1
|
Su M, Ren F, Li N, Li F, Zhao M, Hu X, Edden R, Li M, Li X, Gao F. Alterations of Excitation-Inhibition Balance and Brain Network Dynamics Support Sensory Deprivation Theory in Presbycusis. Hum Brain Mapp 2024; 45:e70067. [PMID: 39502006 PMCID: PMC11538860 DOI: 10.1002/hbm.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/12/2024] [Accepted: 10/19/2024] [Indexed: 11/09/2024] Open
Abstract
Sensory deprivation theory is an important hypothesis involving potential pathways between hearing loss and cognitive impairment in patients with presbycusis. The theory suggests that prolonged auditory deprivation in presbycusis, including neural deafferentation, cortical reallocation, and atrophy, causes long-lasting changes and reorganization in brain structure and function. However, neurophysiological changes underlying the cognition-ear link have not been explored. In this study, we recruited 98 presbycusis patients and 60 healthy controls and examined the differences between the two groups in gamma-aminobutyric acid (GABA) and glutamate (Glu) levels in bilateral auditory cortex, excitation-inhibition (E/I) balance (Glu/GABA ratio), dynamic functional network connectivity (dFNC), hearing ability and cognitive performance. Then, correlations with each other were investigated and variables with statistical significance were further analyzed using the PROCESS Macro in SPSS. GABA levels in right auditory cortex and Glu levels in bilateral auditory cortex were lower but E/I balance in right auditory cortex were higher in presbycusis patients compared to healthy controls. Hearing assessments and cognitive performance were worse in presbycusis patients. Three recurring connectivity states were identified after dFNC analysis: State 1 (least frequent, middle-high dFNC strength with negative functional connectivity), State 2 (high dFNC strength), and State 3 (most frequent, low dFNC strength). The occurrence and dwell time of State 3 were higher, on the other hand, the dwell time of State 2 decreased in patients with presbycusis compared to healthy controls. In patients with presbycusis, worse hearing assessments and cognition were correlated with decreased GABA levels, increased E/I balance, and aberrant dFNC, decreased GABA levels and increased E/I balance were correlated with decreased occurrence and dwell time in State 3. In the mediation model, the fractional windows, as well as dwell time in State 3, mediated the relationship between the E/I balance in right auditory cortex and episodic memory (Auditory Verbal Learning Test, AVLT) in presbycusis. Moreover, in patients with presbycusis, we found that worse hearing loss contribute to lower GABA levels, higher E/I balance, and further impact aberrant dFNC, which caused lower AVLT scores. Overall, the results suggest that a shift in E/I balance in right auditory cortex plays an important role in cognition-ear link reorganization and provide evidence for sensory deprivation theory, enhancing our understanding the connection between neurophysiological changes and cognitive impairment in presbycusis. In presbycusis patients, E/I balance may serve as a potential neuroimaging marker for exploring and predicting cognitive impairment.
Collapse
Affiliation(s)
- Meixia Su
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Fuxin Ren
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Ning Li
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Fuyan Li
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Min Zhao
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Xin Hu
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Richard A. E. Edden
- Russell H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | - Muwei Li
- Vanderbilt University Institute of Imaging ScienceNashvilleTennesseeUSA
| | - Xiao Li
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Fei Gao
- Department of RadiologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| |
Collapse
|
2
|
Ranran H, Aijie W, Yafei Z, Xinru B, Yi L, Xianghua B, Yunxin L, Guochao L, Guowei Z. Alterations of resting-state functional network connectivity in patients with noise-induced hearing loss: A study based on independent component analysis. Eur J Neurosci 2024; 59:2029-2045. [PMID: 38279577 DOI: 10.1111/ejn.16266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 01/28/2024]
Abstract
Functional reorganization is a response to auditory deficits or deprivation, and less is known about the overall brain network alterations involving resting-state networks (RSNs) and multiple functional networks in patients with occupational noise-induced hearing loss (NIHL). So this study evaluated resting-state functional network connectivity (FNC) alterations in occupational NIHL using an independent component analysis (ICA). In total, 79 mild NIHL patients (MP), 32 relatively severe NIHL patients (RSP), and 84 age- and education- matched healthy controls (HC) were recruited. All subjects were tested using the Mini-mental State Examination scale, the tinnitus Handicap Inventory scale, the Hamilton Anxiety scale (HAMA) and scanned by T1-3DFSPGR, resting-state functional magnetic resonance imaging sequence in 3.0 T and analysed by the ICA. Seven RSNs were identified, compared with the HC, the MP showed increased FNC within the executive control network (ECN) and enhanced FNC within the default mode network (DMN) and the visual network (VN); compared with the HC, the RSP showed decreased FNC within the ECN and auditory network (AUN), DMN and VN; no significant changes in FNC were found in the MP compared with the RSP. Furthermore, the correlation analysis between the noise exposure time and hearing loss level, HAMA were both negative, and there were no significant correlations between the abnormal RSNs and the hearing level, noise exposure time and HAMA. These findings indicate that different degrees of NIHL involve different alterations in RSNs connectivity and may reveal the neural mechanisms related to emotion-related features and functional abnormalities following long-term NIHL.
Collapse
Affiliation(s)
- Huang Ranran
- Radiology Department, Yantaishan Hospital, Yantai, China
| | - Wang Aijie
- Radiology Department, Yantaishan Hospital, Yantai, China
| | - Zhang Yafei
- Radiology Department, Yantaishan Hospital, Yantai, China
| | - Ba Xinru
- Radiology Department, Yantaishan Hospital, Yantai, China
| | - Lin Yi
- Radiology Department, Yantaishan Hospital, Yantai, China
| | - Bao Xianghua
- Occupational Department, Yantaishan Hospital, Yantai, China
| | - Li Yunxin
- Radiology Department, Yantaishan Hospital, Yantai, China
| | - Li Guochao
- Radiology Department, Yantaishan Hospital, Yantai, China
| | - Zhang Guowei
- Radiology Department, Yantaishan Hospital, Yantai, China
| |
Collapse
|
3
|
Katanga JA, Hamilton CA, Walker L, Attems J, Thomas AJ. Age-related hearing loss and dementia-related neuropathology: An analysis of the United Kingdom brains for dementia research cohort. Brain Pathol 2023; 33:e13188. [PMID: 37551936 PMCID: PMC10580004 DOI: 10.1111/bpa.13188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023] Open
Abstract
Age-related hearing loss frequently precedes or coexists with mild cognitive impairment and dementia. The role specific neuropathologies play in this association, as either a cause or a consequence, is unclear. We therefore aimed to investigate whether specific dementia related neuropathologies were associated with hearing impairment in later life. We analysed data on ante-mortem hearing impairment with post-mortem neuropathological data for 442 participants from the Brains for Dementia Research Cohort. Binary logistic regression models were used to estimate the association of hearing impairment with the presence of each dementia-related neuropathology overall, and with specific staged changes. All analyses adjusted for age and sex, and several sensitivity analyses were conducted to test the robustness of findings. Presence and density of neuritic plaques were associated with higher odds of hearing impairment ante-mortem (OR = 3.65, 95% CI 1.78-7.46 for frequent density of plaques). Presence of any LB disease was likewise associated with hearing impairment (OR = 2.10, 95% CI 1.27-3.48), but this did not increase with higher cortical pathology (OR = 1.53, 95% CI 0.75-3.11). Nonspecific amyloid deposition, neurofibrillary tangle staging, overall AD neuropathology level, and cerebrovascular disease were not clearly associated with increased risks of hearing impairment. Our results provide some support for an association between dementia-related neuropathology and hearing loss and suggest that hearing loss may be associated with a high neuritic plaque burden and more common in Lewy body disease.
Collapse
Affiliation(s)
- Jessica A. Katanga
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Calum A. Hamilton
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Lauren Walker
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Johannes Attems
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| | - Alan J. Thomas
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
4
|
Li N, Ma W, Ren F, Li X, Li F, Zong W, Wu L, Dai Z, Hui SCN, Edden RAE, Li M, Gao F. Neurochemical and functional reorganization of the cognitive-ear link underlies cognitive impairment in presbycusis. Neuroimage 2023; 268:119861. [PMID: 36610677 PMCID: PMC10026366 DOI: 10.1016/j.neuroimage.2023.119861] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Recent studies suggest that the interaction between presbycusis and cognitive impairment may be partially explained by the cognitive-ear link. However, the underlying neurophysiological mechanisms remain largely unknown. In this study, we combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (fMRI) to investigate auditory gamma-aminobutyric acid (GABA) and glutamate (Glu) levels, intra- and inter-network functional connectivity, and their relationships with auditory and cognitive function in 51 presbycusis patients and 51 well-matched healthy controls. Our results confirmed reorganization of the cognitive-ear link in presbycusis, including decreased auditory GABA and Glu levels and aberrant functional connectivity involving auditory networks (AN) and cognitive-related networks, which were associated with reduced speech perception or cognitive impairment. Moreover, mediation analyses revealed that decreased auditory GABA levels and dysconnectivity between the AN and default mode network (DMN) mediated the association between hearing loss and impaired information processing speed in presbycusis. These findings highlight the importance of AN-DMN dysconnectivity in cognitive-ear link reorganization leading to cognitive impairment, and hearing loss may drive reorganization via decreased auditory GABA levels. Modulation of GABA neurotransmission may lead to new treatment strategies for cognitive impairment in presbycusis patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Ma
- Department of Otolaryngology, the Central Hospital of Jinan City, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuyan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zongrui Dai
- Westa College, Southwest University, Chongqing, China
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
5
|
Ruan J, Hu X, Liu Y, Han Z, Ruan Q. Vulnerability to chronic stress and the phenotypic heterogeneity of presbycusis with subjective tinnitus. Front Neurosci 2022; 16:1046095. [PMID: 36620444 PMCID: PMC9812577 DOI: 10.3389/fnins.2022.1046095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Age-related functional reserve decline and vulnerability of multiple physiological systems and organs, as well as at the cellular and molecular levels, result in different frailty phenotypes, such as physical, cognitive, and psychosocial frailty, and multiple comorbidities, including age-related hearing loss (ARHL) and/or tinnitus due to the decline in auditory reserve. However, the contributions of chronic non-audiogenic cumulative exposure, and chronic audiogenic stress to phenotypic heterogeneity of presbycusis and/or tinnitus remain elusive. Because of the cumulative environmental stressors throughout life, allostasis systems, the hypothalamus-pituitary-adrenal (HPA) and the sympathetic adrenal-medullary (SAM) axes become dysregulated and less able to maintain homeostasis, which leads to allostatic load and maladaptation. Brain-body communication via the neuroendocrine system promotes systemic chronic inflammation, overmobilization of energetic substances (glucose and lipids), and neuroplastic changes via the non-genomic and genomic actions of glucocorticoids, catecholamines, and their receptors. These systemic maladaptive alterations might lead to different frailty phenotypes and physical, cognitive, and psychological comorbidities, which, in turn, cause and exacerbate ARHL and/or tinnitus with phenotypic heterogeneity. Chronic audiogenic stressors, including aging accompanying ontological diseases, cumulative noise exposure, and ototoxic drugs as well as tinnitus, activate the HPA axis and SAM directly and indirectly by the amygdala, promoting allostatic load and maladaptive neuroplasticity in the auditory system and other vulnerable brain regions, such as the hippocampus, amygdala, and medial prefrontal cortex (mPFC). In the auditory system, peripheral deafferentation, central disinhibition, and tonotopic map reorganization may trigger tinnitus. Cross-modal maladaptive neuroplasticity between the auditory and other sensory systems is involved in tinnitus modulation. Persistent dendritic growth and formation, reduction in GABAergic inhibitory synaptic inputs induced by chronic audiogenic stresses in the amygdala, and increased dendritic atrophy in the hippocampus and mPFC, might involve the enhancement of attentional processing and long-term memory storage of chronic subjective tinnitus, accompanied by cognitive impairments and emotional comorbidities. Therefore, presbycusis and tinnitus are multisystem disorders with phenotypic heterogeneity. Stressors play a critical role in the phenotypic heterogeneity of presbycusis. Differential diagnosis based on biomarkers of metabonomics study, and interventions tailored to different ARHL phenotypes and/or tinnitus will contribute to healthy aging and improvement in the quality of life.
Collapse
Affiliation(s)
- Jian Ruan
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiuhua Hu
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuehong Liu
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhao Han
- Department of Otolaryngology, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qingwei Ruan
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Clinical Geriatrics, Research Center of Aging and Medicine, Huadong Hospital, Shanghai Medical College, Fudan University, Shanghai, China,*Correspondence: Qingwei Ruan,
| |
Collapse
|
6
|
Zhao T, Tian G. Potential therapeutic role of SIRT1 in age- related hearing loss. Front Mol Neurosci 2022; 15:984292. [PMID: 36204138 PMCID: PMC9530142 DOI: 10.3389/fnmol.2022.984292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 01/11/2023] Open
Abstract
Age-related hearing loss (ARHL) is a major public health burden worldwide that profoundly affects the daily life of elderly people. Silent information regulator 1 (SIRT1 or Sirtuin1), known as a regulator of the cell cycle, the balance of oxidation/antioxidant and mitochondrial function, has been proven to have anti-aging and life-extending effects, and its possible connection with ARHL has received increasing attention in recent years. This paper provides an overview of research on the connection between SIRT1 and ARHL. Topics cover both the functions of SIRT1 and its important role in ARHL. This review concludes with a look at possible research directions for ARHL in the future.
Collapse
Affiliation(s)
- Tingting Zhao
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Guangyong Tian
- Department of Otorhinolaryngology-Head and Neck Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
7
|
Lampignano L, Quaranta N, Bortone I, Tirelli S, Zupo R, Castellana F, Donghia R, Guerra V, Griseta C, Pesole PL, Chieppa M, Logroscino G, Lozupone M, Cisternino AM, De Pergola G, Panza F, Giannelli G, Boeing H, Sardone R. Dietary Habits and Nutrient Intakes Are Associated to Age-Related Central Auditory Processing Disorder in a Cohort From Southern Italy. Front Aging Neurosci 2021; 13:629017. [PMID: 34025388 PMCID: PMC8134698 DOI: 10.3389/fnagi.2021.629017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objectives Central auditory processing disorder (CAPD) commonly occurs in older age. However, few studies of a possible link between age-related CAPD and diet in an older population have been conducted. The objective of the present study was to investigate the relationship between eating habits and age-related CAPD in a population >65 years, using cross-sectional and retrospective data obtained in the same population-based study about 12 years ago. Methods We selected 734 participants (403 men) from a large population-based study. For age-related CAPD assessment, we used the Synthetic Sentence Identification with Ipsilateral Competitive Message test. Dietary habits were assessed by a Food Frequency Questionnaire. Associations between age-related CAPD and food groups/macro-and micronutrients were explored using adjusted logistic regression models. Results Age-related CAPD subjects consumed more dairy (111 vs. 98 g/d), olives and vegetable oil (63 vs. 52 g/d) and spirits (2 vs.1 g/d), and less fruits (536 vs. 651 g/d) in the cross-sectional analysis. Age-related CAPD subjects had a lower intake of potassium, vitamin C, and a higher fat intake. Further analyses identified dietary fiber as being inversely related to age-related CAPD. Discussion The present study provided evidence that the dietary hypotheses proposed for explaining the development of cognitive disorders in older age might also hold for age-related CAPD. Further data from other large and prospective population-based studies are needed for confirming these findings.
Collapse
Affiliation(s)
- Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Nicola Quaranta
- Otolaryngology Unit, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Sarah Tirelli
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Roberta Zupo
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Rossella Donghia
- Data Analysis Unit, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Vito Guerra
- Data Analysis Unit, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Chiara Griseta
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Pasqua Letizia Pesole
- Laboratory of Clinical Pathology, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Marcello Chieppa
- National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Bari, Italy.,Department of Clinical Research in Neurology, "Pia Fondazione Cardinale G. Panico," Lecce, Italy
| | - Madia Lozupone
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Bari, Italy
| | - Anna Maria Cisternino
- Ambulatory of Clinical Nutrition, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Giovanni De Pergola
- Department of Biomedical Science and Human Oncology, School of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Gianluigi Giannelli
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| | - Heiner Boeing
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy.,Data Analysis Unit, National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy.,German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, "Salus in Apulia Study" National Institute of Gastroenterology "S. de Bellis" Research Hospital, Bari, Italy
| |
Collapse
|
8
|
Sardone R, Sborgia G, Niro A, Giuliani G, Pascale A, Puzo P, Guerra V, Castellana F, Lampignano L, Donghia R, Bortone I, Zupo R, Griseta C, Logroscino G, Lozupone M, Giannelli G, Panza F, Boscia F, Alessio G, Quaranta N. Retinal Vascular Density on Optical Coherence Tomography Angiography and Age-related Central and Peripheral Hearing Loss in a Southern Italian Older Population. J Gerontol A Biol Sci Med Sci 2020; 76:2169-2177. [PMID: 33064801 DOI: 10.1093/gerona/glaa269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Age-related hearing loss (ARHL) and retinal vessel changes have both been associated to neurodegeneration/dementia, suggesting a possible link between these two conditions in older age. We aimed to determine whether superficial and deep vascular density (SVD and DVD) of the capillary plexi of macular vasculature can be associated with peripheral ARHL and age-related central auditory central processing (CAPD). METHODS We analyzed data on 886 older participants (65 years+, age range:65-92 years) in the cross-sectional population-based Salus in Apulia Study. Optical coherence tomography angiography (OCT-A) was used to measure SVD and DVD of the capillary plexi of the macula at the 3-mm circle area centered on the fovea (whole retina), the parafoveal quadrant, and foveal quadrant. Disabling peripheral ARHL was defined as >40 dB HL of pure tone average on the frequencies from 0.5, 1, 2, and 4 KHz in the better ear, and age-related CAPD as <50% at the Synthetic Sentence Identification with Ipsilateral Competitive Message test in at least one ear. RESULTS DVD at the whole retina and at the parafoveal quadrant were inversely associated only with age-related CAPD [odds ratio (OR):0.93; 95% confidence interval (CI): 0.88-0.96 and OR:0.94; 95 CI:0.90-0.99, respectively]. No further associations with peripheral ARHL were evident. CONCLUSIONS Retinal vasculature is associated with central auditory processing pathology, possibly playing an important role in early detection and intervention. The association of retinal vascular density with age-related CAPD may bring us a further step forward in understanding the biological mechanisms underlying the links between neurodegeneration/dementia and ARHL.
Collapse
Affiliation(s)
- Rodolfo Sardone
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Giancarlo Sborgia
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Alfredo Niro
- Eye Clinic, Hospital "S. G. MOSCATI," ASL TA, Taranto, Italy
| | - Gianluigi Giuliani
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Angelo Pascale
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Pasquale Puzo
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Vito Guerra
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Fabio Castellana
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Luisa Lampignano
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Rossella Donghia
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Ilaria Bortone
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Roberta Zupo
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Chiara Griseta
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Giancarlo Logroscino
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
- Unit of Neurodegenerative Disease, Department of Clinical Research in Neurology, University of Bari "Aldo Moro" at "Pia Fondazione Card. G. Panico," Tricase, Lecce, Italy
| | - Madia Lozupone
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Gianluigi Giannelli
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Francesco Panza
- Population Health Unit, "Salus in Apulia Study," National Institute of Gastroenterology "Saverio de Bellis," Research Hospital, Castellana Grotte, Bari, Italy
| | - Francesco Boscia
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Giovanni Alessio
- Eye Clinic, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari "Aldo Moro," Italy
| | - Nicola Quaranta
- Otolaryngology Unit, Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Italy
| |
Collapse
|