1
|
Stephen CD. Childhood-onset writer's cramp, with later ataxia: A clue to COQ8A-related disorders. Parkinsonism Relat Disord 2024; 123:106014. [PMID: 38355377 PMCID: PMC11144560 DOI: 10.1016/j.parkreldis.2024.106014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Affiliation(s)
- Christopher D Stephen
- Ataxia Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Dystonia Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Ben Jdila M, Kammoun F, Abdelmaksoud-Dammak R, Triki C, Fakhfakh F. Mutation in the β-tubulin gene TUBB4A results in epileptic encephalopathy associated with hypomyelinated leucodystrophy: Unexpected findings reveal genetic mosaicism. Int J Dev Neurosci 2023; 83:532-545. [PMID: 37529938 DOI: 10.1002/jdn.10284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023] Open
Abstract
INTRODUCTION Epileptic encephalopathies (EEs) are a group of heterogeneous epileptic syndromes characterized by early-onset refractory seizures, specific EEG abnormalities, developmental delay or regression and intellectual disability. The genetic spectrum of EE is very wide with mutations in a number of genes having various functions, such as those encoding AMPA ionotropic and glutamate receptors as well as voltage-gated ion channels. However, the list of EE-responsible genes could certainly be enlarged by next-generation sequencing. PATIENTS AND METHODS The present study reports a clinical investigation and a molecular analysis by the whole exome sequencing (WES) and pyrosequencing of a patient's family affected by epileptic spasms and severe psychomotor delay. RESULTS Clinical and radiological investigations revealed that the patient presented clinical features of severe and drug-resistant EE-type infantile epileptic spasm syndrome that evolved to Lennox Gastaut syndrome with radiological findings of hypomyelinated leukodystrophy. The results of WES revealed the presence of a novel heterozygous c.466C>T mutation in exon 4 of the TUBB4A gene in the patient. This transition led to the replacement of arginine by cysteine at position 156 (p.R156C) of the conserved helix 4 among the N-terminal domain of the TUBB4A protein. Bioinformatic tools predicted its deleterious effects on the structural arrangement and stability of the protein. The presence of the mutation in the asymptomatic father suggested the hypothesis of somatic mosaicism that was tested by pyrosequencing of DNA from two tissues of the patient and her father. The obtained results showed a lower rate of mutated alleles in the asymptomatic father compared with the affected daughter in both lymphocytes and buccal mucosa cells, confirming the occurrence of paternal mosaicism. The phenotypic features of the patient were also compared with those of previously described patients presenting TUBB4A mutations. CONCLUSIONS Our study is the first to report a disease-causing variant in the TUBB4A gene in a patient with EE associated with hypomyelinated leucodystrophy. In addition, we expanded the phenotypic spectrum associated with the TUBB4A gene.
Collapse
Affiliation(s)
- Marwa Ben Jdila
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Sfax, Tunisia
| | - Fatma Kammoun
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
- Child Neurology Department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - Rania Abdelmaksoud-Dammak
- Center of Biotechnology of Sfax, Laboratory of Eucaryotes Molecular Biotechnology, University of Sfax, Sfax, Tunisia
| | - Chahnez Triki
- Research Laboratory 'NeuroPédiatrie' (LR19ES15), Sfax Medical School, Sfax University, Sfax, Tunisia
- Child Neurology Department, Hedi Chaker University Hospital of Sfax, Sfax, Tunisia
| | - Faiza Fakhfakh
- Laboratory of Molecular and Functional Genetics, Faculty of Science of Sfax, Sfax University, Sfax, Tunisia
| |
Collapse
|
3
|
Torii T, Yamauchi J. Molecular Pathogenic Mechanisms of Hypomyelinating Leukodystrophies (HLDs). Neurol Int 2023; 15:1155-1173. [PMID: 37755363 PMCID: PMC10538087 DOI: 10.3390/neurolint15030072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
Hypomyelinating leukodystrophies (HLDs) represent a group of congenital rare diseases for which the responsible genes have been identified in recent studies. In this review, we briefly describe the genetic/molecular mechanisms underlying the pathogenesis of HLD and the normal cellular functions of the related genes and proteins. An increasing number of studies have reported genetic mutations that cause protein misfolding, protein dysfunction, and/or mislocalization associated with HLD. Insight into the mechanisms of these pathways can provide new findings for the clinical treatments of HLD.
Collapse
Affiliation(s)
- Tomohiro Torii
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe-shi 610-0394, Japan
- Center for Research in Neurodegenerative Disease, Doshisha University, Kyotanabe-shi 610-0394, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji 192-0392, Japan
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya-ku 157-8535, Japan
| |
Collapse
|
4
|
Salamon A, Nagy ZF, Pál M, Szabó M, Csősz Á, Szpisjak L, Gárdián G, Zádori D, Széll M, Klivényi P. Genetic Screening of a Hungarian Cohort with Focal Dystonia Identified Several Novel Putative Pathogenic Gene Variants. Int J Mol Sci 2023; 24:10745. [PMID: 37445923 DOI: 10.3390/ijms241310745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Dystonia is a rare movement disorder which is characterized by sustained or intermittent muscle contractions causing abnormal and often repetitive movements, postures, or both. The two most common forms of adult-onset focal dystonia are cervical dystonia (CD) and benign essential blepharospasm (BSP). A total of 121 patients (CD, 74; BSP, 47) were included in the study. The average age of the patients was 64 years. For the next-generation sequencing (NGS) approach, 30 genes were selected on the basis of a thorough search of the scientific literature. Assessment of 30 CD- and BSP-associated genes from 121 patients revealed a total of 209 different heterozygous variants in 24 genes. Established clinical and genetic validity was determined for nine heterozygous variations (three likely pathogenic and six variants of uncertain significance). Detailed genetic examination is an important part of the work-up for focal dystonia forms. To our knowledge, our investigation is the first such study to be carried out in the Middle-European region.
Collapse
Affiliation(s)
- András Salamon
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Zsófia Flóra Nagy
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 78/b, Üllői Str., H-1083 Budapest, Hungary
| | - Margit Pál
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
| | - Máté Szabó
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Ádám Csősz
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - László Szpisjak
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Gabriella Gárdián
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| |
Collapse
|
5
|
Bally JF, Kern DS, Fearon C, Camargos S, Pereira da Silva‐Junior F, Barbosa ER, Ozelius LJ, Carvalho Aguiar P, Lang AE. DYT‐TUBB4A
(
DYT4
Dystonia): Clinical Anthology of 11 Cases and Systematized Review. Mov Disord Clin Pract 2022; 9:659-675. [PMID: 35844288 PMCID: PMC9274350 DOI: 10.1002/mdc3.13452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/02/2022] [Accepted: 02/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background DYT‐TUBB4A, formerly known as DYT4, has not been comprehensively described as only one large family and three individual cases have been published. We have recently described an in depth genetic and protein structural analysis of eleven additional cases from four families with four new pathogenic variants. We aim to report on the phenomenology of these cases suffering from DYT‐TUBB4A and to perform a comprehensive review of the clinical presentation and treatment responses of all DYT‐TUBB4A cases reported in the literature. Cases and Literature Review The clinical picture was typically characterized by laryngeal dystonia (more than three quarters of all cases), associated with cervical dystonia, upper limb dystonia and frequent generalization. Extension of the dystonia to the lower limbs, creating the famous “hobby horse” gait, was present in more than 20% of cases (in only one of ours). Globus pallidus pars interna (GPi) deep brain stimulation (DBS), performed in 4 cases, led to a good improvement with greatest benefit in motoric and less benefit in laryngeal symptoms. Medical treatment was generally rather poorly effective, except some benefit from propranolol, tetrabenazine and alcohol intake. Conclusion Laryngeal involvement is a hallmark of DYT‐TUBB4A. Symptomatic treatment with GPi‐DBS led to the greatest benefit in motoric symptoms. Nevertheless, TUBB4A mutations remain an exceedingly rare cause of laryngeal or other isolated dystonia and regular screening of TUBB4A mutations for isolated dystonias has a very low yield.
Collapse
Affiliation(s)
- Julien F. Bally
- Service of Neurology, Department of Clinical Neurosciences Lausanne University Hospital and University of Lausanne Lausanne Switzerland
- The Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital & University of Toronto Toronto Ontario Canada
| | - Drew S. Kern
- Department of Neurology University of Colorado School of Medicine Aurora Colorado USA
- Department of Neurosurgery University of Colorado School of Medicine Aurora Colorado USA
| | - Conor Fearon
- The Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital & University of Toronto Toronto Ontario Canada
| | - Sarah Camargos
- Department of Internal Medicine Universidade Federal de Minas Gerais Belo Horizonte Brazil
| | | | | | - Laurie J. Ozelius
- Department of Neurology Massachusetts General Hospital Boston Massachusetts USA
| | - Patricia Carvalho Aguiar
- Hospital Israelita Albert Einstein Sao Paulo Brazil
- Department of Neurology and Neurosurgery Universidade Federal de Sao Paulo Sao Paulo Brazil
| | - Anthony E. Lang
- The Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital & University of Toronto Toronto Ontario Canada
| |
Collapse
|
6
|
Krajka V, Vulinovic F, Genova M, Tanzer K, Jijumon AS, Bodakuntla S, Tennstedt S, Mueller-Fielitz H, Meier B, Janke C, Klein C, Rakovic A. H-ABC- and dystonia-causing TUBB4A mutations show distinct pathogenic effects. SCIENCE ADVANCES 2022; 8:eabj9229. [PMID: 35275727 PMCID: PMC8916731 DOI: 10.1126/sciadv.abj9229] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Mutations in the brain-specific β-tubulin 4A (TUBB4A) gene cause a broad spectrum of diseases, ranging from dystonia (DYT-TUBB4A) to hypomyelination with atrophy of the basal ganglia and cerebellum (H-ABC). Currently, the mechanisms of how TUBB4A variants lead to this pleiotropic manifestation remain elusive. Here, we investigated whether TUBB4A mutations causing either DYT-TUBB4A (p.R2G and p.Q424H) or H-ABC (p.R2W and p.D249N) exhibit differential effects at the molecular and cellular levels. Using live-cell imaging of disease-relevant oligodendrocytes and total internal reflection fluorescence microscopy of whole-cell lysates, we observed divergent impact on microtubule polymerization and microtubule integration, partially reflecting the observed pleiotropy. Moreover, in silico simulations demonstrated that the mutants rarely adopted a straight heterodimer conformation in contrast to wild type. In conclusion, for most of the examined variants, we deciphered potential molecular disease mechanisms that may lead to the diverse clinical manifestations and phenotype severity across and within each TUBB4A-related disease.
Collapse
Affiliation(s)
- Victor Krajka
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Institute of Microtechnology (IMT), Technische Universität Braunschweig, Braunschweig 38124, Germany
| | - Franca Vulinovic
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Mariya Genova
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Kerstin Tanzer
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - A. S. Jijumon
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Satish Bodakuntla
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Stephanie Tennstedt
- Institute for Cardiogenetics, University of Lübeck, 23562 Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, 23562 Lübeck, Germany
- University Heart Center Lübeck, 23562 Lübeck, Germany
| | - Helge Mueller-Fielitz
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Britta Meier
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Carsten Janke
- Institut Curie, Université PSL, CNRS UMR3348, 91401 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91401 Orsay, France
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Aleksandar Rakovic
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
7
|
Yellajoshyula D, Pappas SS, Dauer WT. Oligodendrocyte and Extracellular Matrix Contributions to Central Nervous System Motor Function: Implications for Dystonia. Mov Disord 2022; 37:456-463. [PMID: 34989453 PMCID: PMC11152458 DOI: 10.1002/mds.28892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
The quest to elucidate nervous system function and dysfunction in disease has focused largely on neurons and neural circuits. However, fundamental aspects of nervous system development, function, and plasticity are regulated by nonneuronal elements, including glial cells and the extracellular matrix (ECM). The rapid rise of genomics and neuroimaging techniques in recent decades has highlighted neuronal-glial interactions and ECM as a key component of nervous system development, plasticity, and function. Abnormalities of neuronal-glial interactions have been understudied but are increasingly recognized to play a key role in many neurodevelopmental disorders. In this report, we consider the role of myelination and the ECM in the development and function of central nervous system motor circuits and the neurodevelopmental disease dystonia. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Samuel S Pappas
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - William T Dauer
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|