1
|
Yu P, Dong R, Wang X, Tang Y, Liu Y, Wang C, Zhao L. Neuroimaging of motor recovery after ischemic stroke - functional reorganization of motor network. Neuroimage Clin 2024; 43:103636. [PMID: 38950504 PMCID: PMC11267109 DOI: 10.1016/j.nicl.2024.103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/01/2024] [Accepted: 06/27/2024] [Indexed: 07/03/2024]
Abstract
The long-term motor outcome of acute stroke patients may be correlated to the reorganization of brain motor network. Abundant neuroimaging studies contribute to understand the pathological changes and recovery of motor networks after stroke. In this review, we summarized how current neuroimaging studies have increased understanding of reorganization and plasticity in post stroke motor recovery. Firstly, we discussed the changes in the motor network over time during the motor-activation and resting states, as well as the overall functional integration trend of the motor network. These studies indicate that the motor network undergoes dynamic bilateral hemispheric functional reorganization, as well as a trend towards network randomization. In the second part, we summarized the current study progress in the application of neuroimaging technology to early predict the post-stroke motor outcome. In the third part, we discuss the neuroimaging techniques commonly used in the post-stroke recovery. These methods provide direct or indirect visualization patterns to understand the neural mechanisms of post-stroke motor recovery, opening up new avenues for studying spontaneous and treatment-induced recovery and plasticity after stroke.
Collapse
Affiliation(s)
- Pei Yu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ruoyu Dong
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xiao Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yuqi Tang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yaning Liu
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Can Wang
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- School of Acupuncture and Massage, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wróbel PP, Guder S, Feldheim JF, Graterol Pérez JA, Frey BM, Choe CU, Bönstrup M, Cheng B, Rathi Y, Pasternak O, Thomalla G, Gerloff C, Shenton ME, Schulz R. Altered microstructure of the contralesional ventral premotor cortex and motor output after stroke. Brain Commun 2023; 5:fcad160. [PMID: 37265601 PMCID: PMC10231803 DOI: 10.1093/braincomms/fcad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 03/17/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Cortical thickness analyses have provided valuable insights into changes in cortical brain structure after stroke and their association with recovery. Across studies though, relationships between cortical structure and function show inconsistent results. Recent developments in diffusion-weighted imaging of the cortex have paved the way to uncover hidden aspects of stroke-related alterations in cortical microstructure, going beyond cortical thickness as a surrogate for cortical macrostructure. We re-analysed clinical and imaging data of 42 well-recovered chronic stroke patients from 2 independent cohorts (mean age 64 years, 4 left-handed, 71% male, 16 right-sided strokes) and 33 healthy controls of similar age and gender. Cortical fractional anisotropy and cortical thickness values were obtained for six key sensorimotor areas of the contralesional hemisphere. The regions included the primary motor cortex, dorsal and ventral premotor cortex, supplementary and pre-supplementary motor areas, and primary somatosensory cortex. Linear models were estimated for group comparisons between patients and controls and for correlations between cortical fractional anisotropy and cortical thickness and clinical scores. Compared with controls, stroke patients exhibited a reduction in fractional anisotropy in the contralesional ventral premotor cortex (P = 0.005). Fractional anisotropy of the other regions and cortical thickness did not show a comparable group difference. Higher fractional anisotropy of the ventral premotor cortex, but not cortical thickness, was positively associated with residual grip force in the stroke patients. These data provide novel evidence that the contralesional ventral premotor cortex might constitute a key sensorimotor area particularly susceptible to stroke-related alterations in cortical microstructure as measured by diffusion MRI and they suggest a link between these changes and residual motor output after stroke.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - José A Graterol Pérez
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Chi-un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
- Department of Neurology, University Medical Center, Leipzig 04103, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston 02115, MA, USA
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| |
Collapse
|
3
|
Liu Z, He B, Wang X, Peng J, Sun Q, Luo C. Deep cortical microinfarction induced by femtosecond laser in mice: Long-term secondary pathological changes in corresponding superficial cortex. Neurosci Lett 2023; 802:137170. [PMID: 36898650 DOI: 10.1016/j.neulet.2023.137170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND AND PURPOSE Previous studies have explored the clinical consequences of cortical microinfarction, mainly age-related cognitive decline. However, functional impairment of deep cortical microinfarction remains poorly understood. Based on anatomical knowledge and previous research, we infer that damage to the deep cortex may lead to cognitive deficits and communication impairment between the superficial cortex and thalamus. This study aimed to develop a new model of deep cortical microinfarction based on femtosecond laser ablation of a perforating artery. METHODS Twenty-eight mice were anesthetized with isoflurane, and a cranial window was thinned using a microdrill. Intensively focused femtosecond laser pulses were used to produce perforating arteriolar occlusions and ischemic brain damage was examined using histological analysis. RESULTS Occlusion of different perforating arteries induced different types of cortical microinfarctions. Blocking the perforating artery, which enters the cerebral cortex vertically and has no branches within 300 μm below, can result in deep cortical microinfarction. Moreover, this model showed neuronal loss and microglial activation in the lesions as well as dysplasia of nerve fibers and β-amyloid deposition in the corresponding superficial cortex. CONCLUSIONS We present here a new model of deep cortical microinfarction in mice, in which specific perforating arteries are selectively occluded by a femtosecond laser, and we preliminarily observe several long-term effects related to cognition. This animal model is helpful in investigating the pathophysiology of deep cerebral microinfarction. However, further clinical and experimental studies are required to explore deep cortical microinfarctions in greater molecular and physiological detail.
Collapse
Affiliation(s)
- Zhoujing Liu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Baixuan He
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yan Jiang West Road, Guangzhou 510120, China
| | - Xuemin Wang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Jiamin Peng
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China
| | - Qiaosong Sun
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| | - Chuanming Luo
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, No. 628 Zhenyuan Road, Shenzhen 518017, China.
| |
Collapse
|
4
|
Rojas Albert A, Backhaus W, Graterol Pérez JA, Braaβ H, Schön G, Choe CU, Feldheim J, Bönstrup M, Cheng B, Thomalla G, Gerloff C, Schulz R. Cortical thickness of contralesional cortices positively relates to future outcome after severe stroke. Cereb Cortex 2022; 32:5622-5627. [PMID: 35169830 DOI: 10.1093/cercor/bhac040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
Imaging studies have evidenced that contralesional cortices are involved in recovery after motor stroke. Cortical thickness (CT) analysis has proven its potential to capture the changes of cortical anatomy, which have been related to recovery and treatment gains under therapy. An open question is whether CT obtained in the acute phase after stroke might inform correlational models to explain outcome variability. Data of 38 severely impaired (median NIH Stroke Scale 9, interquartile range: 6-13) acute stroke patients of 2 independent cohorts were reanalyzed. Structural imaging data were processed via the FreeSurfer pipeline to quantify regional CT of the contralesional hemisphere. Ordinal logistic regression models were fit to relate CT to modified Rankin Scale as an established measure of global disability after 3-6 months, adjusted for the initial deficit, lesion volume, and age. The data show that CT of contralesional cortices, such as the precentral gyrus, the superior frontal sulcus, and temporal and cingulate cortices, positively relates to the outcome after stroke. This work shows that the baseline cortical anatomy of selected contralesional cortices can explain the outcome variability after severe stroke, which further contributes to the concept of structural brain reserve with respect to contralesional cortices to promote recovery.
Collapse
Affiliation(s)
- Alina Rojas Albert
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Winifried Backhaus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - José A Graterol Pérez
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hanna Braaβ
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jan Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany.,Department of Neurology, University Medical Center, Leipzig 04103, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
5
|
Tang H, Fan S, Niu X, Li Z, Xiao P, Zeng J, Xing S. Remote cortical atrophy and language outcomes after chronic left subcortical stroke with aphasia. Front Neurosci 2022; 16:853169. [PMID: 35992910 PMCID: PMC9381815 DOI: 10.3389/fnins.2022.853169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Objective Subcortical stroke can cause a variety of language deficits. However, the neural mechanisms underlying subcortical aphasia after stroke remain incompletely elucidated. We aimed to determine the effects of distant cortical structures on aphasia outcomes and examine the correlation of cortical thickness measures with connecting tracts integrity after chronic left subcortical stroke. Methods Thirty-two patients and 30 healthy control subjects underwent MRI scanning and language assessment with the Western Aphasia Battery-Revised (WAB-R) subtests. Among patients, the cortical thickness in brain regions that related to language performance were assessed by the FreeSurfer software. Fiber tracts connecting the identified cortical regions to stroke lesions were reconstructed to determine its correlations with the cortical thickness measures across individual patient. Results Cortical thickness in different parts of the left fronto-temporo-parietal (FTP) regions were positively related to auditory-verbal comprehension, spontaneous speech and naming/word finding abilities when controlling for key demographic variables and lesion size. Cortical thickness decline in the identified cortical regions was positively correlated with integrity loss of fiber tracts connected to stroke lesions. Additionally, no significant difference in cortical thickness was found across the left hemisphere between the subgroup of patients with hypoperfusion (HP) and those without HP at stroke onset. Conclusions These findings suggest that remote cortical atrophy independently predicts language outcomes in patients with chronic left subcortical stroke and aphasia and that cortical thinning in these regions might relate to integrity loss of fiber tracts connected to stroke lesions.
Collapse
Affiliation(s)
- Huijia Tang
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuhan Fan
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xingyang Niu
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuhao Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Peiyi Xiao
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shihui Xing
- Department of Neurology and Stroke Center, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Shihui Xing,
| |
Collapse
|
6
|
Syeda W, Ermine CM, Khilf MS, Wright D, Brait VH, Nithianantharajah J, Kolbe S, Johnston LA, Thompson LH, Brodtmann A. Long-term structural brain changes in adult rats after mild ischaemic stroke. Brain Commun 2022; 4:fcac185. [PMID: 35898722 PMCID: PMC9309495 DOI: 10.1093/braincomms/fcac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Preclinical studies of remote degeneration have largely focused on brain changes over the first few days or weeks after stroke. Accumulating evidence suggests that neurodegeneration occurs in other brain regions remote to the site of infarction for months and even years following ischaemic stroke. Brain atrophy appears to be driven by both axonal degeneration and widespread brain inflammation. The evolution and duration of these changes are increasingly being described in human studies, using advanced brain imaging techniques. Here, we sought to investigate long-term structural brain changes in a model of mild focal ischaemic stroke following injection of endothlin-1 in adult Long–Evans rats (n = 14) compared with sham animals (n = 10), over a clinically relevant time-frame of 48 weeks. Serial structural and diffusion-weighted MRI data were used to assess dynamic volume and white matter trajectories. We observed dynamic regional brain volume changes over the 48 weeks, reflecting both normal changes with age in sham animals and neurodegeneration in regions connected to the infarct following ischaemia. Ipsilesional cortical volume loss peaked at 24 weeks but was less prominent at 36 and 48 weeks. We found significantly reduced fractional anisotropy in both ipsi- and contralesional motor cortex and cingulum bundle regions of infarcted rats (P < 0.05) from 4 to 36 weeks, suggesting ongoing white matter degeneration in tracts connected to but distant from the stroke. We conclude that there is evidence of significant cortical atrophy and white matter degeneration up to 48 weeks following infarct, consistent with enduring, pervasive stroke-related degeneration.
Collapse
Affiliation(s)
- Warda Syeda
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne , Parkville, Victoria , Australia
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Mohamed Salah Khilf
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - David Wright
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Leigh A Johnston
- The Melbourne Brain Centre Imaging Unit, The University of Melbourne , Parkville, Victoria , Australia
- Department of Biomedical Engineering, The University of Melbourne , Parkville, Victoria , Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| |
Collapse
|
7
|
Tomer O, Barazany D, Baratz Z, Tsarfaty G, Assaf Y. In vivo measurements of lamination patterns in the human cortex. Hum Brain Mapp 2022; 43:2861-2868. [PMID: 35274794 PMCID: PMC9120563 DOI: 10.1002/hbm.25821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The laminar composition of the cerebral cortex is tightly connected to the development and connectivity of the brain, as well as to function and pathology. Although most of the research on the cortical layers is done with the aid of ex vivo histology, there have been recent attempts to use magnetic resonance imaging (MRI) with potential in vivo applications. However, the high-resolution MRI technology and protocols required for such studies are neither common nor practical. In this article, we present a clinically feasible method for assessing the laminar properties of the human cortex using standard pulse sequence available on any common MRI scanner. Using a series of low-resolution inversion recovery (IR) MRI scans allows us to calculate multiple T1 relaxation time constants for each voxel. Based on the whole-brain T1 -distribution, we identify six different gray matter T1 populations and their variation across the cortex. Based on this, we show age-related differences in these population and demonstrate that this method is able to capture the difference in laminar composition across varying brain areas. We also provide comparison to ex vivo high-resolution MRI scans. We show that this method is feasible for the estimation of layer variability across large population cohorts, which can lead to research into the links between the cortical layers and function, behavior and pathologies that was heretofore unexplorable.
Collapse
Affiliation(s)
- Omri Tomer
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Daniel Barazany
- The Strauss Center for Computational NeuroimagingTel Aviv UniversityTel AvivIsrael
| | - Zvi Baratz
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, Tel‐Hashomer, Affiliated to the Faculty of MedicineTel Aviv UniversityTel AvivIsrael
| | - Yaniv Assaf
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
- The Strauss Center for Computational NeuroimagingTel Aviv UniversityTel AvivIsrael
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life ScienceTel Aviv UniversityTel AvivIsrael
| |
Collapse
|
8
|
Graterol Pérez JA, Guder S, Choe CU, Gerloff C, Schulz R. Relationship Between Cortical Excitability Changes and Cortical Thickness in Subcortical Chronic Stroke. Front Neurol 2022; 13:802113. [PMID: 35345406 PMCID: PMC8957093 DOI: 10.3389/fneur.2022.802113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Ischemic stroke leads to excitability changes of the motor network as probed by means of transcranial magnetic stimulation (TMS). There is still limited data that shows to what extent structural alterations of the motor network might be linked to excitability changes. Previous results argue that the microstructural state of specific corticofugal motor tracts such as the corticospinal tract associate with cortical excitability in chronic stroke patients. The relationship between changes of cortical anatomy after stroke, as operationalized by means of decreases or increases in local cortical thickness (CT), has scarcely been addressed. In the present study, we re-analyzed TMS data and recruitment curve properties of motor evoked potentials and CT data in a group of 14 well-recovered chronic stroke patients with isolated supratentorial subcortical lesions. CT data of the stroke patients were compared to CT data of 17 healthy controls. Whole-brain and region-of-interest based analyses were conducted to relate CT data to measures of motor cortical excitability and clinical data. We found that stroke patients exhibited significantly reduced CT not only in the ipsilesional primary motor cortex but also in numerous secondary motor and non-motor brain regions, particularly in the ipsilesional hemisphere including areas along the central sulcus, the inferior frontal sulcus, the intraparietal sulcus, and cingulate cortices. We could not detect any significant relationship between the extent of CT reduction and stroke-related excitability changes of the motor network or clinical scores.
Collapse
Affiliation(s)
- José A Graterol Pérez
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Chi-Un Choe
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
9
|
Xu Z, Li F, Xing D, Song H, Chen J, Duan Y, Yang B. A Novel Imaging Biomarker for Cerebral Small Vessel Disease Associated With Cognitive Impairment: The Deep-Medullary-Veins Score. Front Aging Neurosci 2021; 13:720481. [PMID: 34759812 PMCID: PMC8572877 DOI: 10.3389/fnagi.2021.720481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/04/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the biomarkers of cerebral small vessel disease (CSVD) associated with cognitive impairment. Methods: A total of 69 patients with CSVD were enrolled in the study, and baseline clinical and imaging data were reviewed retrospectively. The following neuroimaging biomarkers of CSVD were identified: high-grade white matter hyperintensity (HWMH), cerebral microbleeds (CMB), enlarged perivascular space (PVS), and lacunar infarct (LI). A total score for CSVD was calculated. The deep medullary veins (DMVs) were divided into six segments according to the regional anatomy. The total DMV score (0–18) was derived from the sum of the scores of the six individual segments, the scores of which ranged from 0 to 3, for a semiquantitative assessment of the DMV that was based on segmental continuity and visibility. Results: The DMV score, patient age, and total CSVD score were independently associated with the presence or absence of cognitive impairment in patients with CSVD (P < 0.05). By integrating patient age and the total CSVD and DMV scores, the area under the curve of the receiver operating characteristic curve (AUROC) for predicting CSVD associated with cognitive impairment was 0.885, and the sensitivity and specificity were 64.71 and 94.23%, respectively. Conclusions: The DMV score may be a novel imaging biomarker for CSVD associated with cognitive impairment. The integration of the DMV score with age and total CSVD score should increase the predictive value of the DMV score for CSVD associated with cognitive impairment.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of Radiology, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Fangfei Li
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China
| | - Dengxiang Xing
- Center for Medical Data, General Hospital of Northern Theater Command, Shenyang, China
| | - Hongyan Song
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jingshu Chen
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Duan
- Center for Neuroimaging, Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Dalian Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, Jinzhou Medical University, Shenyang, China.,General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China
| | - Benqiang Yang
- General Hospital of Northern Theater Command Training Base for Graduate, China Medical University, Shenyang, China.,Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
10
|
Hong H, Yu X, Zhang R, Jiaerken Y, Wang S, Luo X, Lou M, Huang P, Zhang M. Cortical degeneration detected by neurite orientation dispersion and density imaging in chronic lacunar infarcts. Quant Imaging Med Surg 2021; 11:2114-2124. [PMID: 33936992 DOI: 10.21037/qims-20-880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Although lacunar infarcts are focal lesions, they may also have more widespread effects. A reduction in cortical thickness in the remote cortex after lacunar infarcts has been detected by structural imaging; however, its underlying microstructural changes are yet to be elucidated. This study aimed to investigate the effects of lacunar infarcts on the microstructural abnormalities associated with cortical thickness reduction in the remote cortex. Methods Thirty-seven patients with chronic lacunar infarcts were included. Brain structural magnetic resonance images (MRIs) and diffusion tensor images were acquired. We constructed the white matter tracts connecting with the lacunar infarcts and identified the connected cortical area based on a standard brain atlas warped into the subject space. Cortical thickness and microstructural neurite orientation dispersion and density imaging (NODDI) metrics of the ipsilesional and contralesional cortices were compared, and correlations between cortical thickness and NODDI metrics were also investigated. Results We found decreased cortical thickness and reduced neurite orientation dispersion index (ODI) in the ipsilesional cortex (2.47 vs. 2.50 mm, P=0.008; 0.451 vs. 0.456, P=0.035, respectively). In patients with precentral gyrus involvement (n=23), we found that ODI in the ipsilesional cortex was correlated with cortical thickness (r=0.437, P=0.037), and ODI in the contralesional cortex was also correlated with contralesional cortical thickness (r=0.440, P=0.036). Conclusions NODDI metrics could reflect cortical microstructural changes following lacunar infarcts. The correlation between decreased ODI and reduced cortical thickness suggests that dendrites' loss might contribute to lacunar infarct-related cortical atrophy.
Collapse
Affiliation(s)
- Hui Hong
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xinfeng Yu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Ruiting Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Yeerfan Jiaerken
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shuyue Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Lotan E, Tomer O, Tavor I, Blatt I, Goldberg-Stern H, Hoffmann C, Tsarfaty G, Tanne D, Assaf Y. Widespread cortical dyslamination in epilepsy patients with malformations of cortical development. Neuroradiology 2020; 63:225-234. [PMID: 32975591 DOI: 10.1007/s00234-020-02561-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/16/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE Recent research in epilepsy patients confirms our understanding of epilepsy as a network disorder with widespread cortical compromise. Here, we aimed to investigate the neocortical laminar architecture in patients with focal cortical dysplasia (FCD) and periventricular nodular heterotopia (PNH) using clinically feasible 3 T MRI. METHODS Eighteen epilepsy patients (FCD and PNH groups; n = 9 each) and age-matched healthy controls (n = 9) underwent T1 relaxation 3 T MRI, from which component probability T1 maps were utilized to extract sub-voxel composition of 6 T1 cortical layers. Seventy-eight cortical areas of the automated anatomical labeling atlas were divided into 1000 equal-volume sub-areas for better detection of cortical abnormalities, and logistic regressions were performed to compare FCD/PNH patients with healthy controls with the T1 layers composing each sub-area as regressors. Statistical significance (p < 0.05) was determined by a likelihood-ratio test with correction for false discovery rate using Benjamini-Hochberg method. RESULTS Widespread cortical abnormalities were observed in the patient groups. Out of 1000 sub-areas, 291 and 256 bilateral hemispheric cortical sub-areas were found to predict FCD and PNH, respectively. For each of these sub-areas, we were able to identify the T1 layer, which contributed the most to the prediction. CONCLUSION Our results reveal widespread cortical abnormalities in epilepsy patients with FCD and PNH, which may have a role in epileptogenesis, and likely related to recent studies showing widespread structural (e.g., cortical thinning) and diffusion abnormalities in various human epilepsy populations. Our study provides quantitative information of cortical laminar architecture in epilepsy patients that can be further targeted for study in functional and neuropathological studies.
Collapse
Affiliation(s)
- Eyal Lotan
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel.
- Department of Radiology, NYU Langone Medical Center, 660 1st Ave, New York, NY, 10016, USA.
| | - Omri Tomer
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ido Tavor
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Ilan Blatt
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Hadassah Goldberg-Stern
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurology, Schneider Children's Medical Center of Israel, 49202, Petah Tikva, Israel
| | - Chen Hoffmann
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Galia Tsarfaty
- Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
| | - David Tanne
- Sackler Faculty of Medicine, Tel Aviv University, 69978, Tel Aviv, Israel
- Stroke Center, Department of Neurology and Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, 52621, Ramat Gan, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| |
Collapse
|