1
|
Lu J, Wang J, Cheng Y, Shu Z, Wang Y, Zhang X, Zhu Z, Yu Y, Wu J, Han J, Yu N. A Knowledge-Driven Framework Discovers Brain ACtivation-Transition-Spectrum (ACTS) Features for Parkinson's Disease. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3135-3146. [PMID: 39186424 DOI: 10.1109/tnsre.2024.3449316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Dopaminergic treatment has proved effective to Parkinson's disease (PD), but the conventional treatment assessment is human-administered and prone to intra- and inter-assessor variability. In this paper, we propose a knowledge-driven framework and discover that brain ACtivation-Transition-Spectrum (ACTS) features achieve effective quantified assessments of dopaminergic therapy in PD. Firstly, brain activities of fifty-one PD patients during clinical walking tests under the OFF and ON states (without and with dopaminergic medication) were measured with functional near-infrared spectroscopy (fNIRS). Then, brain ACTS features were formulated based on the medication-induced variations in temporal features of brain regional activation, transition features of brain hemodynamic states, and graph spectrum of brain functional connectivity. Afterwards, a prior selection algorithm was constructed based on recursive feature elimination and graph spectrum analysis for the selection of principal discriminative features. Further, linear discriminant analysis was conducted to predict the treatment-induced improvements. The results demonstrated that the proposed method decreased the misclassification probability from 42% to 16% in the evaluations of dopaminergic treatment and outperformed existing fNIRS-based methods. Therefore, the proposed method promises a quantified and objective approach for dopaminergic treatment assessment, and our brain ACTS features may serve as promising functional biomarkers for treatment evaluation.
Collapse
|
2
|
Yang Z, Ye L, Yang L, Lu Q, Yu A, Bai D. Early screening of post-stroke fall risk: A simultaneous multimodal fNIRs-EMG study. CNS Neurosci Ther 2024; 30:e70041. [PMID: 39315509 PMCID: PMC11420627 DOI: 10.1111/cns.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
BACKGROUND Stroke is the third-leading cause of death and disability, and poststroke falls (PSF) are common at all stages after stroke and could even lead to injuries or death. Brain information from functional near-infrared spectroscopy (fNIRs) may precede conventional imaging and clinical symptoms but has not been systematically considered in PSF risk prediction. This study investigated the difference in brain activation between stroke patients and healthy subjects, and this study was aimed to explore fNIRs biomarkers for early screening of PSF risk by comparing the brain activation in patients at and not at PSF risk. METHODS In this study, we explored the differences in brain activation and connectivity between stroke and healthy subjects by synchronizing the detection of fNIRs and EMG tests during simple (usual sit-to-stand) and difficult tasks (sit-to-stand based on EMG feedback). Thereby further screened for neuroimaging biomarkers for early prediction of PSF risk by comparing brain activation variability in poststroke patients at and not at fall risk during simple and difficult tasks. The area under the ROC curve (AUROC), sensitivity, and specificity were used to compare the diagnostic effect. RESULTS A total of 40 patients (22 not at and 18 at PSF risk) and 38 healthy subjects were enrolled. As the difficulty of standing task increased, stroke patients compared with healthy subjects further increased the activation of the unaffected side of supplementary motor area (H-SMA) and dorsolateral prefrontal cortex-Brodmann area 46 (H-DLFC-BA46) but were unable to increase functional connectivity (Group*Task: p < 0.05). More importantly, the novel finding showed that hyperactivation of the H-SMA during a simple standing task was a valid fNIRs predictor of PSF risk [AUROC 0.74, p = 0.010, sensitivity 77.8%, specificity 63.6%]. CONCLUSIONS This study provided novel evidence that fNIR-derived biomarkers could early predict PSF risk that can facilitate the widespread use of real-time assessment tools in early screening and rehabilitation. Meanwhile, this study demonstrated that the higher brain activation and inability to increase the brain functional connectivity in stroke patients during difficult task indicated the inefficient use of brain resources.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liu Ye
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lining Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiuyi Lu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anqi Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dingqun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Carlson SJ, Chiu YF, Landers MR, Fritz NE, Mishra VR, Longhurst JK. Dual-Task Performance and Brain Morphologic Characteristics in Parkinson's Disease. NEURODEGENER DIS 2024:1-11. [PMID: 39084207 DOI: 10.1159/000540393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
INTRODUCTION Parkinson's disease (PD) reduces an individual's capacity for automaticity which limits their ability to perform two tasks simultaneously, negatively impacting daily function. Understanding the neural correlates of dual tasks (DTs) may pave the way for targeted therapies. To better understand automaticity in PD, we aimed to explore whether individuals with differing DT performances possessed differences in brain morphologic characteristics. METHODS Data were obtained from 34 individuals with PD and 47 healthy older adults including (1) demographics (age, sex), (2) disease severity (Movement Disorder Society - Unified Parkinson's Disease Rating Scale [MDS-UPDRS], Hoehn and Yahr, levodopa equivalent daily dose [LEDD]), (3) cognition (Montreal Cognitive Assessment), (4) LEDD, (5) single-task and DT performance during a DT-timed-up-and-go test utilizing a serial subtraction task, and (6) cortical thicknesses and subcortical volumes obtained from volumetric MRI. Participants were categorized as low or high DT performers if their combined DT effect was greater than the previously determined mean value for healthy older adults (μ = -74.2). Nonparametric testing using Quade's ANCOVA was conducted to compare cortical thicknesses and brain volumes between the highDT and lowDT groups while controlling for covariates: age, sex, MDS-UPDRS part III, LEDD, and intracranial volume. Secondarily, similar comparisons were made between the healthy older adult group and the highDT and lowDT groups. Lastly, a hierarchical linear regression model was conducted regressing combined DT effect on covariates (block one) and cortical thicknesses (block 2) in stepwise fashion. RESULTS The highDT group had thicker cortices than the lowDT group in the right primary somatosensory cortex (p = 0.001), bilateral primary motor cortices (p ≤ 0.001, left; p = 0.002, right), bilateral supplementary motor areas (p = 0.001, left; p < 0.001, right), and mean of the bilateral hemispheres (p = 0.001, left; p < 0.001, right). Of note, left primary cortex thickness (p = 0.002), left prefrontal cortex thickness (p < 0.001), and right supplementary motor area thickness (p = 0.003) differed when adding a healthy comparison group. Additionally, the regression analysis found that the left paracentral lobule thickness explained 20.8% of the variability in combined DT effect (p = 0.011) beyond the influence of covariates. CONCLUSIONS These results suggest regions underlying DT performance, specifically, a convergence of neural control relying on sensorimotor integration, motor planning, and motor activation to achieve higher levels of DT performance for individuals with PD.
Collapse
Affiliation(s)
- Sarah J Carlson
- Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, Missouri, USA,
| | - Yi-Fang Chiu
- Department of Speech, Language, and Hearing Sciences, Saint Louis University, St. Louis, Missouri, USA
| | - Merrill R Landers
- Department of Physical Therapy, University of Nevada, Las Vegas, Nevada, USA
| | - Nora E Fritz
- Departments of Health Care Sciences and Neurology, Wayne State University, Detroit, Michigan, USA
| | - Virendra R Mishra
- Department of Radiology, University of Alabama, Birmingham, Alabama, USA
| | - Jason K Longhurst
- Department of Physical Therapy and Athletic Training, Saint Louis University, St. Louis, Missouri, USA
| |
Collapse
|
4
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. EBioMedicine 2024; 105:105201. [PMID: 38908100 PMCID: PMC11253223 DOI: 10.1016/j.ebiom.2024.105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Research in healthy young adults shows that characteristic patterns of brain activity define individual "brain-fingerprints" that are unique to each person. However, variability in these brain-fingerprints increases in individuals with neurological conditions, challenging the clinical relevance and potential impact of the approach. Our study shows that brain-fingerprints derived from neurophysiological brain activity are associated with pathophysiological and clinical traits of individual patients with Parkinson's disease (PD). METHODS We created brain-fingerprints from task-free brain activity recorded through magnetoencephalography in 79 PD patients and compared them with those from two independent samples of age-matched healthy controls (N = 424 total). We decomposed brain activity into arrhythmic and rhythmic components, defining distinct brain-fingerprints for each type from recording durations of up to 4 min and as short as 30 s. FINDINGS The arrhythmic spectral components of cortical activity in patients with Parkinson's disease are more variable over short periods, challenging the definition of a reliable brain-fingerprint. However, by isolating the rhythmic components of cortical activity, we derived brain-fingerprints that distinguished between patients and healthy controls with about 90% accuracy. The most prominent cortical features of the resulting Parkinson's brain-fingerprint are mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also demonstrate that Parkinson's symptom laterality can be decoded directly from cortical neurophysiological activity. Furthermore, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. INTERPRETATION The increased moment-to-moment variability of arrhythmic brain-fingerprints challenges patient differentiation and explains previously published results. We outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and symptom laterality of Parkinson's disease. Thus, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification. Symmetrically, we discuss how rhythmic brain-fingerprints may contribute to the improved identification and testing of therapeutic neurostimulation targets. FUNDING Data collection and sharing for this project was provided by the Quebec Parkinson Network (QPN), the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD; release 6.0) program, the Cambridge Centre for Aging Neuroscience (Cam-CAN), and the Open MEG Archives (OMEGA). The QPN is funded by a grant from Fonds de Recherche du Québec - Santé (FRQS). PREVENT-AD was launched in 2011 as a $13.5 million, 7-year public-private partnership using funds provided by McGill University, the FRQS, an unrestricted research grant from Pfizer Canada, the Levesque Foundation, the Douglas Hospital Research Centre and Foundation, the Government of Canada, and the Canada Fund for Innovation. The Brainstorm project is supported by funding to SB from the NIH (R01-EB026299-05). Further funding to SB for this study included a Discovery grant from the Natural Sciences and Engineering Research Council of Canada of Canada (436355-13), and the CIHR Canada research Chair in Neural Dynamics of Brain Systems (CRC-2017-00311).
Collapse
Affiliation(s)
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| |
Collapse
|
5
|
Xu YC, Wang QQ, Chen MY, Gao YJ, Wang JY, Ge HT, Weng H, Chen JP, Xu GH. The Effect of Gua Sha Therapy on Pain in Parkinson's Disease: a Randomized Controlled Trial. Int J Gen Med 2024; 17:2791-2800. [PMID: 38962174 PMCID: PMC11221773 DOI: 10.2147/ijgm.s461958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/23/2024] [Indexed: 07/05/2024] Open
Abstract
Purpose Pain is a common yet undertreated symptom of Parkinson's disease (PD). This study investigated the effect of Gua Sha therapy on pain in patients with PD. Patients and Methods A total of 56 PD patients with pain were randomized into either the experimental group (n=28), receiving 12 sessions of Gua Sha therapy, or the control group (n=28) without additional treatment. Participants underwent assessment at baseline, after the twelfth invention, and at the 2-month follow-up timepoints. The primary outcome was KPPS and VAS. Secondary outcomes included UPDRS I-III, PDSS-2, HADS, PDQ-39, and blood biomarkers (5-HT, IL-8, IL-10). Results The experimental group reported a significant improvement in pain severity, motor functions, affective disorder, and sleep quality (P < 0.05). Furthermore, increasing trends in both 5-HT and IL-10, as well as decreasing trends in IL-8 were observed. No serious adverse events occurred. Conclusion The preliminary findings suggest that Gua Sha therapy may be effective and safe for alleviating pain and improving other disease-related symptoms in PD patients.
Collapse
Affiliation(s)
- Yu Chen Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Qiu Qin Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Meng Yuan Chen
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Yu Jie Gao
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Jia Yi Wang
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Hao Tian Ge
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Heng Weng
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| | - Ju Ping Chen
- Department of Neurology, Changshu Hospital of Traditional Chinese Medicine, Suzhou, 215500, People’s Republic of China
| | - Gui Hua Xu
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, People’s Republic of China
| |
Collapse
|
6
|
Yang L, Wang S, Chen Y, Liang Y, Chen T, Wang Y, Fu X, Wang S. Effects of Age on the Auditory Cortex During Speech Perception in Noise: Evidence From Functional Near-Infrared Spectroscopy. Ear Hear 2024; 45:742-752. [PMID: 38268081 PMCID: PMC11008455 DOI: 10.1097/aud.0000000000001460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/23/2023] [Indexed: 01/26/2024]
Abstract
OBJECTIVES Age-related speech perception difficulties may be related to a decline in central auditory processing abilities, particularly in noisy or challenging environments. However, how the activation patterns related to speech stimulation in different noise situations change with normal aging has yet to be elucidated. In this study, we aimed to investigate the effects of noisy environments and aging on patterns of auditory cortical activation. DESIGN We analyzed the functional near-infrared spectroscopy signals of 20 young adults, 21 middle-aged adults, and 21 elderly adults, and evaluated their cortical response patterns to speech stimuli under five different signal to noise ratios (SNRs). In addition, we analyzed the behavior score, activation intensity, oxyhemoglobin variability, and dominant hemisphere, to investigate the effects of aging and noisy environments on auditory cortical activation. RESULTS Activation intensity and oxyhemoglobin variability both showed a decreasing trend with aging at an SNR of 0 dB; we also identified a strong correlation between activation intensity and age under this condition. However, we observed an inconsistent activation pattern when the SNR was 5 dB. Furthermore, our analysis revealed that the left hemisphere may be more susceptible to aging than the right hemisphere. Activation in the right hemisphere was more evident in older adults than in the left hemisphere; in contrast, younger adults showed leftward lateralization. CONCLUSIONS Our analysis showed that with aging, auditory cortical regions gradually become inflexible in noisy environments. Furthermore, changes in cortical activation patterns with aging may be related to SNR conditions, and that understandable speech with a low SNR ratio but still understandable may induce the highest level of activation. We also found that the left hemisphere was more affected by aging than the right hemisphere in speech perception tasks; the left-sided dominance observed in younger individuals gradually shifted to the right hemisphere with aging.
Collapse
Affiliation(s)
- Liu Yang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Songjian Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- These authors contributed equally to this work
| | - Younuo Chen
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Liang
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Ting Chen
- School of Biomedical Engineering, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing, China
| | - Yuan Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xinxing Fu
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Beijing Institute of Otolaryngology, Otolaryngology-Head and Neck Surgery, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Shin H, Kim R, Park K, Byun K. Role of exercise in modulating prefrontal cortical activation for improved gait and cognition in Parkinson's disease patients. Phys Act Nutr 2024; 28:37-44. [PMID: 38719465 PMCID: PMC11079376 DOI: 10.20463/pan.2024.0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
PURPOSE This narrative review evaluated the impact of exercise on gait and cognitive functions in patients with Parkinson's disease (PD), focusing on prefrontal cortical (PFC) activation assessed using near-infrared spectroscopy (NIRS). METHODS A literature search was conducted in the PubMed and Web of Science databases using keywords such as "Parkinson's disease," "gait," "cognitive functions," "exercise," and "NIRS," focusing on publications from the last decade. Studies measuring PFC activity using NIRS during gait tasks in patients with PD were selected. RESULTS The review indicated that patients with PD demonstrate increased PFC activity during gait tasks compared to healthy controls, suggesting a greater cognitive demand for movement control. Exercise has been shown to enhance neural efficiency, thus improving gait and cognitive functions. CONCLUSION Exercise is crucial for improving gait and cognitive functions in patients with PD through increased PFC activation. This emphasizes the importance of incorporating exercise into PD management plans and highlights the need for further studies on its long-term effects and the neurobiological mechanisms underlying its benefits, with the aim of optimizing therapeutic strategies and improving patients' quality of life.
Collapse
Affiliation(s)
- Heehyun Shin
- Division of Sport Science, Sport Science Institute, Health Promotion Center, Incheon National University, Incheon, Republic of Korea
| | - Ryul Kim
- Department of Neurology, Seoul Metropolitan Government – Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Kiwon Park
- Department of Biomedical and Robotics Engineering, Incheon National University, Incheon, Republic of Korea
| | - Kyeongho Byun
- Division of Sport Science, Sport Science Institute, Health Promotion Center, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
8
|
Ross D, Wagshul ME, Izzetoglu M, Holtzer R. Cortical thickness moderates intraindividual variability in prefrontal cortex activation patterns of older adults during walking. J Int Neuropsychol Soc 2024; 30:117-127. [PMID: 37366047 PMCID: PMC10751394 DOI: 10.1017/s1355617723000371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
OBJECTIVE Increased intraindividual variability (IIV) in behavioral and cognitive performance is a risk factor for adverse outcomes but research concerning hemodynamic signal IIV is limited. Cortical thinning occurs during aging and is associated with cognitive decline. Dual-task walking (DTW) performance in older adults has been related to cognition and neural integrity. We examined the hypothesis that reduced cortical thickness would be associated with greater increases in IIV in prefrontal cortex oxygenated hemoglobin (HbO2) from single tasks to DTW in healthy older adults while adjusting for behavioral performance. METHOD Participants were 55 healthy community-dwelling older adults (mean age = 74.84, standard deviation (SD) = 4.97). Structural MRI was used to quantify cortical thickness. Functional near-infrared spectroscopy (fNIRS) was used to assess changes in prefrontal cortex HbO2 during walking. HbO2 IIV was operationalized as the SD of HbO2 observations assessed during the first 30 seconds of each task. Linear mixed models were used to examine the moderation effect of cortical thickness throughout the cortex on HbO2 IIV across task conditions. RESULTS Analyses revealed that thinner cortex in several regions was associated with greater increases in HbO2 IIV from the single tasks to DTW (ps < .02). CONCLUSIONS Consistent with neural inefficiency, reduced cortical thickness in the PFC and throughout the cerebral cortex was associated with increases in HbO2 IIV from the single tasks to DTW without behavioral benefit. Reduced cortical thickness and greater IIV of prefrontal cortex HbO2 during DTW may be further investigated as risk factors for developing mobility impairments in aging.
Collapse
Affiliation(s)
- Daliah Ross
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Mark E. Wagshul
- Department of Radiology, Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Meltem Izzetoglu
- Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA
| | - Roee Holtzer
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
9
|
da Silva Castanheira J, Wiesman AI, Hansen JY, Misic B, Baillet S. The neurophysiological brain-fingerprint of Parkinson's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.03.23285441. [PMID: 36798232 PMCID: PMC9934726 DOI: 10.1101/2023.02.03.23285441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In this study, we investigate the clinical potential of brain-fingerprints derived from electrophysiological brain activity for diagnostics and progression monitoring of Parkinson's disease (PD). We obtained brain-fingerprints from PD patients and age-matched healthy controls using short, task-free magnetoencephalographic recordings. The rhythmic components of the individual brain-fingerprint distinguished between patients and healthy participants with approximately 90% accuracy. The most prominent cortical features of the Parkinson's brain-fingerprint mapped to polyrhythmic activity in unimodal sensorimotor regions. Leveraging these features, we also show that Parkinson's disease stages can be decoded directly from cortical neurophysiological activity. Additionally, our study reveals that the cortical topography of the Parkinson's brain-fingerprint aligns with that of neurotransmitter systems affected by the disease's pathophysiology. We further demonstrate that the arrhythmic components of cortical activity are more variable over short periods of time in patients with Parkinson's disease than in healthy controls, making individual differentiation between patients based on these features more challenging and explaining previous negative published results. Overall, we outline patient-specific rhythmic brain signaling features that provide insights into both the neurophysiological signature and clinical staging of Parkinson's disease. For this reason, the proposed definition of a rhythmic brain-fingerprint of Parkinson's disease may contribute to novel, refined approaches to patient stratification and to the improved identification and testing of therapeutic neurostimulation targets.
Collapse
Affiliation(s)
| | - Alex I. Wiesman
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Justine Y. Hansen
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal QC, Canada
| | | | | |
Collapse
|
10
|
de Rond V, Hulzinga F, Baggen RJ, de Vries A, de Xivry JJO, Pantall A, Nieuwboer A. Lower back muscle activity during weight-shifting is affected by ageing and dual-tasking. Exp Gerontol 2023; 181:112271. [PMID: 37597710 DOI: 10.1016/j.exger.2023.112271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/19/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE Postural control deteriorates with age, especially under dual-task conditions. It is currently unknown how a challenging virtual reality weight-shifting task affects lower back muscle activity. Hence, this study investigated erector spinae neuromuscular control during mediolateral weight-shifting as part of an exergame during single- (ST) and dual-task (DT) conditions in young and older adults. METHODS Seventeen young and 17 older adults performed mediolateral weight-shifts while hitting virtual wasps in a virtual environment with and without a serial subtraction task (DT). Center of mass position was recorded in real-time using 3D motion capturing. Electromyography recorded bilateral activation of the lumbar longissimus and iliocostalis muscles. RESULTS Weight-shifting (p < 0.03) and targeting the wasps (p < 0.005) deteriorated with age and DT. Relative muscle activation during both quiet stance and weight-shifting increased with age, while the DT-effect did not differ consistently between age-groups. However, bilateral muscle co-contraction decreased with DT in young adults only. When switching direction and targeting the wasps, variability of muscle activation increased with age and DT and proved related to worse targeting performance. These effects were mainly visible at the non-dominant body side. CONCLUSION Older adults showed a higher erector spinae muscle contribution to perform weight-shifts with increased variability at the end of a shift, whereby muscle activity was modulated less well in older than in young adults in response to DT. Hence, the current findings point to the potential for developing postural training in which older adults learn to fine-tune trunk muscle activity to improve weight-shifting and reduce fall risk.
Collapse
Affiliation(s)
- Veerle de Rond
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium.
| | - Femke Hulzinga
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Aijse de Vries
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, the Netherlands
| | - Jean-Jacques Orban de Xivry
- Motor Control & Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| | - Annette Pantall
- Clinical Ageing Research Unit, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alice Nieuwboer
- Neuromotor Rehabilitation Research Group, Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), Leuven, Belgium
| |
Collapse
|
11
|
Sousani M, Rojas RF, Preston E, Ghahramani M. Toward a Multi-Modal Brain-Body Assessment in Parkinson's Disease: A Systematic Review in fNIRS. IEEE J Biomed Health Inform 2023; 27:4840-4853. [PMID: 37639416 DOI: 10.1109/jbhi.2023.3308901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Parkinson's disease (PD) causes impairments in cortical structures leading to motor and cognitive symptoms. While common disease management and treatment strategies mainly depend on the subjective assessment of clinical scales and patients' diaries, research in recent years has focused on advances in automatic and objective tools to help with diagnosing PD and determining its severity. Due to the link between brain structure deficits and physical symptoms in PD, objective brain activity and body motion assessment of patients have been studied in the literature. This study aimed to explore the relationship between brain activity and body motion measures of people with PD to look at the feasibility of diagnosis or assessment of PD using these measures. In this study, we summarised the findings of 24 selected papers from the complete literature review using the Scopus database. Selected studies used both brain activity recording using functional near-infrared spectroscopy (fNIRS) and motion assessment using sensors for people with PD in their experiments. Results include 1) the most common study protocol is a combination of single tasks. 2) Prefrontal cortex is mostly studied region of interest in the literature. 3) Oxygenated haemoglobin (HbO 2) concentration is the predominant metric utilised in fNIRS, compared to deoxygenated haemoglobin (HHb). 4) Motion assessment in people with PD is mostly done with inertial measurement units (IMUs) and electronic walkway. 5) The relationship between brain activity and body motion measures is an important factor that has been neglected in the literature.
Collapse
|
12
|
Li Y, Xu Z, Xie H, Fu R, Lo WLA, Cheng X, Yang J, Ge L, Yu Q, Wang C. Changes in cortical activation during upright stance in individuals with chronic low back pain: An fNIRS study. Front Hum Neurosci 2023; 17:1085831. [PMID: 36816497 PMCID: PMC9936824 DOI: 10.3389/fnhum.2023.1085831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Postural control deficits are a potential cause of persistent and recurrent pain in patients with chronic low back pain (CLBP). Although some studies have confirmed that the dorsolateral prefrontal cortex (DLPFC) contributes to pain regulation in CLBP, its role in the postural control of patients with CLBP remains unclear. Therefore, this study aimed to investigate the DLPFC activation of patients with CLBP and healthy controls under different upright stance task conditions. Methods Twenty patients with CLBP (26.50 ± 2.48 years) and 20 healthy controls (25.75 ± 3.57 years) performed upright stance tasks under three conditions: Task-1 was static balance with eyes open; Task-2 was static balance with eyes closed; Task-3 involved dynamic balance on an unstable surface with eyes open. A wireless functional near-infrared spectroscopy (fNIRS) system measured cortical activity, including the bilateral DLPFC, pre-motor cortex (PMC) and supplementary motor area (SMA), the primary motor cortex (M1), the primary somatosensory cortex (S1), and a force platform measured balance parameters during upright stance. Results The two-way repeated measures ANOVA results showed significant interaction in bilateral PMC/SMA activation. Moreover, patients with CLBP had significantly increased right DLPFC activation and higher sway 32 area and velocity than healthy controls during upright stance. Discussion Our results imply that PMC/SMA and DLPFC maintain standing balance. The patients with CLBP have higher cortical activity and upright stance control deficits, which may indicate that the patients with CLBP have low neural efficiency and need more motor resources to maintain balance.
Collapse
|
13
|
Schejter-Margalit T, Kizony R, Ben-Binyamin N, Hacham R, Thaler A, Maidan I, Mirelman A. Neural activation in the prefrontal cortex during the digital clock drawing test measured with functional near-infrared spectroscopy in early stage Parkinson's disease. Parkinsonism Relat Disord 2022; 105:9-14. [PMID: 36327601 DOI: 10.1016/j.parkreldis.2022.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/16/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The clock drawing test (CDT) is a neuropsychological test for the screening of global cognitive functioning. The test requires use of multiple cognitive domains including executive functions, visuospatial abilities and semantic memory and can be a suitable tool for screening cognitive decline in participants in the early stages of Parkinson's Disease (PD). Behavioral performance on the CDT has been studied in depth, however, neural activation during real-time performance has not been extensively investigated. In this study we explored changes in prefrontal cortex (PFC) activation during the performance of CDT in participants with PD compared to healthy controls (HC) and assessed the correlations between PFC activation and CDT performance. METHODS The study included 60 participants, 29 PD and 31 HC participants whom performed a digital CDT (DCTclock) in conjunction with a Functional Near-Infrared Spectroscopy (fNIRS) system measuring neural activation in the PFC. RESULTS HbO2 signals derived from the fNIRS during the CDT revealed that PD participants showed more moderate slopes than the HC in the right hemisphere in the command (p = 0.042) and copy task (p = 0.009). Better score on the measurement of information processing correlated with steeper right hemisphere HbO2 slope in the copy task in the PD group (p = 0.003). CONCLUSION Our results reflect slower PFC activation in participants with PD which correlates with behavioral measures. In addition, the findings of the study indicate the importance of performing the CDT copy task condition that detect early cognitive decline in participants with PD.
Collapse
Affiliation(s)
- Tamara Schejter-Margalit
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel; Occupational Therapy Department, University of Haifa, Haifa, Israel.
| | - Rachel Kizony
- Occupational Therapy Department, University of Haifa, Haifa, Israel; Occupational Therapy, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Roni Hacham
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel
| | - Avner Thaler
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Inbal Maidan
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Anat Mirelman
- Laboratory for Early Markers of Neurodegeneration, Center for the Study of Movement, Cognition and Mobility, Tel Aviv Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
14
|
Lu J, Wang Y, Shu Z, Zhang X, Wang J, Cheng Y, Zhu Z, Yu Y, Wu J, Han J, Yu N. fNIRS-based brain state transition features to signify functional degeneration after Parkinson's disease. J Neural Eng 2022; 19. [PMID: 35917809 DOI: 10.1088/1741-2552/ac861e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Parkinson's disease (PD) is a common neurodegenerative brain disorder, and early diagnosis is of vital importance for treatment. Existing methods are mainly focused on behavior examination, while the functional neurodegeneration after PD has not been well explored. This paper aims to investigate the brain functional variation of PD patients in comparison with healthy controls. APPROACH In this work, we propose brain hemodynamic states and state transition features to signify functional degeneration after PD. Firstly, a functional near-infrared spectroscopy (fNIRS)-based experimental paradigm was designed to capture brain activation during dual-task walking from PD patients and healthy controls. Then, three brain states, named expansion, contraction, and intermediate states, were defined with respect to the oxyhemoglobin and deoxyhemoglobin responses. After that, two features were designed from a constructed transition factor and concurrent variations of oxy- and deoxy-hemoglobin over time, to quantify the transitions of brain states. Further, a support vector machine classifier was trained with the proposed features to distinguish PD patients and healthy controls. RESULTS Experimental results showed that our method with the proposed brain state transition features achieved classification accuracy of 0:8200 and F score of 0:9091, and outperformed existing fNIRS-based methods. Compared with healthy controls, PD patients had significantly smaller transition acceleration and transition angle. SIGNIFICANCE The proposed brain state transition features well signify functional degeneration of PD patients and may serve as promising functional biomarkers for PD diagnosis.
Collapse
Affiliation(s)
- Jiewei Lu
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| | - Yue Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, No22.Qixiangtai Rd.,Heping Dist, Tianjin, Tianjin, 300070, CHINA
| | - Zhilin Shu
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| | - Xinyuan Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, No22.Qixiangtai Rd.,Heping Dist, Tianjin, 300070, CHINA
| | - Jin Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, No22.Qixiangtai Rd.,Heping Dist, Tianjin, 300070, CHINA
| | - Yuanyuan Cheng
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Zhizhong Zhu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Yang Yu
- Department of Rehabilitation Medicine, Tianjin Huanhu Hospital, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Jialing Wu
- Department of Neurology, Tianjin Huanhu Hospital, No.122, Qixiangtai Road, Hexi District, Tianjin, 300060, CHINA
| | - Jianda Han
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| | - Ningbo Yu
- College of Artificial Intelligence, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin, 300350, CHINA
| |
Collapse
|
15
|
Zhou R, Zhou J, Xiao Y, Bi J, Biagi MC, Ruffini G, Gouskova NA, Manor B, Liu Y, Lü J, Lo OY. Network-Based Transcranial Direct Current Stimulation May Modulate Gait Variability in Young Healthy Adults. Front Hum Neurosci 2022; 16:877241. [PMID: 35754767 PMCID: PMC9220095 DOI: 10.3389/fnhum.2022.877241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Previous studies have linked gait variability to resting-state functional connectivity between the dorsal attention network (DAN) and the default network (DN) in the brain. The purpose of this study was to examine the effects of a novel transcranial direct current stimulation (tDCS) paradigm designed to simultaneously facilitate the excitability of the DAN and suppress the excitability of the DN (i.e., DAN+/DN-tDCS) on gait variability and other gait characteristics in young healthy adults. Methods In this double-blinded randomized and sham-controlled study, 48 healthy adults aged 22 ± 2 years received one 20-min session of DAN+/DN-tDCS (n = 24) or no stimulation (the Sham group, n = 24). Immediately before and after stimulation, participants completed a gait assessment under three conditions: walking at self-selected speed (i.e., normal walking), walking as fast as possible (i.e., fast walking), and walking while counting backward (i.e., dual-task walking). Primary outcomes included gait stride time variability and gait stride length variability in normal walking conditions. Secondary outcomes include gait stride time and length variability in fast and dual-task conditions, and other gait metrics derived from the three walking conditions. Results Compared to the Sham group, DAN+/DN-tDCS reduced stride length variability in normal and fast walking conditions, double-limb support time variability in fast and dual-task walking conditions, and step width variability in fast walking conditions. In contrast, DAN+/DN-tDCS did not alter average gait speed or the average value of any other gait metrics as compared to the sham group. Conclusion In healthy young adults, a single exposure to tDCS designed to simultaneously modulate DAN and DN excitability reduced gait variability, yet did not alter gait speed or other average gait metrics, when tested just after stimulation. These results suggest that gait variability may be uniquely regulated by these spatially-distinct yet functionally-connected cortical networks. These results warrant additional research on the short- and longer-term effects of this type of network-based tDCS on the cortical control of walking in younger and older populations.
Collapse
Affiliation(s)
- Rong Zhou
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Junhong Zhou
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Yanwen Xiao
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jiawei Bi
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | | | | | - Natalia A Gouskova
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Brad Manor
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jiaojiao Lü
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - On-Yee Lo
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States.,Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|