1
|
Charan BD, Shah SA, Jain S, Sebastian LJD. Cortical malformation adjacent to a large pial arteriovenous fistula. BMJ Case Rep 2024; 17:e258820. [PMID: 38423569 PMCID: PMC10910652 DOI: 10.1136/bcr-2023-258820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
The coexistence of an arteriovenous fistula (AVF) and neuronal migration abnormalities is a rare phenomenon. The underlying pathophysiology responsible for these anomalies remains elusive. Neuronal architectural irregularities arise from complex neuronal formation, migration and organisation dysfunctions. Isolated cases of these associations are rarely described in the literature. Here, we present an unusual case involving the coexistence of a pial AVF and a pachygyria-polymicrogyria complex in an early childhood boy. We have provided a detailed description of the neuroimaging characteristics and the therapeutic embolisation in this case, along with follow-up. Additionally, we conduct a comprehensive review of potential hypotheses about the association, referencing prior case reports. The presence of an aberrant blood supply or deviant venous drainage from the developing cortex may contribute to a variety of neuronal migration anomalies.
Collapse
|
2
|
Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet 2023; 68:157-167. [PMID: 35831630 DOI: 10.1038/s10038-022-01063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Cerebrovascular malformations comprise abnormal development of cerebral vasculature. They can result in hemorrhagic stroke due to rupture of lesions as well as seizures and neurological defects. The most common forms of cerebrovascular malformations are brain arteriovenous malformations (bAVMs) and cerebral cavernous malformations (CCMs). They occur in both sporadic and inherited forms. Rapidly evolving molecular genetic methodologies have helped to identify causative or associated genes involved in genesis of bAVMs and CCMs. In this review, we highlight the current knowledge regarding the genetic basis of these malformations.
Collapse
|
3
|
Straka B, Vlčková M, Libá Z, Heřmanovská B, Kynčl M, Dorňáková J, Táborský J, Kršek P, Musilová A, Janota J, Balaščaková M. COL4A1 mutation-related disorder presenting as fetal intracranial bleeding, hydrocephalus, and polymicrogyria. Epilepsia Open 2023; 8:211-216. [PMID: 36504316 PMCID: PMC9977753 DOI: 10.1002/epi4.12681] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
Fetal intracranial hemorrhage represents a rare event with an estimated prevalence of 1:10 000 pregnancies. We report a patient diagnosed prenatally with intracranial hemorrhage and ventriculomegaly carrying a novel, previously unreported, likely pathogenic variant in COL4A1. At the gestational age of 27 weeks, dilation of lateral ventricles was detected during a routine prenatal ultrasound scan, confirmed by prenatal MRI at 30 + 3 weeks of gestation. Prenatal examinations included amniocentesis with conventional G-band karyotyping and arrayCGH, and maternal testing for TORCH and parvovirus B19 infections. Virtual gene panel based on whole-exome sequencing data was performed postnatally. At the age of 2.5 months, the patient manifested epileptic seizures that remain difficult to control. Postnatal MRI showed partial thalamic fusion and polymicrogyria, in addition to severe enlargement of lateral ventricles, multiple deposits of hemosiderin in cerebral and cerebellar hemispheres, and thin optic nerve and chiasma. Virtual gene panel based on whole-exome sequencing data led to a detection of a de novo previously unreported in-frame deletion NM_001845.5:c.4688_4711del in COL4A1 located in the highly conserved NC1 domain initiating collagen helix assembly. The presented case lies one a more severe end of the COL4A1 mutation-related disease spectrum, manifesting as fetal intracranial bleeding, malformation of cortical development, drug-resistant epilepsy, and developmental delay.
Collapse
Affiliation(s)
- Barbora Straka
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Markéta Vlčková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Zuzana Libá
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Barbora Heřmanovská
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Martin Kynčl
- Department of Radiology, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Jana Dorňáková
- Department of Obstetrics and Gynaecology, Neonatal Unit, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jakub Táborský
- Department of Neurosurgery, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Pavel Kršek
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Alena Musilová
- Department of Paediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| | - Jan Janota
- Department of Obstetrics and Gynaecology, Neonatal Unit, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic.,Department of Pathological Physiology, First Faculty of Medicine, Charles University Prague, Czech Republic.,Department of Neonatology, Thomayer University Hospital, Prague, Czech Republic
| | - Miroslava Balaščaková
- Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and Motol University Hospital, Full Member of the ERN EpiCARE, Prague, Czech Republic
| |
Collapse
|
4
|
Hereditary Hemorrhagic Telangiectasia in Pediatric Age: Focus on Genetics and Diagnosis. Pediatr Rep 2023; 15:129-142. [PMID: 36810341 PMCID: PMC9944132 DOI: 10.3390/pediatric15010011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Hereditary Hemorrhagic Telangiectasia (HHT) or Rendu-Osler-Weber Syndrome (ROW) is an autosomal dominant vascular disease, with an estimated prevalence of 1:5000. Genes associated with HHT are ACVRL1, ENG, SMAD4, and GDF2, all encoding for proteins involved in the TGFβ/BMPs signaling pathway. The clinical diagnosis of HHT is made according to the "Curaçao Criteria," based on the main features of the disease: recurrent and spontaneous epistaxis, muco-cutaneous telangiectases, arteriovenous malformations in the lungs, liver, and brain, and familiarity. Since the clinical signs of HHT can be misinterpreted, and the primary symptom of HHT, epistaxis, is common in the general population, the disease is underdiagnosed. Although HHT exhibits a complete penetrance after the age of 40, young subjects may also present symptoms of the disease and are at risk of severe complications. Here we review the literature reporting data from clinical, diagnostic, and molecular studies on the HHT pediatric population.
Collapse
|
5
|
Gaines JJ, Gilbert BC, Gossage JR, Parker W, Reddy A, Forseen SE. Schizencephaly in Hereditary Hemorrhagic Telangiectasia. AJNR Am J Neuroradiol 2022; 43:1603-1607. [PMID: 36265891 PMCID: PMC9731247 DOI: 10.3174/ajnr.a7677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/12/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND PURPOSE The presence of malformations of cortical development in patients with hereditary hemorrhagic telangiectasia has been reported on previous occasions. We evaluated a sample of adults with hereditary hemorrhagic telangiectasia for the presence of malformations of cortical development, spatial coincidence of malformations of cortical development and AVMs, and the coincidence of brain and pulmonary AVMs. MATERIALS AND METHODS A total of 141 patients 18 years of age or older who were referred to the Augusta University hereditary hemorrhagic telangiectasia clinic and underwent brain MR imaging between January 19, 2018, and December 3, 2020, were identified. MR imaging examinations were reviewed retrospectively by 2 experienced neuroradiologists, and the presence of malformations of cortical development and AVMs was confirmed by consensus. Demographic and clinical information was collected for each case, including age, sex, hereditary hemorrhagic telangiectasia status by the Curacao Criteria, mutation type, presence of malformations of cortical development, presence of brain AVMs, presence of pulmonary AVMs, and a history of seizures or learning disabilities. RESULTS Five of 141 (3.5%) patients with hereditary hemorrhagic telangiectasia had malformations of cortical development. Two of the 5 patients with polymicrogyria also had closed-lip schizencephaly. One of the patients had a porencephalic cavity partially lined with heterotopic GM. The incidence of spatially coincident polymicrogyria and brain AVMs was 40% (2/5 cases). Of the patients with hereditary hemorrhagic telangiectasia and malformations of cortical development, 4/5 (80%) had pulmonary AVMs and 2/5 (40%) had brain AVMs. CONCLUSIONS To our knowledge, we are the first group to report the presence of schizencephaly in patients with hereditary hemorrhagic telangiectasia. The presence of schizencephaly and porencephaly lends support to the hypothesis of regional in utero cerebral hypoxic events as the etiology of malformations of cortical development in hereditary hemorrhagic telangiectasia.
Collapse
Affiliation(s)
- J J Gaines
- Department of Medicine, Medical College of Georgia (J.J.G.) at Augusta University, Augusta, Georgia
| | - B C Gilbert
- From the Neuroradiology Section (B.C.G., W.P., A.R., S.E.F.), Department of Radiology and Imaging
| | - J R Gossage
- Department of Hereditary Hemorrhagic Telangiectasia (J.R.G.), Section of Pulmonary Diseases
| | - W Parker
- From the Neuroradiology Section (B.C.G., W.P., A.R., S.E.F.), Department of Radiology and Imaging
| | - A Reddy
- From the Neuroradiology Section (B.C.G., W.P., A.R., S.E.F.), Department of Radiology and Imaging
| | - S E Forseen
- From the Neuroradiology Section (B.C.G., W.P., A.R., S.E.F.), Department of Radiology and Imaging
| |
Collapse
|
6
|
Perez Akly MS, Vazquez C, Besada CH, Rodriguez MJ, Conde MF, Cajal AR, Peuchot VA, Dardik D, Baccanelli MM, Serra MM. Prevalence of Intracranial Aneurysms in Hereditary Hemorrhagic Telangiectasia: Report from a Single Reference Center. AJNR Am J Neuroradiol 2022; 43:844-849. [PMID: 35589139 DOI: 10.3174/ajnr.a7505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/17/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Neurologic manifestations in hereditary hemorrhagic telangiectasia include an increased incidence of brain abscesses and ischemic strokes due to paradoxic embolization in addition to a wide spectrum of symptoms and complications due to typical brain vascular malformations. Intracranial aneurysms are not part of this brain vascular malformation spectrum. The aim of this study was to determine their prevalence in patients with hereditary hemorrhagic telangiectasia. MATERIALS AND METHODS This was a single-center, retrospective study. Adult patients from the institutional Hereditary Hemorrhagic Telangiectasia registry with a definitive diagnosis of hereditary hemorrhagic telangiectasia and an available report or angiographic imaging study were included and reviewed to determine the intracranial aneurysm prevalence. In addition, the morphologic characteristics of intracranial aneurysms and possible associated risk factors were collected. RESULTS Two hundred twenty-eight patients were analyzed. Thirty-seven aneurysms in 33 patients (14.5%; 95% CI, 9.9%-19%) were found. The median diameter of intracranial aneurysms was 3.2 mm (interquartile range, 2.6-4.4 mm). No association between intracranial aneurysm and sex, age, or genetic background was noted. There were no subarachnoid hemorrhagic events due to intracranial aneurysm rupture. CONCLUSIONS Due to the high prevalence of intracranial aneurysms in adult patients with hereditary hemorrhagic telangiectasia, further studies regarding bleeding risks and monitoring should be addressed.
Collapse
Affiliation(s)
- M S Perez Akly
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
| | - C Vazquez
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Department of Internal Medicine (C.V., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| | - C H Besada
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
| | - M J Rodriguez
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - M F Conde
- From the Department of Radiology (M.S.P.A., C.H.B., M.J.R., C.M.F.), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A R Cajal
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
- Translational Medicine and Biomedical Engineering Institute (A.R.C.), Buenos Aires, Argentina
- University Institute (A.R.C., M.M.B., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| | - V A Peuchot
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Internal Medicine Research Area (V.A.P.), Hospital Italiano, Buenos Aires, Argentina
| | - D Dardik
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- From the Department of Radiology (D.D.), Clínica Instituto de Diagnóstico Sociedad Anónima (INDISA), Santiago, Chile
| | - M M Baccanelli
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Department of Neurosurgery (M.M.B.), Hospital Italiano, Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
- University Institute (A.R.C., M.M.B., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| | - M M Serra
- A.R.G. Argentine Rendu Study Group (M.S.P.A., C.V., C.H.B., A.R.C., VA.P., D.D., M.M.B., M.M.S.), Buenos Aires, Argentina
- Department of Internal Medicine (C.V., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
- Hereditary Hemorrhagic Telangiectasia Unit (M.S.P.A., C.H.B., A.R.C., M.M.B., M.M.S.) Hospital Italiano, Buenos Aires, Argentina
- University Institute (A.R.C., M.M.B., M.M.S.), Hospital Italiano, Buenos Aires, Argentina
| |
Collapse
|
7
|
Neurovascular Manifestations in Pediatric Patients With Hereditary Haemorrhagic Telangiectasia. Pediatr Neurol 2022; 129:24-30. [PMID: 35176532 DOI: 10.1016/j.pediatrneurol.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT) is a multiorgan vascular dysplasia with limited data regarding its neurovascular manifestations and genotype-phenotype correlation in children. The objective of this study was to describe the neurovascular findings in a large cohort of children with HHT and correlate between phenotype and genotype. METHODS This retrospective study was conducted on 221 children (<18 years) with a definite or possible diagnosis of HHT based on Curacao criteria, or with positive genetics for the mutated genes of ENG, ACVRL-1, and SMAD-4, who also underwent brain MRI and/or conventional angiography. Demographic and clinical information, imaging findings, and follow up information were gathered. RESULTS Two hundred twenty-one children with HHT (70.6% genetically confirmed, and 99.5% positive family history) were included, with a median age of 7 years (interquartile range: 3 to 11 years) and 58.8% male predominance. Neurovascular lesions were found in 64 of 221 (28.9%), with 3.1% prevalence of intracranial hemorrhage. The most commonly observed vascular malformations were developmental venous anomalies (48.5%) and brain arteriovenous malformations (AVMs) (31.2%), followed by capillary malformations (14.1%). Multiple AVMs were seen in 10.0% of the cohort. We found no instances of de novo AVM (1281.8 patient-years).A significantly higher proportion of patients with ENG mutations (19.7%) had brain AVM than those with ACVRL-1 (4.9%) and SMAD-4 (0%) mutations (P < 0.01). There was no significant difference in the hemorrhagic risk of shunting lesions associated with ENG (35.3%) or ACVRL-1 (33.3%) positivity (P = 0.9). CONCLUSIONS We describe the neurovascular imaging and genetic findings from a large pediatric cohort of HHT, to enhance clinical awareness and guide management of patients with HHT.
Collapse
|
8
|
Klostranec JM, Krings T. Cerebral neurovascular embryology, anatomic variations, and congenital brain arteriovenous lesions. J Neurointerv Surg 2022; 14:910-919. [PMID: 35169032 DOI: 10.1136/neurintsurg-2021-018607] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 12/14/2022]
Abstract
Cerebral neurovascular development is a complex and coordinated process driven by the changing spatial and temporal metabolic demands of the developing brain. Familiarity with the process is helpful in understanding neurovascular anatomic variants and congenital arteriovenous shunting lesions encountered in endovascular neuroradiological practice. Herein, the processes of vasculogenesis and angiogenesis are reviewed, followed by examination of the morphogenesis of the cerebral arterial and venous systems. Common arterial anatomic variants are reviewed with an emphasis on their development. Finally, endothelial genetic mutations affecting angiogenesis are examined to consider their probable role in the development of three types of congenital brain arteriovenous fistulas: vein of Galen malformations, pial arteriovenous fistulas, and dural sinus malformations.
Collapse
Affiliation(s)
- Jesse M Klostranec
- Department of Neuroradiology, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada .,McGill University Health Centre, Montreal, Quebec, Canada
| | - Timo Krings
- Division of Neuroradiology, Department of Medical Imaging and Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Tas B, Starnoni D, Smajda S, Vivanti AJ, Adamsbaum C, Eyries M, Melki J, Tawk M, Ozanne A, Revencu N, Soubrier F, Siala S, Vikkula M, Deiva K, Saliou G. Arteriovenous Cerebral High Flow Shunts in Children: From Genotype to Phenotype. Front Pediatr 2022; 10:871565. [PMID: 35547535 PMCID: PMC9081809 DOI: 10.3389/fped.2022.871565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To study the genotypes and phenotypes of cerebral arteriovenous fistulas that drain or do not drain through the vein of Galen, and true vein of Galen aneurysmal malformations, in order to determine whether genotyping could help improve classification of these malformations and their management. METHODS We carried out a retrospective review of genetic and phenotypic data in databases of four centers. All children with cerebral arteriovenous fistula or vein of Galen aneurysmal malformations aged below 18 years at onset were included. We recorded the nature of the genetic variant or absence of variant, age at onset, type of malformation, symptoms at onset (hemorrhage, neurological deficit, hydrocephalus, incidental, and heart failure), type of venous drainage and the long-term outcome. RESULTS One hundred and fifteen children were included. Autosomal dominant variants were identified in 39% of patients. The most frequent variant affected was the RASA1 gene (25%) followed by EPHB4 (8%) and the HHT-associated genes (5%). HHT gene variants were only observed in pial arteriovenous fistula not draining into the vein of Galen; on the contrary, EPHB4 variants were only seen in genuine vein of Galen aneurysmal malformation. RASA1 variants were identified in all types of shunts. CONCLUSIONS EPHB4 variants seem specific to the vein of Galen aneurysmal malformation, RASA1 variants are associated with either pial arteriovenous fistulas or with genuine VGAM and HHT gene variants seem specific to pial arteriovenous fistulas. The genetic data helps to classify these malformations and to guide treatment toward lowest risk of post-operative cerebral ischemic-hemorrhagic complications.
Collapse
Affiliation(s)
- Berivan Tas
- Department of Diagnostic Radiology and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Daniele Starnoni
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| | - Stanislas Smajda
- de Duve Institute, Université Catholique de Louvain, Human Molecular Genetics, Brussels, Belgium
| | - Alexandre J Vivanti
- INSERM U1195 Petites Molécules de Neuroprotection, Neurogénération et Remyélinisation, Le Kremlin Bicêtre, France
| | - Catherine Adamsbaum
- Service de Radiologie Pédiatrique, Hôpital Bicêtre, Le Kremlin Bicêtre, France.,Laboratoire Traitement et Communication de l'Information, TELECOM ParisTech, Paris, France
| | - Mélanie Eyries
- Department of Genetics, Hôpital Pitié-Salpêtrière, Paris, France
| | - Judith Melki
- INSERM U1195 Petites Molécules de Neuroprotection, Neurogénération et Remyélinisation, Le Kremlin Bicêtre, France
| | - Marcel Tawk
- INSERM U1195 Petites Molécules de Neuroprotection, Neurogénération et Remyélinisation, Le Kremlin Bicêtre, France
| | - Augustin Ozanne
- Department of Neuroradiology, Bicêtre Hospital, Le Kremlin Bicêtre, France
| | - Nicole Revencu
- de Duve Institute, Université Catholique de Louvain, Human Molecular Genetics, Brussels, Belgium
| | - Florent Soubrier
- Department of Genetics, Hôpital Pitié-Salpêtrière, Paris, France
| | - Selima Siala
- Service de Radiologie Pédiatrique, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Miikka Vikkula
- de Duve Institute, Université Catholique de Louvain, Human Molecular Genetics, Brussels, Belgium
| | - Kumaran Deiva
- Service de Neuropédiatrie, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Guillaume Saliou
- Department of Diagnostic Radiology and Interventional Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.,University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Klostranec JM, Vucevic D, Bhatia KD, Kortman HGJ, Krings T, Murphy KP, terBrugge KG, Mikulis DJ. Current Concepts in Intracranial Interstitial Fluid Transport and the Glymphatic System: Part II-Imaging Techniques and Clinical Applications. Radiology 2021; 301:516-532. [PMID: 34698564 DOI: 10.1148/radiol.2021204088] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The glymphatic system is a recently discovered network unique to the central nervous system that allows for dynamic exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF). As detailed in part I, ISF and CSF transport along paravascular channels of the penetrating arteries and possibly veins allow essential clearance of neurotoxic solutes from the interstitium to the CSF efflux pathways. Imaging tests to investigate this neurophysiologic function, although challenging, are being developed and are reviewed herein. These include direct visualization of CSF transport using postcontrast imaging techniques following intravenous or intrathecal administration of contrast material and indirect glymphatic assessment with detection of enlarged perivascular spaces. Application of MRI techniques, including intravoxel incoherent motion, diffusion tensor imaging, and chemical exchange saturation transfer, is also discussed, as are methods for imaging dural lymphatic channels involved with CSF efflux. Subsequently, glymphatic function is considered in the context of proteinopathies associated with neurodegenerative diseases and traumatic brain injury, cytotoxic edema following acute ischemic stroke, and chronic hydrocephalus after subarachnoid hemorrhage. These examples highlight the substantial role of the glymphatic system in neurophysiology and the development of certain neuropathologic abnormalities, stressing the importance of its consideration when interpreting neuroimaging investigations. © RSNA, 2021.
Collapse
Affiliation(s)
- Jesse M Klostranec
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Diana Vucevic
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kartik D Bhatia
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Hans G J Kortman
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Timo Krings
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Kieran P Murphy
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - Karel G terBrugge
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| | - David J Mikulis
- From the Department of Diagnostic and Interventional Neuroradiology, Montréal Neurologic Institute and Hospital, McGill University Health Centre, 3801 Rue University, Montréal, QC, Canada H3A 2B4 (J.M.K.); Department of Medical Imaging (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.), Department of Materials Science & Engineering, Faculty of Applied Science & Engineering (D.V.), and Division of Neurosurgery, Department of Surgery (T.K., K.G.t.B.), University of Toronto, Toronto, Canada; Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada (J.M.K., D.V., K.D.B., H.G.J.K., T.K., K.P.M., K.G.t.B., D.J.M.); Centre Hospitalier de l'Université de Montréal (CHUM), Department of Radiology, Service of Neuroradiology, l'Université de Montréal, Montréal, Canada (J.M.K.); and Department of Medical Imaging, Sydney Children's Hospitals Network, Westmead, Australia (K.D.B.)
| |
Collapse
|
11
|
Hetts SW, Shieh JT, Ohliger MA, Conrad MB. Hereditary Hemorrhagic Telangiectasia: The Convergence of Genotype, Phenotype, and Imaging in Modern Diagnosis and Management of a Multisystem Disease. Radiology 2021; 300:17-30. [PMID: 33973836 DOI: 10.1148/radiol.2021203487] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease that manifests as vascular malformations in the brain, lung, liver, gastrointestinal tract, nasal mucosa, and skin. Diagnosis and management of HHT is guided in large part by imaging studies, making it a condition with which the radiology community needs familiarity. Proper screening and care lead to improved morbidity and mortality in patients with HHT. International guidelines were recently updated and form the basis for a detailed discussion of the role of imaging and image-guided therapy in HHT. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Steven W Hetts
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| | - Joseph T Shieh
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| | - Michael A Ohliger
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| | - Miles B Conrad
- From the Department of Radiology and Biomedical Imaging (S.W.H., M.O., M.C.), HHT Center of Excellence (S.W.H., J.S., M.O., M.C.), and Department of -Pediatrics (J.S.), University of California San Francisco, 505 Parnassus Ave, L-351, San Francisco, CA 94143-0628
| |
Collapse
|
12
|
Hart BL, Mabray MC, Morrison L, Whitehead KJ, Kim H. Systemic and CNS manifestations of inherited cerebrovascular malformations. Clin Imaging 2021; 75:55-66. [PMID: 33493737 DOI: 10.1016/j.clinimag.2021.01.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022]
Abstract
Cerebrovascular malformations occur in both sporadic and inherited patterns. This paper reviews imaging and clinical features of cerebrovascular malformations with a genetic basis. Genetic diseases such as familial cerebral cavernous malformations and hereditary hemorrhagic telangiectasia often have manifestations in bone, skin, eyes, and visceral organs, which should be recognized. Genetic and molecular mechanisms underlying the inherited disorders are becoming better understood, and treatments are likely to follow. An interaction between the intestinal microbiome and formation of cerebral cavernous malformations has emerged, with possible treatment implications. Two-hit mechanisms are involved in these disorders, and additional triggering mechanisms are part of the development of malformations. Hereditary hemorrhagic telangiectasia encompasses a variety of vascular malformations, with widely varying risks, and a more recently recognized association with cortical malformations. Somatic mutations are implicated in the genesis of some sporadic malformations, which means that discoveries related to inherited disorders may aid treatment of sporadic cases. This paper summarizes the current state of knowledge of these conditions, salient features regarding mechanisms of development, and treatment prospects.
Collapse
Affiliation(s)
- Blaine L Hart
- Department of Radiology, MSC10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Marc C Mabray
- Department of Radiology, MSC10 5530, 1 University of New Mexico, Albuquerque, NM 87131, USA.
| | - Leslie Morrison
- Department of Neurology, MSC10 5620, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA.
| | - Kevin J Whitehead
- Division of Cardiovascular Medicine and the Program in Molecular Medicine, University of Utah, 50 North Medical Drive, Salt Lake City, UT 84132, USA; George E. Wahlen Salt Lake City VA Medical Center, 500 Foothill Boulevard, Salt Lake City, UT 84148, USA.
| | - Helen Kim
- Center for Cerebrovascular Research, Department of Anesthesia and Perioperative Care, Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
13
|
Park KB, Chapman T, Aldinger KA, Mirzaa GM, Zeiger J, Beck A, Glass IA, Hevner RF, Jansen AC, Marshall DA, Oegema R, Parrini E, Saneto RP, Curry CJ, Hall JG, Guerrini R, Leventer RJ, Dobyns WB. The spectrum of brain malformations and disruptions in twins. Am J Med Genet A 2020; 185:2690-2718. [PMID: 33205886 DOI: 10.1002/ajmg.a.61972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022]
Abstract
Twins have an increased risk for congenital malformations and disruptions, including defects in brain morphogenesis. We analyzed data on brain imaging, zygosity, sex, and fetal demise in 56 proband twins and 7 less affected co-twins with abnormal brain imaging and compared them to population-based data and to a literature series. We separated our series into malformations of cortical development (MCD, N = 39), cerebellar malformations without MCD (N = 13), and brain disruptions (N = 11). The MCD group included 37/39 (95%) with polymicrogyria (PMG), 8/39 (21%) with pia-ependymal clefts (schizencephaly), and 15/39 (38%) with periventricular nodular heterotopia (PNH) including 2 with PNH but not PMG. Cerebellar malformations were found in 19 individuals including 13 with a cerebellar malformation only and another 6 with cerebellar malformation and MCD. The pattern varied from diffuse cerebellar hypoplasia to classic Dandy-Walker malformation. Brain disruptions were seen in 11 individuals with hydranencephaly, porencephaly, or white matter loss without cysts. Our series included an expected statistically significant excess of monozygotic (MZ) twin pairs (22/41 MZ, 54%) compared to population data (482/1448 MZ, 33.3%; p = .0110), and an unexpected statistically significant excess of dizygotic (DZ) twins (19/41, 46%) compared to the literature cohort (1/46 DZ, 2%; p < .0001. Recurrent association with twin-twin transfusion syndrome, intrauterine growth retardation, and other prenatal factors support disruption of vascular perfusion as the most likely unifying cause.
Collapse
Affiliation(s)
- Kaylee B Park
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Teresa Chapman
- Department of Radiology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly A Aldinger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA
| | - Ghayda M Mirzaa
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA.,Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA.,Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Jordan Zeiger
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, Washington, USA
| | - Anita Beck
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Anna C Jansen
- Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Cluster, Vrije Universiteit Brussel, Brussels, Belgium.,Pediatric Neurology Unit, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Desiree A Marshall
- Department of Anatomic Pathology and Neuropathology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Renske Oegema
- University Medical Center Utrecht, Department of Genetics, Utrecht, The Netherlands
| | - Elena Parrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Russell P Saneto
- Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Cynthia J Curry
- Genetic Medicine, Department of Pediatrics, University of California San Francisco, Fresno, California, USA
| | - Judith G Hall
- Departments of Medical Genetics and Pediatrics, University of British Columbia and BC Children's Hospital, Vancouver, Canada
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Meyer Children's Hospital, University of Florence, Florence, Italy
| | - Richard J Leventer
- Department of Neurology, Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
14
|
Potential Second-Hits in Hereditary Hemorrhagic Telangiectasia. J Clin Med 2020; 9:jcm9113571. [PMID: 33167572 PMCID: PMC7694477 DOI: 10.3390/jcm9113571] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/29/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant genetic disorder that presents with telangiectases in skin and mucosae, and arteriovenous malformations (AVMs) in internal organs such as lungs, liver, and brain. Mutations in ENG (endoglin), ACVRL1 (ALK1), and MADH4 (Smad4) genes account for over 95% of HHT. Localized telangiectases and AVMs are present in different organs, with frequencies which differ among affected individuals. By itself, HHT gene heterozygosity does not account for the focal nature and varying presentation of the vascular lesions leading to the hypothesis of a “second-hit” that triggers the lesions. Accumulating research has identified a variety of triggers that may synergize with HHT gene heterozygosity to generate the vascular lesions. Among the postulated second-hits are: mechanical trauma, light, inflammation, vascular injury, angiogenic stimuli, shear stress, modifier genes, and somatic mutations in the wildtype HHT gene allele. The aim of this review is to summarize these triggers, as well as the functional mechanisms involved.
Collapse
|
15
|
Villa D, Cinnante C, Valcamonica G, Manenti G, Lanfranconi S, Colombi A, Ghione I, Saetti MC, D'Amico M, Bonato S, Bresolin N, Comi GP, Ronchi D. Hereditary hemorrhagic telangiectasia associated with cortical development malformation due to a start loss mutation in ENG. BMC Neurol 2020; 20:316. [PMID: 32847536 PMCID: PMC7450577 DOI: 10.1186/s12883-020-01890-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hereditary hemorrhagic telangiectasia (HHT), also known as Rendu-Osler-Weber syndrome, is a rare disorder characterized by recurrent epistaxis, telangiectasias and systemic arteriovenous malformations (AVMs). HHT is associated with mutations in genes encoding for proteins involved in endothelial homeostasis such as ENG (endoglin) and ACVRL1 (activin receptor-like kinase-1). CASE PRESENTATION Here we describe a 22-year-old male presenting with a transient episode of slurred speech and left arm paresis. Brain MRI displayed polymicrogyria. A right-to-left shunt in absence of an atrial septum defect was noted. Chest CT revealed multiple pulmonary AVMs, likely causing paradoxical embolism manifesting as a transient ischemic attack. The heterozygous ENG variant, c.3G > A (p.Met1lle), was detected in the patient. This variant was also found in patient's mother and in his younger brother who displayed cortical dysplasia type 2. CONCLUSIONS The detection of cortical development malformations in multiple subjects from the same pedigree may expand the phenotypic features of ENG-related HHT patients. We suggest considering HHT in young patients presenting with acute cerebral ischemic events of unknown origin.
Collapse
Affiliation(s)
- Davide Villa
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Claudia Cinnante
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuroradiology Unit, Milan, Italy
| | - Gloria Valcamonica
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Giulia Manenti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Silvia Lanfranconi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Annalisa Colombi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Isabella Ghione
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Maria Cristina Saetti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Mario D'Amico
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Unità di Radiologia, Milan, Italy
| | - Sara Bonato
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Nereo Bresolin
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Milan, Italy
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuromuscular and Rare Diseases Unit, Milan, Italy
| | - Dario Ronchi
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
16
|
Kim D, Seo EJ, Song YS, Suh CH, Kim JW, Kim DJ, Suh DC. Current Status of Clinical Diagnosis and Genetic Analysis of Hereditary Hemorrhagic Telangiectasia in South Korea: Multicenter Case Series and a Systematic Review. Neurointervention 2019; 14:91-98. [PMID: 31455059 PMCID: PMC6736501 DOI: 10.5469/neuroint.2019.00150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 01/28/2023] Open
Abstract
Purpose Hereditary hemorrhagic telangiectasia (HHT), a rare genetic vascular disorder, has been rarely reported in South Korea. We investigated the current prevalence and presenting patterns of genetically confirmed HHT in South Korea. Materials and Methods We defined HHT patients as those with proven mutations on known HHT-related genes (ENG, ACVRL1, SMAD4, and GDF2) or those fulfilling 3 or 4 of the Curaçao criteria. A computerized systematic search was performed in PubMed and KoreaMed using the following search term: (“hereditary hemorrhagic telangiectasia” AND “Korea”) OR (“Osler-Weber-Rendu” AND “Korea”). We also collected government health insurance data. HHT genetic testing results were collected from three tertiary hospitals in which the genetic tests were performed. We integrated patient data by analyzing each case to obtain the prevalence and presenting pattern of HHT in South Korea. Results We extracted 90 cases from 52 relevant articles from PubMed and KoreaMed. An additional 22 cases were identified from the three Korean tertiary hospitals after excluding seven cases that overlapped with those in the published articles. Finally, 112 HHT patients were identified (41 males and 71 females, aged 4–82 years [mean±standard deviation, 45.3±20.6 years]). The prevalence of HHT in South Korea is about 1 in 500,000, with an almost equal prevalence among men and women. Forty-nine patients underwent genetic testing, of whom 28 had HHT1 (ENG mutation) and 19 had HHT2 (ACVRL1 mutation); the other two patients were negative for ENG, ACVRL1, and SMAD4 mutations. Conclusion The prevalence of HHT is underestimated in Korea. The rate of phenotypic presentation seems to be similar to that found worldwide. Korean health insurance coverage is limited to representative genetic analysis to detect ENG and ACVRL1 mutations. Further genetic analyses to detect HHT3, HHT4, and other forms of HHT should be implemented.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eul-Ju Seo
- Department of Laboraory Medicines, Asan Medical Center, University of Ulsan, Seoul, Korea
| | - Yun Sun Song
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chong Hyun Suh
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jong Won Kim
- Department of Laboraory Medicines, Samsung Medical Center, Seoul, Korea
| | - Dong Joon Kim
- Department of Radiology, Severance Stroke Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dae Chul Suh
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
17
|
Blei F. Update March 2019. Lymphat Res Biol 2019. [DOI: 10.1089/lrb.2019.29063.fb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|