1
|
Duy PQ, Mehta NH, Kahle KT. Biomechanical instability of the brain-CSF interface in hydrocephalus. Brain 2024; 147:3274-3285. [PMID: 38798141 PMCID: PMC11449143 DOI: 10.1093/brain/awae155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
Hydrocephalus, characterized by progressive expansion of the CSF-filled ventricles (ventriculomegaly), is the most common reason for brain surgery. 'Communicating' (i.e. non-obstructive) hydrocephalus is classically attributed to a primary derangement in CSF homeostasis, such as choroid plexus-dependent CSF hypersecretion, impaired cilia-mediated CSF flow currents, or decreased CSF reabsorption via the arachnoid granulations or other pathways. Emerging data suggest that abnormal biomechanical properties of the brain parenchyma are an under-appreciated driver of ventriculomegaly in multiple forms of communicating hydrocephalus across the lifespan. We discuss recent evidence from human and animal studies that suggests impaired neurodevelopment in congenital hydrocephalus, neurodegeneration in elderly normal pressure hydrocephalus and, in all age groups, inflammation-related neural injury in post-infectious and post-haemorrhagic hydrocephalus, can result in loss of stiffness and viscoelasticity of the brain parenchyma. Abnormal brain biomechanics create barrier alterations at the brain-CSF interface that pathologically facilitates secondary enlargement of the ventricles, even at normal or low intracranial pressures. This 'brain-centric' paradigm has implications for the diagnosis, treatment and study of hydrocephalus from womb to tomb.
Collapse
Affiliation(s)
- Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Neel H Mehta
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Harvard Medical School and Massachusetts General Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02114, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Developmental Brain and CSF Disorders Program, Massachusetts General Hospital, Boston, MA 02114, USA
- Program in Neuroscience, Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Castaneyra-Ruiz L, Ledbetter J, Lee S, Rangel A, Torres E, Romero B, Muhonen M. Intraventricular dimethyl sulfoxide (DMSO) induces hydrocephalus in a dose-dependent pattern. Heliyon 2024; 10:e27295. [PMID: 38486744 PMCID: PMC10937698 DOI: 10.1016/j.heliyon.2024.e27295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
Introduction Dimethyl sulfoxide (DMSO), a widely utilized solvent in the medical industry, has been associated with various adverse effects, even at low concentrations, including damage to mitochondrial integrity, altered membrane potentials, caspase activation, and apoptosis. Notably, therapeutic molecules for central nervous system treatments, such as embolic agents or some chemotherapy drugs that are dissolved in DMSO, have been associated with hydrocephalus as a secondary complication. Our study investigated the potential adverse effects of DMSO on the brain, specifically focusing on the development of hydrocephalus and the effect on astrocytes. Methods Varied concentrations of DMSO were intraventricularly injected into 3-day-old mice, and astrocyte cultures were exposed to similar concentrations of DMSO. After 14 days of injection, magnetic resonance imaging (MRI) was employed to quantify the brain ventricular volumes in mice. Immunofluorescence analysis was conducted to delineate DMSO-dependent effects in the brain. Additionally, astrocyte cultures were utilized to assess astrocyte viability and the effects of cellular apoptosis. Results Our findings revealed a dose-dependent induction of ventriculomegaly in mice with 2%, 10%, and 100% DMSO injections (p < 0.001). The ciliated cells of the ventricles were also proportionally affected by DMSO concentration (p < 0.0001). Furthermore, cultured astrocytes exhibited increased apoptosis after DMSO exposure (p < 0.001). Conclusion Our study establishes that intraventricular administration of DMSO induces hydrocephalus in a dose-dependent manner. This observation sheds light on a potential explanation for the occurrence of hydrocephalus as a secondary complication in intracranial treatments utilizing DMSO as a solvent.
Collapse
Affiliation(s)
| | | | - Seunghyun Lee
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Anthony Rangel
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Evelyn Torres
- CHOC Children's Research Institute, Orange, CA, 92868, USA
| | - Bianca Romero
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| | - Michael Muhonen
- Neurosurgery Department at CHOC Children's Hospital, Orange, CA, 92868, USA
| |
Collapse
|
3
|
Taherzadeh M, Zhang E, Londono I, De Leener B, Wang S, Cooper JD, Kennedy TE, Morales CR, Chen Z, Lodygensky GA, Pshezhetsky AV. Severe central nervous system demyelination in Sanfilippo disease. Front Mol Neurosci 2023; 16:1323449. [PMID: 38163061 PMCID: PMC10756675 DOI: 10.3389/fnmol.2023.1323449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Introduction Chronic progressive neuroinflammation is a hallmark of neurological lysosomal storage diseases, including mucopolysaccharidosis III (MPS III or Sanfilippo disease). Since neuroinflammation is linked to white matter tract pathology, we analyzed axonal myelination and white matter density in the mouse model of MPS IIIC HgsnatP304L and post-mortem brain samples of MPS III patients. Methods Brain and spinal cord tissues of human MPS III patients, 6-month-old HgsnatP304L mice and age- and sex-matching wild type mice were analyzed by immunofluorescence to assess levels of myelin-associated proteins, primary and secondary storage materials, and levels of microgliosis. Corpus callosum (CC) region was studied by transmission electron microscopy to analyze axon myelination and morphology of oligodendrocytes and microglia. Mouse brains were analyzed ex vivo by high-filed MRI using Diffusion Basis Spectrum Imaging in Python-Diffusion tensor imaging algorithms. Results Analyses of CC and spinal cord tissues by immunohistochemistry revealed substantially reduced levels of myelin-associated proteins including Myelin Basic Protein, Myelin Associated Glycoprotein, and Myelin Oligodendrocyte Glycoprotein. Furthermore, ultrastructural analyses revealed disruption of myelin sheath organization and reduced myelin thickness in the brains of MPS IIIC mice and human MPS IIIC patients compared to healthy controls. Oligodendrocytes (OLs) in the CC of MPS IIIC mice were scarce, while examination of the remaining cells revealed numerous enlarged lysosomes containing heparan sulfate, GM3 ganglioside or "zebra bodies" consistent with accumulation of lipids and myelin fragments. In addition, OLs contained swollen mitochondria with largely dissolved cristae, resembling those previously identified in the dysfunctional neurons of MPS IIIC mice. Ex vivo Diffusion Basis Spectrum Imaging revealed compelling signs of demyelination (26% increase in radial diffusivity) and tissue loss (76% increase in hindered diffusivity) in CC of MPS IIIC mice. Discussion Our findings demonstrate an important role for white matter injury in the pathophysiology of MPS III. This study also defines specific parameters and brain regions for MRI analysis and suggests that it may become a crucial non-invasive method to evaluate disease progression and therapeutic response.
Collapse
Affiliation(s)
- Mahsa Taherzadeh
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Erjun Zhang
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Irene Londono
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Benjamin De Leener
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- NeuroPoly Lab, Institute of Biomedical Engineering, Department of Computer Engineering and Software Engineering, École Polytechnique de Montréal, Montreal, QC, Canada
| | - Sophie Wang
- Pediatric Storage Disorders Laboratory (PSDL), Departments of Pediatrics, Genetics and Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory (PSDL), Departments of Pediatrics, Genetics and Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy E. Kennedy
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Carlos R. Morales
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Zesheng Chen
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Gregory A. Lodygensky
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
| | - Alexey V. Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Centre, University of Montreal, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Wu Y, Liang P, Li L, Zhou Y, Wang D, Zhai X. Neurodevelopmental outcomes of neonatal posthemorrhagic hydrocephalus and psychological effects on the parents. Childs Nerv Syst 2023:10.1007/s00381-023-05935-y. [PMID: 37081233 PMCID: PMC10390597 DOI: 10.1007/s00381-023-05935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 03/16/2023] [Indexed: 04/22/2023]
Abstract
BACKGROUND Neonatal posthemorrhagic hydrocephalus remains a common complication in preterm infants, with high rates of mortality and morbidity, placing parents at high risk of anxiety and depression. We sought to investigate the neurodevelopmental outcomes of infants with posthemorrhagic hydrocephalus who underwent surgery and the psychological effect on their parents. METHODS We retrospectively analysed all infants with posthemorrhagic hydrocephalus born between 2014 and 2020 in the Children's Hospital of Chongqing Medical University, China. The neurodevelopmental outcomes of 28 patients were evaluated by the Pediatric Stroke Outcome Measure score, and the psychological states of the parents of survivors were assessed by the Hospital Anxiety and Depression Scale. RESULTS The families of the 28 patients were followed up for a median duration of 3 years; 6 (21.4%) patients died within 6 months after discharge, 12 (42.9%) patients had moderate to severe dysfunction, and only 10 (35.7%) patients had good outcomes. Regarding the 22 parents of the survivors, 5 (22.7%) and 4 (18.2%) had borderline anxiety and depression symptoms, respectively. Two (9.1%) caregivers had exact anxiety and depression symptoms. Leukomalacia after intraventricular haemorrhage was associated with adverse neurological outcomes. The infants' histories of epileptic seizures during the neonatal period were associated with the anxiety of their parents. CONCLUSION The overall outcome of posthemorrhagic hydrocephalus patients is unsatisfactory, and children with leukomalacia after haemorrhage tend to have poor outcomes. A history of epileptic seizures during the course of the disease may exacerbate the anxiety of the caregivers.
Collapse
Affiliation(s)
- Yuxin Wu
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400010, China
| | - Ping Liang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400010, China
| | - Lusheng Li
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400010, China
| | - Yudong Zhou
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400010, China
| | - Difei Wang
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400010, China
| | - Xuan Zhai
- Department of Neurosurgery, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No.136, Zhongshan 2nd Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
5
|
Han RH, Johanns TM, Roberts KF, Tao Y, Luo J, Ye Z, Sun P, Blum J, Lin TH, Song SK, Kim AH. Diffusion basis spectrum imaging as an adjunct to conventional MRI leads to earlier diagnosis of high-grade glioma tumor progression versus treatment effect. Neurooncol Adv 2023; 5:vdad050. [PMID: 37215950 PMCID: PMC10195207 DOI: 10.1093/noajnl/vdad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
Background Following chemoradiotherapy for high-grade glioma (HGG), it is often challenging to distinguish treatment changes from true tumor progression using conventional MRI. The diffusion basis spectrum imaging (DBSI) hindered fraction is associated with tissue edema or necrosis, which are common treatment-related changes. We hypothesized that DBSI hindered fraction may augment conventional imaging for earlier diagnosis of progression versus treatment effect. Methods Adult patients were prospectively recruited if they had a known histologic diagnosis of HGG and completed standard-of-care chemoradiotherapy. DBSI and conventional MRI data were acquired longitudinally beginning 4 weeks post-radiation. Conventional MRI and DBSI metrics were compared with respect to their ability to diagnose progression versus treatment effect. Results Twelve HGG patients were enrolled between August 2019 and February 2020, and 9 were ultimately analyzed (5 progression, 4 treatment effect). Within new or enlarging contrast-enhancing regions, DBSI hindered fraction was significantly higher in the treatment effect group compared to progression group (P = .0004). Compared to serial conventional MRI alone, inclusion of DBSI would have led to earlier diagnosis of either progression or treatment effect in 6 (66.7%) patients by a median of 7.7 (interquartile range = 0-20.1) weeks. Conclusions In the first longitudinal prospective study of DBSI in adult HGG patients, we found that in new or enlarging contrast-enhancing regions following therapy, DBSI hindered fraction is elevated in cases of treatment effect compared to those with progression. Hindered fraction map may be a valuable adjunct to conventional MRI to distinguish tumor progression from treatment effect.
Collapse
Affiliation(s)
- Rowland H Han
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tanner M Johanns
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kaleigh F Roberts
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yu Tao
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zezhong Ye
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Peng Sun
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jacob Blum
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tsen-Hsuan Lin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sheng-Kwei Song
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Castañeyra-Ruiz L, Lee S, Chan AY, Shah V, Romero B, Ledbetter J, Muhonen M. Polyvinylpyrrolidone-Coated Catheters Decrease Astrocyte Adhesion and Improve Flow/Pressure Performance in an Invitro Model of Hydrocephalus. CHILDREN (BASEL, SWITZERLAND) 2022; 10:children10010018. [PMID: 36670569 PMCID: PMC9856269 DOI: 10.3390/children10010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
The leading cause of ventricular shunt failure in pediatric patients is proximal catheter occlusion. Here, we evaluate various types of shunt catheters to assess in vitro cellular adhesion and obstruction. The following four types of catheters were tested: (1) antibiotic- and barium-impregnated, (2) polyvinylpyrrolidone, (3) barium stripe, and (4) barium impregnated. Catheters were either seeded superficially with astrocyte cells to test cellular adhesion or inoculated with cultured astrocytes into the catheters to test catheter performance under obstruction conditions. Ventricular catheters were placed into a three-dimensional printed phantom ventricular replicating system through which artificial CSF was pumped. Differential pressure sensors were used to measure catheter performance. Polyvinylpyrrolidone catheters had the lowest median cell attachment compared to antibiotic-impregnated (18 cells), barium stripe (17 cells), and barium-impregnated (21.5 cells) catheters after culture (p < 0.01). In addition, polyvinylpyrrolidone catheters had significantly higher flow in the phantom ventricular system (0.12 mL/min) compared to the antibiotic coated (0.10 mL/min), barium stripe (0.02 mL/min) and barium-impregnated (0.08 mL/min; p < 0.01) catheters. Polyvinylpyrrolidone catheters showed less cellular adhesion and were least likely to be occluded by astrocyte cells. Our findings can help suggest patient-appropriate proximal ventricular catheters for clinical use.
Collapse
Affiliation(s)
- Leandro Castañeyra-Ruiz
- CHOC Children’s Research Institute, and CHOC Neuroscience Institute, 1201 W. La Veta Avenue, Orange, CA 92868, USA
- Correspondence:
| | - Seunghyun Lee
- CHOC Children’s Research Institute, and CHOC Neuroscience Institute, 1201 W. La Veta Avenue, Orange, CA 92868, USA
| | - Alvin Y. Chan
- Neurosurgery Department, CHOC Children’s Hospital, 505 S Main St., Orange, CA 92868, USA
| | - Vaibhavi Shah
- Neurosurgery Department, CHOC Children’s Hospital, 505 S Main St., Orange, CA 92868, USA
| | - Bianca Romero
- CHOC Children’s Research Institute, and CHOC Neuroscience Institute, 1201 W. La Veta Avenue, Orange, CA 92868, USA
| | - Jenna Ledbetter
- CHOC Children’s Research Institute, and CHOC Neuroscience Institute, 1201 W. La Veta Avenue, Orange, CA 92868, USA
| | - Michael Muhonen
- Neurosurgery Department, CHOC Children’s Hospital, 505 S Main St., Orange, CA 92868, USA
| |
Collapse
|
7
|
Castañeyra-Ruiz L, González-Marrero I, Hernández-Abad LG, Lee S, Castañeyra-Perdomo A, Muhonen M. AQP4, Astrogenesis, and Hydrocephalus: A New Neurological Perspective. Int J Mol Sci 2022; 23:10438. [PMID: 36142348 PMCID: PMC9498986 DOI: 10.3390/ijms231810438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Aquaporin 4 (AQP4) is a cerebral glial marker that labels ependymal cells and astrocytes' endfeet and is the main water channel responsible for the parenchymal fluid balance. However, in brain development, AQP4 is a marker of glial stem cells and plays a crucial role in the pathophysiology of pediatric hydrocephalus. Gliogenesis characterization has been hampered by a lack of biomarkers for precursor and intermediate stages and a deeper understanding of hydrocephalus etiology is needed. This manuscript is a focused review of the current research landscape on AQP4 as a possible biomarker for gliogenesis and its influence in pediatric hydrocephalus, emphasizing reactive astrogliosis. The goal is to understand brain development under hydrocephalic and normal physiologic conditions.
Collapse
Affiliation(s)
| | - Ibrahim González-Marrero
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
| | - Luis G. Hernández-Abad
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
| | - Seunghyun Lee
- CHOC Children’s Research Institute, 1201 W, La Veta Avenue, Orange, CA 92868, USA
| | - Agustín Castañeyra-Perdomo
- Departamento de Ciencias Médicas Basicas, Anatomía, Facultad de Medicina, Universidad de La Laguna, Ofra s/n, 38071 La Laguna, Spain
- Instituto de Investigación y Ciencias de Puerto del Rosario, 35600 Puerto del Rosario, Spain
| | - Michael Muhonen
- Neurosurgery Department at CHOC Children’s Hospital, 505 S Main St., Orange, CA 92868, USA
| |
Collapse
|