI and Wanfang electronic databases were comprehensively searched from inception to October 2020 for relevant studies. The primary outcomes were scores of the cognitive function battery. A random effects model was used to evaluate the cognitive function of patients with MG. RESULTS Eight cross-sectional studies containing 381 patients and 220 healthy controls were included in this meta-analysis. In relation to global cognitive function, patients with MG performed significantly worse than healthy individuals (SMD = -0.4, 95% CI = -0.63 to -0.16, p < 0.001, I2 = 10%). Specifically, the impaired cognitive domains included language, visuospatial function, information processing, verbal immediate and delayed recall memory, visual immediate recall memory, and response fluency, while attention, executive function, and visual delayed recall memory were unimpaired. The patients with early-onset (SMD= -0.527, 95% CI = -0.855 to -0.199, p = 0.002) and generalized MG (SMD= -0.577, 95% CI = -1.047 to -0.107, p = 0.016) had poorer global cognitive performance than the healthy population. CONCLUSIONS Patients with MG may have cognitive disorders, including those associated with the domains of language, visuospatial function, information processing, verbal immediate and delayed recall memory, visual immediate recall memory and response fluency. Furthermore, the age of onset and disease severity may be associated with cognitive disorders in patients with MG.
Collapse
Affiliation(s)
- Xiaoling Zhou
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shugang Cao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Neurology, Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Jinyi Hou
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Acupuncture and Moxibustion, Xuzhou Hospital of Traditional Chinese Medicine, Xuzhou, China
| | - Tiantian Gui
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Feng Zhu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qun Xue
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Kosa P, Barbour C, Varosanec M, Wichman A, Sandford M, Greenwood M, Bielekova B. Molecular models of multiple sclerosis severity identify heterogeneity of pathogenic mechanisms. Nat Commun 2022; 13:7670. [PMID: 36509784 PMCID: PMC9744737 DOI: 10.1038/s41467-022-35357-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/29/2022] [Indexed: 12/14/2022] Open
Abstract
While autopsy studies identify many abnormalities in the central nervous system (CNS) of subjects dying with neurological diseases, without their quantification in living subjects across the lifespan, pathogenic processes cannot be differentiated from epiphenomena. Using machine learning (ML), we searched for likely pathogenic mechanisms of multiple sclerosis (MS). We aggregated cerebrospinal fluid (CSF) biomarkers from 1305 proteins, measured blindly in the training dataset of untreated MS patients (N = 129), into models that predict past and future speed of disability accumulation across all MS phenotypes. Healthy volunteers (N = 24) data differentiated natural aging and sex effects from MS-related mechanisms. Resulting models, validated (Rho 0.40-0.51, p < 0.0001) in an independent longitudinal cohort (N = 98), uncovered intra-individual molecular heterogeneity. While candidate pathogenic processes must be validated in successful clinical trials, measuring them in living people will enable screening drugs for desired pharmacodynamic effects. This will facilitate drug development making, it hopefully more efficient and successful.
Collapse
Affiliation(s)
- Peter Kosa
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Christopher Barbour
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mihael Varosanec
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Alison Wichman
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mary Sandford
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Mark Greenwood
- grid.41891.350000 0001 2156 6108Department of Mathematical Sciences, Montana State University, Bozeman, MT USA
| | - Bibiana Bielekova
- grid.94365.3d0000 0001 2297 5165Neuroimmunological Diseases Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
4
|
Oxidative Stress Markers in Cerebrospinal Fluid of Newly Diagnosed Multiple Sclerosis Patients and Their Link to Iron Deposition and Atrophy. Diagnostics (Basel) 2022; 12:diagnostics12061365. [PMID: 35741175 PMCID: PMC9221788 DOI: 10.3390/diagnostics12061365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress has been implied in cellular injury even in the early phases of multiple sclerosis (MS). In this study, we quantified levels of biomarkers of oxidative stress and antioxidant capacity in cerebrospinal fluid (CSF) in newly diagnosed MS patients and their associations with brain atrophy and iron deposits in the brain tissue. Consecutive treatment-naive adult MS patients (n = 103) underwent brain MRI and CSF sampling. Healthy controls (HC, n = 99) had brain MRI. CSF controls (n = 45) consisted of patients with non-neuroinflammatory conditions. 3T MR included isotropic T1 weighted (MPRAGE) and gradient echo (GRE) images that were processed to quantitative susceptibility maps. The volume and magnetic susceptibility of deep gray matter (DGM) structures were calculated. The levels of 8-hydroxy-2′-deoxyguanosine (8-OHdG), 8-iso prostaglandin F2α (8-isoPG), neutrophil gelatinase-associated lipocalin (NGAL), peroxiredoxin-2 (PRDX2), and malondialdehyde and hydroxyalkenals (MDA + HAE) were measured in CSF. Compared to controls, MS patients had lower volumes of thalamus, pulvinar, and putamen, higher susceptibility in caudate nucleus and globus pallidus, and higher levels of 8-OHdG, PRDX2, and MDA + HAE. In MS patients, the level of NGAL correlated negatively with volume and susceptibility in the dentate nucleus. The level of 8-OHdG correlated negatively with susceptibility in the caudate, putamen, and the red nucleus. The level of PRDX2 correlated negatively with the volume of the thalamus and both with volume and susceptibility of the dentate nucleus. From MRI parameters with significant differences between MS and HC groups, only caudate susceptibility and thalamic volume were significantly associated with CSF parameters. Our study shows that increased oxidative stress in CSF detected in newly diagnosed MS patients suggests its role in the pathogenesis of MS.
Collapse
|
5
|
Millward JM, Ramos Delgado P, Smorodchenko A, Boehmert L, Periquito J, Reimann HM, Prinz C, Els A, Scheel M, Bellmann-Strobl J, Waiczies H, Wuerfel J, Infante-Duarte C, Chien C, Kuchling J, Pohlmann A, Zipp F, Paul F, Niendorf T, Waiczies S. Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight 2020; 5:140040. [PMID: 33148886 PMCID: PMC7710287 DOI: 10.1172/jci.insight.140040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans. EAE mice underwent serial MRI for up to 2 months, with gadolinium contrast as a proxy of inflammation, confirmed by histopathology. We performed a time-series analysis of clinical and MRI data from a prior clinical trial in which RRMS patients underwent monthly MRI scans over 1 year. VV increased dramatically during preonset EAE, resolving upon clinical remission. VV changes coincided with blood-brain barrier disruption and inflammation. VV was normal at the termination of the experiment, when mice were still symptomatic. The majority of relapsing-remitting MS (RRMS) patients showed dynamic VV fluctuations. Patients with contracting VV had lower disease severity and a shorter duration. These changes demonstrate that VV does not necessarily expand irreversibly in MS but, over short time scales, can expand and contract. Frequent monitoring of VV in patients will be essential to disentangle the disease-related processes driving short-term VV oscillations from persistent expansion resulting from atrophy. Brain ventricle volumes expand and contract during experimental autoimmune encephalomyelitis and relapsing-remitting multiple sclerosis, suggesting that short-term inflammatory processes are interlaced with gradual brain atrophy.
Collapse
Affiliation(s)
- Jason M Millward
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alina Smorodchenko
- Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Laura Boehmert
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Henning M Reimann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Antje Els
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
6
|
Jarius S, Paul F, Weinshenker BG, Levy M, Kim HJ, Wildemann B. Neuromyelitis optica. Nat Rev Dis Primers 2020; 6:85. [PMID: 33093467 DOI: 10.1038/s41572-020-0214-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Neuromyelitis optica (NMO; also known as Devic syndrome) is a clinical syndrome characterized by attacks of acute optic neuritis and transverse myelitis. In most patients, NMO is caused by pathogenetic serum IgG autoantibodies to aquaporin 4 (AQP4), the most abundant water-channel protein in the central nervous system. In a subset of patients negative for AQP4-IgG, pathogenetic serum IgG antibodies to myelin oligodendrocyte glycoprotein, an antigen in the outer myelin sheath of central nervous system neurons, are present. Other causes of NMO (such as paraneoplastic disorders and neurosarcoidosis) are rare. NMO was previously associated with a poor prognosis; however, treatment with steroids and plasma exchange for acute attacks and with immunosuppressants (in particular, B cell-depleting agents) for attack prevention has greatly improved the long-term outcomes. Recently, a number of randomized controlled trials have been completed and the first drugs, all therapeutic monoclonal antibodies, have been approved for the treatment of AQP4-IgG-positive NMO and its formes frustes.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany.
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Michael Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Ho Jin Kim
- Department of Neurology, Research Institute and Hospital of National Cancer Center, Goyang, Korea
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
7
|
Wakonig K, Eitel F, Ritter K, Hetzer S, Schmitz-Hübsch T, Bellmann-Strobl J, Haynes JD, Brandt AU, Gold SM, Paul F, Weygandt M. Altered Coupling of Psychological Relaxation and Regional Volume of Brain Reward Areas in Multiple Sclerosis. Front Neurol 2020; 11:568850. [PMID: 33117263 PMCID: PMC7574404 DOI: 10.3389/fneur.2020.568850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022] Open
Abstract
Background: Psychological stress can influence the severity of multiple sclerosis (MS), but little is known about neurobiological factors potentially counteracting these effects. Objective: To identify gray matter (GM) brain regions related to relaxation after stress exposure in persons with MS (PwMS). Methods: 36 PwMS and 21 healthy controls (HCs) reported their feeling of relaxation during a mild stress task. These markers were related to regional GM volumes, heart rate, and depressive symptoms. Results: Relaxation was differentially linked to heart rate in both groups (t = 2.20, p = 0.017), i.e., both markers were only related in HCs. Relaxation was positively linked to depressive symptoms across all participants (t = 1.99, p = 0.045) although this link differed weakly between groups (t = 1.62, p = 0.108). Primarily, the volume in medial temporal gyrus was negatively linked to relaxation in PwMS (t = -5.55, pfamily-wise-error(FWE)corrected = 0.018). A group-specific coupling of relaxation and GM volume was found in ventromedial prefrontal cortex (VMPFC) (t = -4.89, pFWE = 0.039). Conclusion: PwMS appear unable to integrate peripheral stress signals into their perception of relaxation. Together with the group-specific coupling of relaxation and VMPFC volume, a key area of the brain reward system for valuation of affectively relevant stimuli, this finding suggests a clinically relevant misinterpretation of stress-related affective stimuli in MS.
Collapse
Affiliation(s)
- Katharina Wakonig
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
| | - Fabian Eitel
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Kerstin Ritter
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Stefan Hetzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
| | - John-Dylan Haynes
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin Center for Advanced Neuroimaging, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Alexander U. Brandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Department of Neurology, University of California, Irvine, CA, United States
| | - Stefan M. Gold
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg Eppendorf, Hamburg, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychiatry and Psychotherapy, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Psychosomatic Medicine, Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neurology, Berlin, Germany
| | - Martin Weygandt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Clinical Research Center, Berlin, Germany
- Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center, Berlin, Germany
| |
Collapse
|
8
|
Kuchling J, Paul F. Visualizing the Central Nervous System: Imaging Tools for Multiple Sclerosis and Neuromyelitis Optica Spectrum Disorders. Front Neurol 2020; 11:450. [PMID: 32625158 PMCID: PMC7311777 DOI: 10.3389/fneur.2020.00450] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/28/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) and neuromyelitis optica spectrum disorders (NMOSD) are autoimmune central nervous system conditions with increasing incidence and prevalence. While MS is the most frequent inflammatory CNS disorder in young adults, NMOSD is a rare disease, that is pathogenetically distinct from MS, and accounts for approximately 1% of demyelinating disorders, with the relative proportion within the demyelinating CNS diseases varying widely among different races and regions. Most immunomodulatory drugs used in MS are inefficacious or even harmful in NMOSD, emphasizing the need for a timely and accurate diagnosis and distinction from MS. Despite distinct immunopathology and differences in disease course and severity there might be considerable overlap in clinical and imaging findings, posing a diagnostic challenge for managing neurologists. Differential diagnosis is facilitated by positive serology for AQP4-antibodies (AQP4-ab) in NMOSD, but might be difficult in seronegative cases. Imaging of the brain, optic nerve, retina and spinal cord is of paramount importance when managing patients with autoimmune CNS conditions. Once a diagnosis has been established, imaging techniques are often deployed at regular intervals over the disease course as surrogate measures for disease activity and progression and to surveil treatment effects. While the application of some imaging modalities for monitoring of disease course was established decades ago in MS, the situation is unclear in NMOSD where work on longitudinal imaging findings and their association with clinical disability is scant. Moreover, as long-term disability is mostly attack-related in NMOSD and does not stem from insidious progression as in MS, regular follow-up imaging might not be useful in the absence of clinical events. However, with accumulating evidence for covert tissue alteration in NMOSD and with the advent of approved immunotherapies the role of imaging in the management of NMOSD may be reconsidered. By contrast, MS management still faces the challenge of implementing imaging techniques that are capable of monitoring progressive tissue loss in clinical trials and cohort studies into treatment algorithms for individual patients. This article reviews the current status of imaging research in MS and NMOSD with an emphasis on emerging modalities that have the potential to be implemented in clinical practice.
Collapse
Affiliation(s)
- Joseph Kuchling
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- NeuroCure Clinical Research Center, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt–Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
9
|
Kalinin I, Makshakov G, Evdoshenko E. The Impact of Intracortical Lesions on Volumes of Subcortical Structures in Multiple Sclerosis. AJNR Am J Neuroradiol 2020; 41:804-808. [PMID: 32381540 DOI: 10.3174/ajnr.a6513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/27/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND PURPOSE Recent studies showed thalamic atrophy in the early stages of MS. We investigated the impact of intracortical lesions on the volumes of subcortical structures (especially the thalamus) compared with other lesions in MS. MATERIALS AND METHODS Seventy-one patients with MS were included. The volumes of intracortical lesions and white matter lesions were identified on double inversion recovery and FLAIR, respectively, by using 3D Slicer. Volumes of white matter T1 hypointensities and subcortical gray matter, thalamus, caudate, putamen, and pallidum volumes were calculated using FreeSurfer. Age, MS duration, and the Expanded Disability Status Scale score were assessed. RESULTS Patients with intracortical lesions were older (P = .003), had longer disease duration (P < .001), and higher Expanded Disability Status Scale scores (P = .02). The presence of intracortical lesions was associated with a significant decrease of subcortical gray matter volume (P = .02). In our multiple regression model, intracortical lesion volume was the only predictor of thalamic volume (R 2 = 0.4, b* = -0.28, P = .03) independent of white matter lesion volume and T1 hypointensity volume. White matter lesion volume showed an impact on subcortical gray matter volume in patients with relapsing-remitting MS (P = .04) and those with disease duration of <5 years (P = .04) and on thalamic volume in patients with Expanded Disability Status Scale scores of <4.0 (P = .01). By contrast, intracortical lesion volume showed an impact on subcortical gray matter and thalamic volumes in the secondary-progressive MS subgroup (P = .02 and P < .001) in patients with a long-standing disease course (P < .001 and P = .001) and more profound disability (P < .001 and P < .001). CONCLUSIONS Thalamic atrophy was explained better by intracortical lesions than by white matter lesion and T1 hypointensity volumes, especially in patients with more profound disability.
Collapse
Affiliation(s)
- I Kalinin
- From the SPb Center of Multiple Sclerosis and AID (SBIH City Clinical Hospital No. 31), St. Petersburg, Russia
| | - G Makshakov
- From the SPb Center of Multiple Sclerosis and AID (SBIH City Clinical Hospital No. 31), St. Petersburg, Russia
| | - E Evdoshenko
- From the SPb Center of Multiple Sclerosis and AID (SBIH City Clinical Hospital No. 31), St. Petersburg, Russia.
| |
Collapse
|
10
|
Zhang N, Sun J, Wang Q, Qin W, Zhang X, Qi Y, Yang L, Shi FD, Yu C. Differentiate aquaporin-4 antibody negative neuromyelitis optica spectrum disorders from multiple sclerosis by multimodal advanced MRI techniques. Mult Scler Relat Disord 2020; 41:102035. [PMID: 32200338 DOI: 10.1016/j.msard.2020.102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/23/2020] [Accepted: 02/29/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND It is clinically essential to distinguish aquaporin-4 antibody (AQP4-Ab) negative neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) because of different therapeutic strategies. Since clinical and lesion features may not allow the distinction, we aimed to identify advanced imaging features that could improve the distinction between two disorders. METHODS Multimodal imaging measures included fractional anisotropy, mean, axial, radial diffusivity (MD, AD, RD) and kurtosis (MK, AK, RK) from diffusion kurtosis imaging; functional connectivity strength (FCS) and density, regional homogeneity, amplitude of low frequency fluctuations from resting-state functional MRI; gray matter volume from structural MRI; and cerebral blood flow from arterial spin labeling imaging. Voxel-wise comparisons were performed to identify inter-group differences in imaging measures, and the performance of differentiating these two disorders was estimated by receiver operating characteristic curves. RESULTS Compared to MS, patients with AQP4-Ab negative NMOSD showed decreased MD and AD but increased MK and AK in white matter regions; and reduced FCS in the occipital cortex (P < 0.05, FWE corrected). The joint-use of these five imaging measures distinguished the two disorders with an accuracy of 94% (P < 0.001, 95%CI = 0.84-0.98). Other imaging measures showed no significant differences between the two patient groups. CONCLUSIONS The study showed less white matter damage and a more severe functional disconnection of the occipital cortex in patients with AQP4-Ab negative NMOSD compared to MS. The combined use of diffusion and functional connectivity could facilitate a better distinction between NMO and MS with seronegative AQP4-Ab in clinical management.
Collapse
Affiliation(s)
- Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiuhui Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Xue Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yuan Qi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li Yang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Fu-Dong Shi
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
11
|
Dworkin JD, Linn KA, Solomon AJ, Satterthwaite TD, Raznahan A, Bakshi R, Shinohara RT. A local group differences test for subject-level multivariate density neuroimaging outcomes. Biostatistics 2019; 22:646-661. [PMID: 31875881 DOI: 10.1093/biostatistics/kxz058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/24/2019] [Accepted: 11/29/2019] [Indexed: 11/14/2022] Open
Abstract
A great deal of neuroimaging research focuses on voxel-wise analysis or segmentation of damaged tissue, yet many diseases are characterized by diffuse or non-regional neuropathology. In simple cases, these processes can be quantified using summary statistics of voxel intensities. However, the manifestation of a disease process in imaging data is often unknown, or appears as a complex and nonlinear relationship between the voxel intensities on various modalities. When the relevant pattern is unknown, summary statistics are often unable to capture differences between disease groups, and their use may encourage post hoc searches for the optimal summary measure. In this study, we introduce the multi-modal density testing (MMDT) framework for the naive discovery of group differences in voxel intensity profiles. MMDT operationalizes multi-modal magnetic resonance imaging (MRI) data as multivariate subject-level densities of voxel intensities and utilizes kernel density estimation to develop a local two-sample test for individual points within the density space. Through simulations, we show that this method controls type I error and recovers relevant differences when applied to a specified point. Additionally, we demonstrate the ability to maintain power while controlling the family-wise error rate and false discovery rate when applying the test over a grid of points within the density space. Finally, we apply this method to a study of subjects with either multiple sclerosis (MS) or conditions that tend to mimic MS on MRI, and find significant differences between the two groups in their voxel intensity profiles within the thalamus.
Collapse
Affiliation(s)
- Jordan D Dworkin
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Kristin A Linn
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA
| | - Andrew J Solomon
- Department of Neurological Sciences, Larner College of Medicine at The University of Vermont, 149 Beaumont Avenue, Burlington, VT 05405, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Armin Raznahan
- Developmental Neurogenomics Unit, National Institute of Mental Health, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | - Rohit Bakshi
- Departments of Neurology and Radiology, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 423 Guardian Drive, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Eitel F, Soehler E, Bellmann-Strobl J, Brandt AU, Ruprecht K, Giess RM, Kuchling J, Asseyer S, Weygandt M, Haynes JD, Scheel M, Paul F, Ritter K. Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. Neuroimage Clin 2019; 24:102003. [PMID: 31634822 PMCID: PMC6807560 DOI: 10.1016/j.nicl.2019.102003] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 12/21/2022]
Abstract
Machine learning-based imaging diagnostics has recently reached or even surpassed the level of clinical experts in several clinical domains. However, classification decisions of a trained machine learning system are typically non-transparent, a major hindrance for clinical integration, error tracking or knowledge discovery. In this study, we present a transparent deep learning framework relying on 3D convolutional neural networks (CNNs) and layer-wise relevance propagation (LRP) for diagnosing multiple sclerosis (MS), the most widespread autoimmune neuroinflammatory disease. MS is commonly diagnosed utilizing a combination of clinical presentation and conventional magnetic resonance imaging (MRI), specifically the occurrence and presentation of white matter lesions in T2-weighted images. We hypothesized that using LRP in a naive predictive model would enable us to uncover relevant image features that a trained CNN uses for decision-making. Since imaging markers in MS are well-established this would enable us to validate the respective CNN model. First, we pre-trained a CNN on MRI data from the Alzheimer's Disease Neuroimaging Initiative (n = 921), afterwards specializing the CNN to discriminate between MS patients (n = 76) and healthy controls (n = 71). Using LRP, we then produced a heatmap for each subject in the holdout set depicting the voxel-wise relevance for a particular classification decision. The resulting CNN model resulted in a balanced accuracy of 87.04% and an area under the curve of 96.08% in a receiver operating characteristic curve. The subsequent LRP visualization revealed that the CNN model focuses indeed on individual lesions, but also incorporates additional information such as lesion location, non-lesional white matter or gray matter areas such as the thalamus, which are established conventional and advanced MRI markers in MS. We conclude that LRP and the proposed framework have the capability to make diagnostic decisions of CNN models transparent, which could serve to justify classification decisions for clinical review, verify diagnosis-relevant features and potentially gather new disease knowledge.
Collapse
Affiliation(s)
- Fabian Eitel
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Emily Soehler
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany
| | - Judith Bellmann-Strobl
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany
| | - Alexander U Brandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Department of Neurology, University of California, Irvine, CA, USA
| | - Klemens Ruprecht
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany
| | - René M Giess
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany
| | - Joseph Kuchling
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany
| | - Susanna Asseyer
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany
| | - Martin Weygandt
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany
| | - John-Dylan Haynes
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany; Einstein Center for Digital Future Berlin, Germany
| | - Michael Scheel
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Department of Neuroradiology, 10117 Berlin, Germany
| | - Friedemann Paul
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Neurology, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), NeuroCure Clinical Research Center, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universitt zu Berlin, Berlin Institute of Health (BIH), Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, 10117 Berlin, Germany; Einstein Center for Digital Future Berlin, Germany
| | - Kerstin Ritter
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Department of Psychiatry and Psychotherapy, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, 10117 Berlin, Germany.
| |
Collapse
|
13
|
Pagnozzi AM, Fripp J, Rose SE. Quantifying deep grey matter atrophy using automated segmentation approaches: A systematic review of structural MRI studies. Neuroimage 2019; 201:116018. [PMID: 31319182 DOI: 10.1016/j.neuroimage.2019.116018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/01/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
The deep grey matter (DGM) nuclei of the brain play a crucial role in learning, behaviour, cognition, movement and memory. Although automated segmentation strategies can provide insight into the impact of multiple neurological conditions affecting these structures, such as Multiple Sclerosis (MS), Huntington's disease (HD), Alzheimer's disease (AD), Parkinson's disease (PD) and Cerebral Palsy (CP), there are a number of technical challenges limiting an accurate automated segmentation of the DGM. Namely, the insufficient contrast of T1 sequences to completely identify the boundaries of these structures, as well as the presence of iso-intense white matter lesions or extensive tissue loss caused by brain injury. Therefore in this systematic review, 269 eligible studies were analysed and compared to determine the optimal approaches for addressing these technical challenges. The automated approaches used among the reviewed studies fall into three broad categories, atlas-based approaches focusing on the accurate alignment of atlas priors, algorithmic approaches which utilise intensity information to a greater extent, and learning-based approaches that require an annotated training set. Studies that utilise freely available software packages such as FIRST, FreeSurfer and LesionTOADS were also eligible, and their performance compared. Overall, deep learning approaches achieved the best overall performance, however these strategies are currently hampered by the lack of large-scale annotated data. Improving model generalisability to new datasets could be achieved in future studies with data augmentation and transfer learning. Multi-atlas approaches provided the second-best performance overall, and may be utilised to construct a "silver standard" annotated training set for deep learning. To address the technical challenges, providing robustness to injury can be improved by using multiple channels, highly elastic diffeomorphic transformations such as LDDMM, and by following atlas-based approaches with an intensity driven refinement of the segmentation, which has been done with the Expectation Maximisation (EM) and level sets methods. Accounting for potential lesions should be achieved with a separate lesion segmentation approach, as in LesionTOADS. Finally, to address the issue of limited contrast, R2*, T2* and QSM sequences could be used to better highlight the DGM due to its higher iron content. Future studies could look to additionally acquire these sequences by retaining the phase information from standard structural scans, or alternatively acquiring these sequences for only a training set, allowing models to learn the "improved" segmentation from T1-sequences alone.
Collapse
Affiliation(s)
- Alex M Pagnozzi
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia.
| | - Jurgen Fripp
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| | - Stephen E Rose
- CSIRO Health and Biosecurity, The Australian e-Health Research Centre, Brisbane, Australia
| |
Collapse
|
14
|
Oertel FC, Schließeit J, Brandt AU, Paul F. Cognitive Impairment in Neuromyelitis Optica Spectrum Disorders: A Review of Clinical and Neuroradiological Features. Front Neurol 2019; 10:608. [PMID: 31258505 PMCID: PMC6587817 DOI: 10.3389/fneur.2019.00608] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are mostly relapsing autoimmune inflammatory disorders of the central nervous system (CNS) with optic neuritis, myelitis, and brainstem syndromes as clinical hallmarks. With a reported prevalence of up to 70%, cognitive impairment is frequent, but often unrecognized and an insufficiently treated burden of the disease. The most common cognitive dysfunctions are decline in attention and memory performance. Magnetic resonance imaging can be used to access structural correlates of neuropsychological disorders. Cognitive impairment is not only a highly underestimated symptom in patients with NMOSD, but potentially also a clinical correlate of attack-independent changes in NMOSD, which are currently under debate. This article reviews cognitive impairment in NMOSD and discusses associations between structural changes of the CNS and cognitive deficits.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jana Schließeit
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
15
|
Nolan-Kenney RC, Liu M, Akhand O, Calabresi PA, Paul F, Petzold A, Balk L, Brandt AU, Martínez-Lapiscina EH, Saidha S, Villoslada P, Al-Hassan AA, Behbehani R, Frohman EM, Frohman T, Havla J, Hemmer B, Jiang H, Knier B, Korn T, Leocani L, Papadopoulou A, Pisa M, Zimmermann H, Galetta SL, Balcer LJ. Optimal intereye difference thresholds by optical coherence tomography in multiple sclerosis: An international study. Ann Neurol 2019; 85:618-629. [PMID: 30851125 DOI: 10.1002/ana.25462] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/28/2023]
Abstract
OBJECTIVE To determine the optimal thresholds for intereye differences in retinal nerve fiber and ganglion cell + inner plexiform layer thicknesses for identifying unilateral optic nerve lesions in multiple sclerosis. Current international diagnostic criteria for multiple sclerosis do not include the optic nerve as a lesion site despite frequent involvement. Optical coherence tomography detects retinal thinning associated with optic nerve lesions. METHODS In this multicenter international study at 11 sites, optical coherence tomography was measured for patients and healthy controls as part of the International Multiple Sclerosis Visual System Consortium. High- and low-contrast acuity were also collected in a subset of participants. Presence of an optic nerve lesion for this study was defined as history of acute unilateral optic neuritis. RESULTS Among patients (n = 1,530), receiver operating characteristic curve analysis demonstrated an optimal peripapillary retinal nerve fiber layer intereye difference threshold of 5μm and ganglion cell + inner plexiform layer threshold of 4μm for identifying unilateral optic neuritis (n = 477). Greater intereye differences in acuities were associated with greater intereye retinal layer thickness differences (p ≤ 0.001). INTERPRETATION Intereye differences of 5μm for retinal nerve fiber layer and 4μm for macular ganglion cell + inner plexiform layer are robust thresholds for identifying unilateral optic nerve lesions. These thresholds may be useful in establishing the presence of asymptomatic and symptomatic optic nerve lesions in multiple sclerosis and could be useful in a new version of the diagnostic criteria. Our findings lend further validation for utilizing the visual system in a multiple sclerosis clinical trial setting. Ann Neurol 2019;85:618-629.
Collapse
Affiliation(s)
- Rachel C Nolan-Kenney
- Department of Population Health, Sackler Institute for Biomedical Sciences, New York University School of Medicine, New York, NY.,Department of Neurology, New York University School of Medicine, New York, NY
| | - Mengling Liu
- Department of Population Health, Sackler Institute for Biomedical Sciences, New York University School of Medicine, New York, NY
| | - Omar Akhand
- Department of Neurology, New York University School of Medicine, New York, NY
| | | | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Free University Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Axel Petzold
- Moorfields Eye Hospital, London, United Kingdom.,The National Hospital for Neurology and Neurosurgery & UCL Institute of Neurology, Queen Square, London, United Kingdom.,Neuro-ophthalmology Expertise Center & Multiple Sclerosis Center, Amsterdam UMC, The Netherlands
| | - Lisanne Balk
- Moorfields Eye Hospital, London, United Kingdom.,The National Hospital for Neurology and Neurosurgery & UCL Institute of Neurology, Queen Square, London, United Kingdom.,Neuro-ophthalmology Expertise Center & Multiple Sclerosis Center, Amsterdam UMC, The Netherlands
| | - Alexander U Brandt
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Free University Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University of California, Irvine, Irvine, CA
| | - Elena H Martínez-Lapiscina
- Center of Neuroimmunology and Department of Neurology, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | - Shiv Saidha
- Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Pablo Villoslada
- Center of Neuroimmunology and Department of Neurology, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute, University of Barcelona, Barcelona, Spain
| | | | | | - Elliot M Frohman
- Department of Neurology and Ophthalmology, University of Texas at Austin, Austin, TX
| | - Teresa Frohman
- Department of Neurology and Ophthalmology, University of Texas at Austin, Austin, TX
| | - Joachim Havla
- Institute of Clinical Neuroimmunology, Ludwig Maximilian University, Munich, Germany.,Data Integration for Future Medicine Consortium, Ludwig Maximilian University, Munich, Germany
| | | | - Hong Jiang
- Bascom Palmer Eye Institute, Department of Neurology, University of Miami Miller School of Medicine, Miami, FL
| | | | - Thomas Korn
- Munich Cluster for Systems Neurology, Munich, Germany.,Technical University of Munich, Munich, Germany
| | - Letizia Leocani
- Vita-Salute San Raffaele University and San Raffaele Hospital, Milan, Italy
| | - Athina Papadopoulou
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Free University Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, University Hospital of Basel, Basel, Switzerland
| | - Marco Pisa
- Vita-Salute San Raffaele University and San Raffaele Hospital, Milan, Italy
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité-Universitätsmedizin Berlin, Free University Berlin, Humboldt University of Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steven L Galetta
- Department of Neurology, New York University School of Medicine, New York, NY.,Department of Ophthalmology, New York University School of Medicine, New York, NY
| | - Laura J Balcer
- Department of Neurology, New York University School of Medicine, New York, NY.,Department of Ophthalmology, New York University School of Medicine, New York, NY.,Department of Population Health, New York University School of Medicine, New York, NY
| | | |
Collapse
|
16
|
Pasquier B, Borisow N, Rasche L, Bellmann-Strobl J, Ruprecht K, Niendorf T, Derfuss TJ, Wuerfel J, Paul F, Sinnecker T. Quantitative 7T MRI does not detect occult brain damage in neuromyelitis optica. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e541. [PMID: 30882018 PMCID: PMC6410932 DOI: 10.1212/nxi.0000000000000541] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022]
Abstract
Objective To investigate and compare occult damages in aquaporin-4 (AQP4)-rich periependymal regions in patients with neuromyelitis optica spectrum disorder (NMOSD) vs healthy controls (HCs) and patients with multiple sclerosis (MS) applying quantitative T1 mapping at 7 Tesla (T) in a cross-sectional study. Methods Eleven patients with NMOSD (median Expanded Disability Status Scale [EDSS] score 3.5, disease duration 9.3 years, age 43.7 years, and 11 female) seropositive for anti-AQP4 antibodies, 7 patients with MS (median EDSS score 1.5, disease duration 3.6, age 30.2 years, and 4 female), and 10 HCs underwent 7T MRI. The imaging protocol included T2*-weighted (w) imaging and an MP2RAGE sequence yielding 3D T1w images and quantitative T1 maps. We semiautomatically marked the lesion-free periependymal area around the cerebral aqueduct and the lateral, third, and fourth ventricles to finally measure and compare the T1 relaxation time within these areas. Results We did not observe any differences in the T1 relaxation time between patients with NMOSD and HCs (all p > 0.05). Contrarily, the T1 relaxation time was longer in patients with MS vs patients with NMOSD (lateral ventricle p = 0.056, third ventricle p = 0.173, fourth ventricle p = 0.016, and cerebral aqueduct p = 0.048) and vs HCs (third ventricle p = 0.027, fourth ventricle p = 0.013, lateral ventricle p = 0.043, and cerebral aqueduct p = 0.005). Conclusion Unlike in MS, we did not observe subtle T1 changes in lesion-free periependymal regions in NMOSD, which supports the hypothesis of a rather focal than diffuse brain pathology in NMOSD.
Collapse
Affiliation(s)
- Baptiste Pasquier
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Nadja Borisow
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ludwig Rasche
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Judith Bellmann-Strobl
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Klemens Ruprecht
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Thoralf Niendorf
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Tobias J Derfuss
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Friedemann Paul
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Tim Sinnecker
- Neurologic Clinic and Policlinic (B.P., T.J.D., T.S.), Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland; NeuroCure Clinical Research Center (N.B., L.R., J.B.-S., F.P., T.S.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Department of Neurology (N.B., J.B.-S., K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Experimental and Clinical Research Center (F.P.), Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine; Clinical and Experimental Multiple Sclerosis Research Center (K.R., F.P.), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; Berlin Ultrahigh Field Facility (T.N.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Germany; Medical Image Analysis Center AG (J.W., T.S.); and qbig (J.W.), Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
17
|
Dal-Bianco A, Wenhoda F, Rommer PS, Weber M, Altmann P, Kraus J, Leutmezer F, Salhofer-Polanyi S. Do elevated autoantibodies in patients with multiple sclerosis matter? Acta Neurol Scand 2019; 139:238-246. [PMID: 30447159 DOI: 10.1111/ane.13054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/08/2018] [Accepted: 11/11/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES The incidence and clinical impact of serum autoantibodies in patients with multiple sclerosis (MS) are controversially discussed. The aim of the study was to reassess the value of elevated serum autoantibodies in our MS study cohort. MATERIAL & METHODS In total, 176 MS patients were retrospectively analyzed for coexistence and clinical impact of increased serum autoantibody levels. RESULTS The 18.8% of the MS cohort showed elevated serum autoantibody levels, but only 10.2% of all MS patients were diagnosed with a further autoimmune disease (AI). Patients with elevated serum autoantibodies (AABS) were not significantly more often diagnosed with a clinical manifest AI as compared to patients with negative autoantibodies (P = 0.338). MS patients with disease duration of more than 10 years showed no significant increase of positive autoantibodies as compared to patients with a more recent disease onset (P = 1). MS patients with elevated serum autoantibodies did not exhibit a significantly worse disease course (P = 0.428). CONCLUSIONS According to our data, elevated serum autoantibodies do not have the potential to serve as a prognostic tool for disease severity in patients with MS Since MS patients with positive serum AABS did not significantly more often suffer from clinical manifest AIs than MS patients with negative serum AABS, the role of routine testing of serum AABS in MS patients should be critically called into question.
Collapse
Affiliation(s)
| | - Fritz Wenhoda
- Department of Neurology; Medical University of Vienna; Vienna Austria
| | | | - Michael Weber
- Department of Radiology; Medical University of Vienna; Vienna Austria
| | - Patrick Altmann
- Department of Neurology; Medical University of Vienna; Vienna Austria
| | - Jörg Kraus
- Department of Laboratory Medicine; Paracelsus Medical University and Salzburger Landeskliniken; Salzburg Austria
- Department of Neurology, Medical Faculty; Heinrich-Heine-University; Düsseldorf Germany
| | - Fritz Leutmezer
- Department of Neurology; Medical University of Vienna; Vienna Austria
| | | |
Collapse
|
18
|
Oertel FC, Zimmermann HG, Brandt AU, Paul F. Novel uses of retinal imaging with optical coherence tomography in multiple sclerosis. Expert Rev Neurother 2018; 19:31-43. [PMID: 30587061 DOI: 10.1080/14737175.2019.1559051] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Multiple Sclerosis (MS) is the most common chronic autoimmune neuroinflammatory condition in young adults. It is often accompanied by optic neuritis (ON) and retinal neuro-axonal damage causing visual disturbances. Optical coherence tomography (OCT) is a sensitive non-invasive method for quantifying intraretinal layer volumes. Recently, OCT not only showed to be a reliable marker for ON-associated damage, but also proved its high prognostic value for functional outcome and disability accrual in patients with MS. Consequently, OCT is discussed as a potential marker for monitoring disease severity and therapeutic response in individual patients. Areas covered: This article summarizes our current understanding of structural retinal changes in MS and describes the future potential of OCT for differential diagnosis, monitoring of the disease course and for clinical trials. Expert commentary: Today, OCT is used in clinical practice in specialized MS centers. Standardized parameters across devices are urgently needed for supporting clinical utility. Novel parameters are desirable to increase sensitivity and specificity in terms of MS.
Collapse
Affiliation(s)
- Frederike C Oertel
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Hanna G Zimmermann
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| | - Alexander U Brandt
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,b Department of Neurology , University of California Irvine , Irvine , CA , USA
| | - Friedemann Paul
- a NeuroCure Clinical Research Center , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,c Department of Neurology , Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany.,d Experimental and Clinical Research Center , Max-Delbrück-Centrum für Molekulare Medizin and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health , Berlin , Germany
| |
Collapse
|
19
|
Hannoun S, Tutunji R, El Homsi M, Saaybi S, Hourani R. Automatic Thalamus Segmentation on Unenhanced 3D T1 Weighted Images: Comparison of Publicly Available Segmentation Methods in a Pediatric Population. Neuroinformatics 2018; 17:443-450. [DOI: 10.1007/s12021-018-9408-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The Emerging Role of Neutrophil Granulocytes in Multiple Sclerosis. J Clin Med 2018; 7:E511. [PMID: 30513926 PMCID: PMC6306801 DOI: 10.3390/jcm7120511] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong autoimmune, neurodegenerative, and neuroinflammatory component. Most of the common disease modifying treatments (DMTs) for MS modulate the immune response targeting disease associated T and B cells and while none directly target neutrophils, several DMTs do impact their abundance or function. The role of neutrophils in MS remains unknown and research is ongoing to better understand the phenotype, function, and contribution of neutrophils to both disease onset and stage of disease. Here we summarize the current state of knowledge of neutrophils and their function in MS, including in the rodent based MS model, and we discuss the potential effects of current treatments on these functions. We propose that neutrophils are likely to participate in MS pathogenesis and their abundance and function warrant monitoring in MS.
Collapse
Affiliation(s)
- Tonia Woodberry
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Sophie E Bouffler
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Alicia S Wilson
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Rebecca L Buckland
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| | - Anne Brüstle
- The John Curtin School of Medical Research, The Australian National University, Canberra 2600, Australia.
| |
Collapse
|
21
|
Boiziau C, Nikolski M, Mordelet E, Aussudre J, Vargas-Sanchez K, Petry KG. A Peptide Targeting Inflammatory CNS Lesions in the EAE Rat Model of Multiple Sclerosis. Inflammation 2018. [PMID: 29516383 DOI: 10.1007/s10753-018-0748-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multiple sclerosis is characterized by inflammatory lesions dispersed throughout the central nervous system (CNS) leading to severe neurological handicap. Demyelination, axonal damage, and blood brain barrier alterations are hallmarks of this pathology, whose precise processes are not fully understood. In the experimental autoimmune encephalomyelitis (EAE) rat model that mimics many features of human multiple sclerosis, the phage display strategy was applied to select peptide ligands targeting inflammatory sites in CNS. Due to the large diversity of sequences after phage display selection, a bioinformatics procedure called "PepTeam" designed to identify peptides mimicking naturally occurring proteins was used, with the goal to predict peptides that were not background noise. We identified a circular peptide CLSTASNSC called "Ph48" as an efficient binder of inflammatory regions of EAE CNS sections including small inflammatory lesions of both white and gray matter. Tested on human brain endothelial cells hCMEC/D3, Ph48 was able to bind efficiently when these cells were activated with IL1β to mimic inflammatory conditions. The peptide is therefore a candidate for further analyses of the molecular alterations in inflammatory lesions.
Collapse
Affiliation(s)
- Claudine Boiziau
- INSERM, UMR 1049, F-33076, Bordeaux, France. .,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France. .,INSERM, UMR 1026, BioTis, F-33 076, Bordeaux, France.
| | - Macha Nikolski
- Univ. Bordeaux, CBiB, F-33076, Bordeaux, France.,CNRS, LaBRI UMR 5800, F-33400, Talence, France
| | - Elodie Mordelet
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France
| | - Justine Aussudre
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France
| | - Karina Vargas-Sanchez
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France.,Biomedical Sciences Research Group, GRINCIBIO, School of Medicine, Universidad Antonio Nariño, Bogotà, Colombia
| | - Klaus G Petry
- INSERM, UMR 1049, F-33076, Bordeaux, France.,Univ. Bordeaux, Neuroinflammation Imaging and Therapy of Multiple Sclerosis, F-33076, Bordeaux, France.,INSERM, UMR1029, F-33076, Bordeaux, France
| |
Collapse
|
22
|
Rasche L, Scheel M, Otte K, Althoff P, van Vuuren AB, Gieß RM, Kuchling J, Bellmann-Strobl J, Ruprecht K, Paul F, Brandt AU, Schmitz-Hübsch T. MRI Markers and Functional Performance in Patients With CIS and MS: A Cross-Sectional Study. Front Neurol 2018; 9:718. [PMID: 30210439 PMCID: PMC6123531 DOI: 10.3389/fneur.2018.00718] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/08/2018] [Indexed: 01/04/2023] Open
Abstract
Introduction: Brain atrophy is a widely accepted marker of disease severity with association to clinical disability in multiple sclerosis (MS). It is unclear to which extent this association reflects common age effects on both atrophy and function. Objective: To explore how functional performance in gait, upper extremities and cognition is associated with brain atrophy in patients with Clinically Isolated Syndrome (CIS) and relapsing-remitting MS (RRMS), controlling for effects of age and sex. Methods: In 27 patients with CIS, 59 with RRMS (EDSS ≤3) and 63 healthy controls (HC), 3T MRI were analyzed for T2 lesion count (T2C), volume (T2V) and brain volumes [normalized brain volume (NBV), gray matter volume (NGMV), white matter volume (NWMV), thalamic volume (NThalV)]. Functional performance was measured with short maximum walking speed (SMSW speed), 9-hole peg test (9HPT) and symbol digit modalities test (SDMT). Linear regression models were created for functional variables with stepwise inclusion of age, sex and MR imaging markers. Results: CIS differed from HC only in T2C and T2V. RRMS differed from HC in NBV, NGMV and NThalV, T2C and T2V, but not in NWMV. A strong association with age was seen in HC, CIS and RRMS groups for NBV (r = -0.5 to -0.6) and NGMV (r = -0.6 to -0.8). Associations with age were seen in HC and RRMS but not CIS for NThalV (r = -0.3; r = -0.5), T2C (rs = 0.3; rs = 0.2) and T2V (rs = 0.3; rs = 0.3). No effect of age was seen on NWMV. Correlations of functional performance with age in RRMS were seen for SMSW speed, 9HPTand SDMT (r = -0.27 to -0.46). Regression analyses yielded significant models only in the RRMS group for 9HPT, SMSW speed and EDSS. These included NBV, NGMV, NThalV, NWMV, logT2V, age and sex as predictors. NThalV was the only MRI variable predicting a functional measure (9HPTr) with a higher standardized beta than age and sex (R2 = 0.36, p < 1e-04). Conclusion: Thalamic atrophy was a stronger predictor of hand function (9HPT) in RRMS, than age and sex. This underlines the clinical relevance of thalamic atrophy and the relevance of hand function as a clinical marker even in mildly disabled patients.
Collapse
Affiliation(s)
- Ludwig Rasche
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neuroradiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karen Otte
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Motognosis GmbH, Berlin, Germany
| | - Patrik Althoff
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Annemieke B. van Vuuren
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- VU University Medical Center, Amsterdam, Netherlands
| | - Rene M. Gieß
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Klemens Ruprecht
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health and Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexander U. Brandt
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
| | - Tanja Schmitz-Hübsch
- NeuroCure Clinical Research Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, Berlin, Germany
| |
Collapse
|
23
|
Amiri H, de Sitter A, Bendfeldt K, Battaglini M, Gandini Wheeler-Kingshott CAM, Calabrese M, Geurts JJG, Rocca MA, Sastre-Garriga J, Enzinger C, de Stefano N, Filippi M, Rovira Á, Barkhof F, Vrenken H. Urgent challenges in quantification and interpretation of brain grey matter atrophy in individual MS patients using MRI. Neuroimage Clin 2018; 19:466-475. [PMID: 29984155 PMCID: PMC6030805 DOI: 10.1016/j.nicl.2018.04.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/28/2018] [Accepted: 04/22/2018] [Indexed: 01/18/2023]
Abstract
Atrophy of the brain grey matter (GM) is an accepted and important feature of multiple sclerosis (MS). However, its accurate measurement is hampered by various technical, pathological and physiological factors. As a consequence, it is challenging to investigate the role of GM atrophy in the disease process as well as the effect of treatments that aim to reduce neurodegeneration. In this paper we discuss the most important challenges currently hampering the measurement and interpretation of GM atrophy in MS. The focus is on measurements that are obtained in individual patients rather than on group analysis methods, because of their importance in clinical trials and ultimately in clinical care. We discuss the sources and possible solutions of the current challenges, and provide recommendations to achieve reliable measurement and interpretation of brain GM atrophy in MS.
Collapse
Key Words
- BET, brain extraction tool
- Brain atrophy
- CNS, central nervous system
- CTh, cortical thickness
- DGM, deep grey matter
- DTI, diffusion tensor imaging
- FA, fractional anisotropy
- GM, grey matter
- Grey matter
- MRI, magnetic resonance imaging
- MS, multiple sclerosis
- Magnetic resonance imaging
- Multiple sclerosis
- TE, echo time
- TI, inversion time
- TR, repetition time
- VBM, voxel-based morphometry
- WM, white matter
Collapse
Affiliation(s)
- Houshang Amiri
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Alexandra de Sitter
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | | | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Massimiliano Calabrese
- Multiple Sclerosis Centre, Neurology Section, Department of Neurosciences, Biomedicine and Movements, University of Verona, Italy
| | - Jeroen J G Geurts
- Anatomy & Neurosciences, VU University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Maria A Rocca
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Jaume Sastre-Garriga
- Servei de Neurologia/Neuroimmunologia, Multiple Sclerosis Centre of Catalonia (Cemcat), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Christian Enzinger
- Department of Neurology & Division of Neuroradiology, Vascular and Interventional Radiology, Department of Radiology, Medical University of Graz, Austria
| | - Nicola de Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Álex Rovira
- Unitat de Ressonància Magnètica (Servei de Radiologia), Hospital universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands; Institutes of Neurology and Healthcare Engineering, UCL, London, UK
| | - Hugo Vrenken
- Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Oertel FC, Zimmermann H, Paul F, Brandt AU. Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy. EPMA J 2018; 9:21-33. [PMID: 29515685 PMCID: PMC5833887 DOI: 10.1007/s13167-017-0123-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Neuromyelitis optica spectrum disorders (NMOSD) are mostly relapsing inflammatory disorders of the central nervous system (CNS). Optic neuritis (ON) is the first NMOSD-related clinical event in 55% of the patients, which causes damage to the optic nerve and leads to visual impairment. Retinal optical coherence tomography (OCT) has emerged as a promising method for diagnosis of NMOSD and potential individual monitoring of disease course and severity. OCT not only detects damage to the afferent visual system caused by ON but potentially also NMOSD-specific intraretinal pathology, i.e. astrocytopathy. This article summarizes retinal involvement in NMOSD and reviews OCT methods that could be used now and in the future, for differential diagnosis, for monitoring of disease course, and in clinical trials.
Collapse
Affiliation(s)
- Frederike C. Oertel
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Hanna Zimmermann
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
- Department of Neurology, Charité—Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin und Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander U. Brandt
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
25
|
Koduah P, Paul F, Dörr JM. Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases. EPMA J 2017; 8:313-325. [PMID: 29209434 PMCID: PMC5700019 DOI: 10.1007/s13167-017-0120-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/18/2017] [Indexed: 12/14/2022]
Abstract
Vitamin D research has gained increased attention in recent times due to its roles beyond bone health and calcium homeostasis, such as immunomodulation. In some parts of the brain and on immune cells, vitamin D hydroxylating enzymes and its receptors are located. Epidemiological evidence demonstrates that deficiency of Vitamin D is relevant for disease risk and course in multiple sclerosis (MS) and presumably also in neuromyelitis optica spectrum disorders (NMOSD), Parkinson's disease (PD), and Alzheimer's disease (AD). Although the exact mechanism underlying vitamin D effects in these diseases remains widely unexplored, human and animal studies continue to provide some hints. While the majority of vitamin D researchers so far speculate that vitamin D may be involved in disease pathogenesis, others could not show any association although none have reported that sufficient vitamin D worsens disease progression. The studies presented in this review suggest that whether vitamin D may have beneficial effects in disease course or not, may be dependent on factors such as ethnicity, gender, diet, vitamin D receptor (VDR) polymorphisms and sunlight exposure. We here review the possible role of vitamin D in the pathogenesis and disease course of MS, NMOSD, PD, and AD and potential therapeutic effects of vitamin D supplementation which may be relevant for predictive, preventive, and personalized medicine. We suggest areas to consider in vitamin D research for future studies and recommend the need to supplement patients with low vitamin D levels below 30 ng/ml to at least reach sufficient levels.
Collapse
Affiliation(s)
- Priscilla Koduah
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
| | - Friedemann Paul
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jan-Markus Dörr
- Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, and Multiple Sclerosis Center Hennigsdorf, Oberhavel Clinics, Berlin, Germany
| |
Collapse
|
26
|
Boonstra F, Florescu G, Evans A, Steward C, Mitchell P, Desmond P, Moffat B, Butzkueven H, Kolbe S, van der Walt A. Tremor in multiple sclerosis is associated with cerebello-thalamic pathology. J Neural Transm (Vienna) 2017; 124:1509-1514. [PMID: 29098451 PMCID: PMC5686246 DOI: 10.1007/s00702-017-1798-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/13/2017] [Indexed: 01/21/2023]
Abstract
Tremor in people with multiple sclerosis (MS) is a frequent and debilitating symptom with a relatively poorly understood pathophysiology. To determine the relationship between clinical tremor severity and structural magnetic resonance imaging parameters. Eleven patients with clinically definite MS and right-sided upper limb tremor were studied. Tremor severity was assessed using the Bain score (overall severity, writing, and Archimedes spiral drawing). Cerebellar dysfunction was assessed using the Scale for the Assessment and Rating of Ataxia. Dystonia was assessed using the Global Dystonia Scale adapted for upper limb. For all subjects, volume was calculated for the thalamus from T1-weighted volumetric scans using Freesurfer. Superior cerebellar peduncle (SCP) cross-sectional areas were measured manually. The presence of lesions was visually determined and the lesion volumes were calculated by the lesion growth algorithm as implemented in the Lesion Segmentation Toolbox. Right thalamic volume negatively correlated with Bain tremor severity score (ρ = - 0.65, p = 0.03). Left thalamic volume negatively correlated with general Bain tremor severity score (ρ = - 0.65, p = 0.03) and the Bain writing score (ρ = - 0.65, p = 0.03). Right SCP area negatively correlated with Bain writing score (ρ = - 0.69, p = 0.02). Finally, Bain Archimedes score was significantly higher in patients with lesions in the contralateral thalamus. Whole brain lesion load showed no relationship with tremor severity. These results implicate degeneration of key structures within the cerebello-thalamic pathway as pathological substrates for tremor in MS patients.
Collapse
Affiliation(s)
- Frederique Boonstra
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Grace Florescu
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Andrew Evans
- Department of Neurology, The Royal Melbourne Hospital, Level 4 South, 300 Grattan Street, Parkville, VIC, 3052, Australia
| | - Chris Steward
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
- Department of Medicine, Royal Melbourne Hospital, Melbourne, Australia
| | - Peter Mitchell
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Patricia Desmond
- Department of Radiology, Royal Melbourne Hospital, University of Melbourne, Melbourne, Australia
| | - Brad Moffat
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neurology, The Royal Melbourne Hospital, Level 4 South, 300 Grattan Street, Parkville, VIC, 3052, Australia
- Melbourne Brain Centre at Royal Melbourne Hospital, Department of Medicine, University of Melbourne, Melbourne, Australia
- Multiple Sclerosis Unit, Box Hill Hospital, Box Hill, Australia
- Department of Neuroscience, Alfred Central Clinical School, Monash University, Melbourne, Australia
| | - Scott Kolbe
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
| | - Anneke van der Walt
- Department of Neurology, The Royal Melbourne Hospital, Level 4 South, 300 Grattan Street, Parkville, VIC, 3052, Australia.
- Melbourne Brain Centre at Royal Melbourne Hospital, Department of Medicine, University of Melbourne, Melbourne, Australia.
- Department of Neuroscience, Alfred Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
27
|
|