1
|
Kaur P, do Rosario MC, Hebbar M, Sharma S, Kausthubham N, Nair K, Shrikiran A, Bhat Y R, Lewis LES, Nampoothiri S, Patil SJ, Suresh N, Bijarnia Mahay S, Dua Puri R, Pai S, Kaur A, KC R, Kamath N, Bajaj S, Kumble A, Shetty R, Shenoy R, Kamate M, Shah H, Muranjan MN, BL Y, Avabratha KS, Subramaniam G, Kadavigere R, Bielas S, Girisha KM, Shukla A. Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities. Clin Genet 2021; 100:542-550. [PMID: 34302356 PMCID: PMC8918360 DOI: 10.1111/cge.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - A Shrikiran
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - SJ Patil
- Division of Genetics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Narayanaswami Suresh
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shivanand Pai
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anupriya Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakshith KC
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shruti Bajaj
- Jaslok Hospital and Research Centre, Mumbai, India
| | - Ali Kumble
- Department of Paediatrics, Indiana Hospital and Heart Institute, Mangalore, India
| | | | - Rathika Shenoy
- Department of Paediatrics, K.S. Hegde Medical Academy, NITTE University, Mangalore, India
| | - Mahesh Kamate
- Department of Paediatrics, Jawaharlal Nehru Medical College, Belgaum, India
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mamta N Muranjan
- Department of Pediatrics, Genetics Division, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Yatheesha BL
- Dheemahi Child Neurology and Development Center, Shimoga, India
| | | | | | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
Shayota BJ, Donti TR, Xiao J, Gijavanekar C, Kennedy AD, Hubert L, Rodan L, Vanderpluym C, Nowak C, Bjornsson HT, Ganetzky R, Berry GT, Pappan KL, Sutton VR, Sun Q, Elsea SH. Untargeted metabolomics as an unbiased approach to the diagnosis of inborn errors of metabolism of the non-oxidative branch of the pentose phosphate pathway. Mol Genet Metab 2020; 131:147-154. [PMID: 32828637 PMCID: PMC8630378 DOI: 10.1016/j.ymgme.2020.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 12/27/2022]
Abstract
Inborn errors of metabolism (IEM) involving the non-oxidative pentose phosphate pathway (PPP) include the two relatively rare conditions, transketolase deficiency and transaldolase deficiency, both of which can be difficult to diagnosis given their non-specific clinical presentations. Current biochemical testing approaches require an index of suspicion to consider targeted urine polyol testing. To determine whether a broad-spectrum biochemical test could accurately identify a specific metabolic pattern defining IEMs of the non-oxidative PPP, we employed the use of clinical metabolomic profiling as an unbiased novel approach to diagnosis. Subjects with molecularly confirmed IEMs of the PPP were included in this study. Targeted quantitative analysis of polyols in urine and plasma samples was accomplished with chromatography and mass spectrometry. Semi-quantitative unbiased metabolomic analysis of urine and plasma samples was achieved by assessing small molecules via liquid chromatography and high-resolution mass spectrometry. Results from untargeted and targeted analyses were then compared and analyzed for diagnostic acuity. Two siblings with transketolase (TKT) deficiency and three unrelated individuals with transaldolase (TALDO) deficiency were identified for inclusion in the study. For both IEMs, targeted polyol testing and untargeted metabolomic testing on urine and/or plasma samples identified typical perturbations of the respective disorder. Additionally, untargeted metabolomic testing revealed elevations in other PPP metabolites not typically measured with targeted polyol testing, including ribonate, ribose, and erythronate for TKT deficiency and ribonate, erythronate, and sedoheptulose 7-phosphate in TALDO deficiency. Non-PPP alternations were also noted involving tryptophan, purine, and pyrimidine metabolism for both TKT and TALDO deficient patients. Targeted polyol testing and untargeted metabolomic testing methods were both able to identify specific biochemical patterns indicative of TKT and TALDO deficiency in both plasma and urine samples. In addition, untargeted metabolomics was able to identify novel biomarkers, thereby expanding the current knowledge of both conditions and providing further insight into potential underlying pathophysiological mechanisms. Furthermore, untargeted metabolomic testing offers the advantage of having a single effective biochemical screening test for identification of rare IEMs, like TKT and TALDO deficiencies, that may otherwise go undiagnosed due to their generally non-specific clinical presentations.
Collapse
MESH Headings
- Adult
- Biomarkers/blood
- Carbohydrate Metabolism, Inborn Errors/blood
- Carbohydrate Metabolism, Inborn Errors/genetics
- Carbohydrate Metabolism, Inborn Errors/metabolism
- Carbohydrate Metabolism, Inborn Errors/pathology
- Child
- Child, Preschool
- Chromatography, Liquid
- Female
- Humans
- Infant
- Male
- Mass Spectrometry
- Metabolism, Inborn Errors/blood
- Metabolism, Inborn Errors/genetics
- Metabolism, Inborn Errors/metabolism
- Metabolism, Inborn Errors/pathology
- Metabolomics
- Pentose Phosphate Pathway/genetics
- Transaldolase/blood
- Transaldolase/deficiency
- Transaldolase/genetics
- Transaldolase/metabolism
- Transketolase/blood
- Transketolase/deficiency
- Transketolase/genetics
- Young Adult
Collapse
Affiliation(s)
- Brian J Shayota
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Taraka R Donti
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jing Xiao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | | | | | - Leroy Hubert
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lance Rodan
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - Catherine Nowak
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | - Hans T Bjornsson
- McKusick-Nathans Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Faculty of Medicine, University of Iceland, Reykjavik, Iceland; Landspitali University Hospital, Reykjavik, Iceland
| | - Rebecca Ganetzky
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gerard T Berry
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
| | | | - V Reid Sutton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Qin Sun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Sarah H Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
3
|
Guo J, Zhang Q, Su Y, Lu X, Wang Y, Yin M, Hu W, Wen W, Lei QY. Arginine methylation of ribose-5-phosphate isomerase A senses glucose to promote human colorectal cancer cell survival. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1394-1405. [PMID: 32157557 DOI: 10.1007/s11427-019-1562-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/15/2019] [Indexed: 10/24/2022]
Abstract
Cancer cells remodel their metabolic network to adapt to variable nutrient availability. Pentose phosphate pathway (PPP) plays protective and biosynthetic roles by oxidizing glucose to generate reducing power and ribose. How cancer cells modulate PPP activity in response to glucose supply remains unclear. Here we show that ribose-5-phosphate isomerase A (RPIA), an enzyme in PPP, directly interacts with co-activator associated arginine methyltransferase 1 (CARM1) and is methylated at arginine 42 (R42). R42 methylation up-regulates the catalytic activity of RPIA. Furthermore, glucose deprivation strengthens the binding of CARM1 with RPIA to induce R42 hypermethylation. Insufficient glucose supply links to RPIA hypermethylation at R42, which increases oxidative PPP flux. RPIA methylation supports ROS clearance by enhancing NADPH production and fuels nucleic acid synthesis by increasing ribose supply. Importantly, RPIA methylation at R42 significantly potentiates colorectal cancer cell survival under glucose starvation. Collectively, RPIA methylation connects glucose availability to nucleotide synthesis and redox homeostasis.
Collapse
Affiliation(s)
- Jizheng Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qixiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Su
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xiaochen Lu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yiping Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenyu Wen
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qun-Ying Lei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Medical Neurobiology Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Kaur P, Wamelink MMC, van der Knaap MS, Girisha KM, Shukla A. Confirmation of a Rare Genetic Leukoencephalopathy due to a Novel Bi-allelic Variant in RPIA. Eur J Med Genet 2019; 62:103708. [PMID: 31247379 DOI: 10.1016/j.ejmg.2019.103708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 03/02/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Ribose 5-phosphate isomerase deficiency is a rare genetic leukoencephalopathy caused by pathogenic sequence variants in RPIA, that encodes ribose 5-phosphate isomerase, an enzyme in the pentose phosphate pathway. Till date, only three individuals with ribose 5-phosphate isomerase deficiency have been described in literature. We report on a subject with RPIA associated progressive leukoencephalopathy with elevated urine arabitol and ribitol levels and a novel missense variant c.770T > C p.(Ile257Thr) in exon 8 of RPIA. We also compare the phenotypes of all the four subjects. Our report confirms the phenotype and the genetic cause of this condition.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Mirjam M C Wamelink
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Chemistry, Metabolic Laboratory, Amsterdam Neuroscience, De Boelelaan, 1117, Amsterdam, the Netherlands
| | - Marjo S van der Knaap
- Pediatric Neurology, Emma Children's Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, The Netherlands; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, The Netherlands
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India.
| |
Collapse
|
5
|
Brooks SS, Anderson S, Bhise V, Botti C. Further Delineation of Ribose-5-phosphate Isomerase Deficiency: Report of a Third Case. J Child Neurol 2018; 33:784-787. [PMID: 30088433 DOI: 10.1177/0883073818789316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ribose-5-phosphate isomerase deficiency, a disorder of the pentose phosphate shunt, was described in 1999. There are 2 previously reported cases of ribose-5-phosphate isomerase deficiency. Here, we describe the clinical course, diagnostic odyssey, and molecular findings in the third case of ribose-5-phosphate isomerase deficiency to further delineate the syndrome. Whole-exome sequencing demonstrated 2 mutations in the ribose-5-phosphate isomerase gene, RPIA, in a child with neonatal onset leukoencephalopathy and psychomotor delays. Urine polyols were elevated confirming deficiency of ribose-5-phosphate isomerase (RPI, EC. 5.3.1.6) and pathogenicity of the variants. Measurement of urine polyols should be considered in cases of early-onset white-matter disease.
Collapse
Affiliation(s)
- Susan Sklower Brooks
- 1 Pediatric Medical Genetics, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Sharon Anderson
- 1 Pediatric Medical Genetics, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,2 School of Nursing, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Vikram Bhise
- 3 Child Neurology, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Christina Botti
- 1 Pediatric Medical Genetics, Rutgers, The State University of New Jersey, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|