1
|
Tsiakiri A, Plakias S, Vlotinou P, Terzoudi A, Serdari A, Tsiptsios D, Karakitsiou G, Psatha E, Kitmeridou S, Karavasilis E, Aggelousis N, Vadikolias K, Christidi F. Predictive Markers of Post-Stroke Cognitive Recovery and Depression in Ischemic Stroke Patients: A 6-Month Longitudinal Study. Eur J Investig Health Psychol Educ 2024; 14:3056-3072. [PMID: 39727508 DOI: 10.3390/ejihpe14120200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/12/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
The growing number of stroke survivors face physical, cognitive, and psychosocial impairments, making stroke a significant contributor to global disability. Various factors have been identified as key predictors of post-stroke outcomes. The aim of this study was to develop a standardized predictive model that integrates various demographic and clinical factors to better predict post-stroke cognitive recovery and depression in patients with ischemic stroke (IS). We included IS patients during both the acute phase and six months post-stroke and considered neuropsychological measures (screening scales, individual tests, functional cognitive scales), stroke severity and laterality, as well as functional disability measures. The study identified several key predictors of post-stroke cognitive recovery and depression in IS patients. Higher education and younger age were associated with better cognitive recovery. Lower stroke severity, indicated by lower National Institutes of Health Stroke Scale (NIHSS) scores, also contributed to better cognitive outcomes. Patients with lower modified Rankin Scale (mRS) scores showed improved performance on cognitive tests and lower post-stroke depression scores. The study concluded that age, education, stroke severity and functional status are the most critical predictors of cognitive recovery and post-stroke emotional status in IS patients. Tailoring rehabilitation strategies based on these predictive markers can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Anna Tsiakiri
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Spyridon Plakias
- Department of Physical Education and Sport Science, University of Thessaly, 42100 Trikala, Greece
| | - Pinelopi Vlotinou
- Department of Occupational Therapy, University of West Attica, 12243 Athens, Greece
| | - Aikaterini Terzoudi
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Aspasia Serdari
- Department of Child and Adolescent, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Dimitrios Tsiptsios
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- 3rd Department of Neurology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgia Karakitsiou
- Department of Psychiatry, Medical School, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Evlampia Psatha
- Department of Radiology, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofia Kitmeridou
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Efstratios Karavasilis
- Medical Physics Laboratory, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 69100 Komotini, Greece
| | | | - Foteini Christidi
- Department of Neurology, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
2
|
Sleight E, Stringer MS, Clancy U, Arteaga-Reyes C, Jaime Garcia D, Jochems ACC, Wiseman S, Valdes Hernandez M, Chappell FM, Doubal FN, Marshall I, Thrippleton MJ, Wardlaw JM. Association of Cerebrovascular Reactivity With 1-Year Imaging and Clinical Outcomes in Small Vessel Disease: An Observational Cohort Study. Neurology 2024; 103:e210008. [PMID: 39499872 PMCID: PMC11540458 DOI: 10.1212/wnl.0000000000210008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES In patients with cerebral small vessel disease (SVD), impaired cerebrovascular reactivity (CVR) is related to worse concurrent SVD burden, but less is known about cerebrovascular reactivity and long-term SVD lesion progression and clinical outcomes. We investigated associations between cerebrovascular reactivity and 1-year progression of SVD features and clinical outcomes. METHODS Between 2018 and 2021, we recruited patients from the Edinburgh/Lothian stroke services presenting with minor ischemic stroke and SVD features as part of the Mild Stroke Study 3, a prospective observational cohort study (ISRCTN 12113543). We acquired 3T brain MRI at baseline and 1 year. At baseline, we measured cerebrovascular reactivity to 6% inhaled CO2 in subcortical gray matter, normal-appearing white matter, and white matter hyperintensities (WMH). At baseline and 1 year, we quantified SVD MRI features, incident infarcts, assessed stroke severity (NIH Stroke Scale), recurrent stroke, functional outcome (modified Rankin Scale), and cognition (Montreal Cognitive Assessment). We performed linear and logistic regressions adjusted for age, sex, and vascular risk factors, reporting the regression coefficients and odds ratios with 95% CIs. RESULTS We recruited 208 patients of whom 163 (mean age and SD: 65.8 ± 11.2 years, 32% female) had adequate baseline CVR and completed the follow-up structural MRI. The median increase in WMH volume was 0.32 mL with (Q1, Q3) = (-0.48, 1.78) mL; 29% had a recurrent stroke or incident infarct on MRI. At 1 year, patients with lower baseline cerebrovascular reactivity in normal-appearing tissues had increased WMH (regression coefficient: B = -1.14 [-2.13, -0.14] log10 (%ICV) per %/mm Hg) and perivascular space volumes (B = -1.90 [-3.21, -0.60] log10 (%ROIV) per %/mm Hg), with a similar trend in WMH. CVR was not associated with clinical outcomes at 1 year. DISCUSSION Lower baseline cerebrovascular reactivity predicted an increase in WMH and perivascular space volumes after 1 year. CVR should be considered in SVD future research and intervention studies.
Collapse
Affiliation(s)
- Emilie Sleight
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Michael S Stringer
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Una Clancy
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Carmen Arteaga-Reyes
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Daniela Jaime Garcia
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Angela C C Jochems
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Stewart Wiseman
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Maria Valdes Hernandez
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Francesca M Chappell
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Fergus N Doubal
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Ian Marshall
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Michael J Thrippleton
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| | - Joanna M Wardlaw
- From the Centre for Clinical Brain Sciences (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.) and UK Dementia Research Institute (E.S., M.S.S., U.C., C.A.-R., D.J.G., A.C.C.J., S.W., M.V.H., F.M.C., F.N.D., I.M., M.T., J.M.W.), University of Edinburgh, United Kingdom. Michael Thrippleton and Joanna Wardlaw are currently at Edinburgh Imaging Facility, Royal Infirmary of Edinburgh, University of Edinburgh, United Kingdom
| |
Collapse
|
3
|
Cui Z, Xu S, Miu J, Tang Y, Pan L, Cao X, Zhang J. Development and Validation of a Fusion Model Based on Carotid Plaques and White Matter Lesion Burden Imaging Characteristics to Evaluate Ischemic Stroke Severity in Symptomatic Patients. J Magn Reson Imaging 2024. [PMID: 38738856 DOI: 10.1002/jmri.29439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND The diagnostic value of carotid plaque characteristics based on higher-resolution vessel wall MRI (HRVW-MRI) combined with white matter lesion (WML) burden for the risk of ischemic stroke is unclear. PURPOSE To combine carotid plaque features and WML burden to construct a hybrid model for evaluating ischemic stroke severity and prognosis in patients with symptomatic carotid artery stenosis. STUDY TYPE Retrospective. SUBJECTS One hundred and ninty-three patients with least one confirmed carotid atherosclerotic stenosis ≥30% and cerebrovascular symptoms within the last 2 weeks (136 in the training cohort and 57 in the test cohort). FIELD STRENGTH/SEQUENCE 3.0T, T2-weighted fluid attenuated inversion recovery (T2-FLAIR) and diffusion-weighted imaging (DWI); HRVW-MRI: 3D T1-weighted variable flip angle fast spin-echo sequences (VISTA), T2-weighted VISTA, simultaneous noncontrast angiography and intraplaque hemorrhage (SNAP), and contrast-enhanced T1-VISTA. ASSESSMENT The following features of the plaques or vessel wall were assessed by three MRI readers independently: calcification (CA), intraplaque hemorrhage (IPH), lipid-rich necrotic core (LRNC), ulceration, plaque enhancement (PE), maximum vessel diameter (Max VD), maximum wall thickness (Max WT), total vessel area (TVA), lumen area (LA), plaque volume, and lumen stenosis. WMLs were graded visually and categorized as absent-to-mild WMLs (Fazekas score 0-2) or moderate-severe WMLs (Fazekas score 3-6). WML volumes were quantified using a semiautomated volumetric analysis program. Modified Rankin scores (mRS) were assessed at 90 days, following an outpatient interview, or by telephone. STATISTICAL TESTS LASSO-logistic regression analysis was performed to construct a model. The performance of the model was evaluated using receiver operating characteristic (ROC) curve analyses, calibration curves, decision curve analyses, and clinical imaging curves. Conditional logistic regression analysis was used to explore the associations between the hybrid model-derived score and the modified Rankin Scale (mRS) score at 90 days. RESULTS The model was constructed using five selected features, including IPH, plaque enhancement, ulceration, NWI, and total Fazekas score in deep WMLs (DWMLs). The hybrid model yielded an area under the curve of 0.92 (95% confidence interval [CI] 0.87-0.97) in the training cohort and 0.88 (0.80-0.96) in the test cohort. Furthermore, the hybrid model-derived score (odds ratio = 1.28; 95% CI 1.06-1.53) was independently associated with the mRS score 90 days after stroke. DATA CONCLUSIONS The hybrid model constructed using MRI plaque characteristics and WML burden has potential to be an effective noninvasive method of assessing ischemic stroke severity. The model-derived score has promising utility in judging neurological function recovery. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Zhimeng Cui
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Siting Xu
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Jiali Miu
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Ye Tang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Lei Pan
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Xin Cao
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
| | - Jun Zhang
- Department of Radiology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
- National Center for Neurological Disorders, Shanghai, China
- Center for Shanghai Intelligent Imaging for Critical Brain Diseases Engineering and Technology Reasearch, Shanghai, China
| |
Collapse
|
4
|
Sperber C, Hakim A, Gallucci L, Arnold M, Umarova RM. Cerebral small vessel disease and stroke: Linked by stroke aetiology, but not stroke lesion location or size. J Stroke Cerebrovasc Dis 2024; 33:107589. [PMID: 38244646 DOI: 10.1016/j.jstrokecerebrovasdis.2024.107589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/07/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Cerebral small vessel disease (SVD) has previously been associated with worse stroke outcome, vascular dementia, and specific post-stroke cognitive deficits. The underlying causal mechanisms of these associations are not yet fully understood. We investigated whether a relationship between SVD and certain stroke aetiologies or a specific stroke lesion anatomy provides a potential explanation. METHODS In a retrospective observational study, we examined 859 patients with first-ever, non-SVD anterior circulation ischemic stroke (age = 69.0±15.2). We evaluated MRI imaging markers to assess an SVD burden score and mapped stroke lesions on diffusion-weighted MRI. We investigated the association of SVD burden with i) stroke aetiology, and ii) lesion anatomy using topographical statistical mapping. RESULTS With increasing SVD burden, stroke of cardioembolic aetiology was more frequent (ρ = 0.175; 95 %-CI = 0.103;0.244), whereas cervical artery dissection (ρ = -0.143; 95 %-CI = -0.198;-0.087) and a patent foramen ovale (ρ = -0.165; 95 %-CI = -0.220;-0.104) were less frequent stroke etiologies. However, no significant associations between SVD burden and stroke aetiology remained after additionally controlling for age (all p>0.125). Lesion-symptom-mapping and Bayesian statistics showed that SVD burden was not associated with a specific stroke lesion anatomy or size. CONCLUSIONS In patients with a high burden of SVD, non-SVD stroke is more likely to be caused by cardioembolic aetiology. The common risk factor of advanced age may link both pathologies and explain some of the existing associations between SVD and stroke. The SVD burden is not related to a specific stroke lesion location.
Collapse
Affiliation(s)
- Christoph Sperber
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Arsany Hakim
- University Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Laura Gallucci
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Marcel Arnold
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Roza M Umarova
- Department of Neurology, Inselspital, University Hospital Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Jochems ACC, Muñoz Maniega S, Clancy U, Arteaga C, Jaime Garcia D, Chappell FM, Hewins W, Locherty R, Backhouse EV, Barclay G, Jardine C, McIntyre D, Gerrish I, Kampaite A, Sakka E, Valdés Hernández M, Wiseman S, Bastin ME, Stringer MS, Thrippleton MJ, Doubal FN, Wardlaw JM. Magnetic Resonance Imaging Tissue Signatures Associated With White Matter Changes Due to Sporadic Cerebral Small Vessel Disease Indicate That White Matter Hyperintensities Can Regress. J Am Heart Assoc 2024; 13:e032259. [PMID: 38293936 PMCID: PMC11056146 DOI: 10.1161/jaha.123.032259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024]
Abstract
BACKGROUND White matter hyperintensities (WMHs) might regress and progress contemporaneously, but we know little about underlying mechanisms. We examined WMH change and underlying quantitative magnetic resonance imaging tissue measures over 1 year in patients with minor ischemic stroke with sporadic cerebral small vessel disease. METHODS AND RESULTS We defined areas of stable normal-appearing white matter, stable WMHs, progressing and regressing WMHs based on baseline and 1-year brain magnetic resonance imaging. In these areas we assessed tissue characteristics with quantitative T1, fractional anisotropy (FA), mean diffusivity (MD), and neurite orientation dispersion and density imaging (baseline only). We compared tissue signatures cross-sectionally between areas, and longitudinally within each area. WMH change masks were available for N=197. Participants' mean age was 65.61 years (SD, 11.10), 59% had a lacunar infarct, and 68% were men. FA and MD were available for N=195, quantitative T1 for N=182, and neurite orientation dispersion and density imaging for N=174. Cross-sectionally, all 4 tissue classes differed for FA, MD, T1, and Neurite Density Index. Longitudinally, in regressing WMHs, FA increased with little change in MD and T1 (difference estimate, 0.011 [95% CI, 0.006-0.017]; -0.002 [95% CI, -0.008 to 0.003] and -0.003 [95% CI, -0.009 to 0.004]); in progressing and stable WMHs, FA decreased (-0.022 [95% CI, -0.027 to -0.017] and -0.009 [95% CI, -0.011 to -0.006]), whereas MD and T1 increased (progressing WMHs, 0.057 [95% CI, 0.050-0.063], 0.058 [95% CI, 0.050 -0.066]; stable WMHs, 0.054 [95% CI, 0.045-0.063], 0.049 [95% CI, 0.039-0.058]); and in stable normal-appearing white matter, MD increased (0.004 [95% CI, 0.003-0.005]), whereas FA and T1 slightly decreased and increased (-0.002 [95% CI, -0.004 to -0.000] and 0.005 [95% CI, 0.001-0.009]). CONCLUSIONS Quantitative magnetic resonance imaging shows that WMHs that regress have less abnormal microstructure at baseline than stable WMHs and follow trajectories indicating tissue improvement compared with stable and progressing WMHs.
Collapse
Affiliation(s)
- Angela C. C. Jochems
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Susana Muñoz Maniega
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Una Clancy
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Carmen Arteaga
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Daniela Jaime Garcia
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Francesca M. Chappell
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Will Hewins
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Rachel Locherty
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Ellen V. Backhouse
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Gayle Barclay
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Charlotte Jardine
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Donna McIntyre
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Iona Gerrish
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Agniete Kampaite
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Eleni Sakka
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Maria Valdés Hernández
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Stewart Wiseman
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
| | - Michael S. Stringer
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Michael J. Thrippleton
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| | - Fergus N. Doubal
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
| | - Joanna M. Wardlaw
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUnited Kingdom
- UK Dementia Research Institute at the University of EdinburghEdinburghUnited Kingdom
- Edinburgh Imaging Facility, Royal Infirmary of EdinburghEdinburghUnited Kingdom
| |
Collapse
|
6
|
Vadinova V, Sihvonen AJ, Wee F, Garden KL, Ziraldo L, Roxbury T, O'Brien K, Copland DA, McMahon KL, Brownsett SLE. The volume and the distribution of premorbid white matter hyperintensities: Impact on post-stroke aphasia. Hum Brain Mapp 2024; 45:e26568. [PMID: 38224539 PMCID: PMC10789210 DOI: 10.1002/hbm.26568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
White matter hyperintensities (WMH) are a radiological manifestation of progressive white matter integrity loss. The total volume and distribution of WMH within the corpus callosum have been associated with pathological cognitive ageing processes but have not been considered in relation to post-stroke aphasia outcomes. We investigated the contribution of both the total volume of WMH, and the extent of WMH lesion load in the corpus callosum to the recovery of language after first-ever stroke. Behavioural and neuroimaging data from individuals (N = 37) with a left-hemisphere stroke were included at the early subacute stage of recovery. Spoken language comprehension and production abilities were assessed using word and sentence-level tasks. Neuroimaging data was used to derive stroke lesion variables (volume and lesion load to language critical regions) and WMH variables (WMH volume and lesion load to three callosal segments). WMH volume did not predict variance in language measures, when considered together with stroke lesion and demographic variables. However, WMH lesion load in the forceps minor segment of the corpus callosum explained variance in early subacute comprehension abilities (t = -2.59, p = .01) together with corrected stroke lesion volume and socio-demographic variables. Premorbid WMH lesions in the forceps minor were negatively associated with early subacute language comprehension after aphasic stroke. This negative impact of callosal WMH on language is consistent with converging evidence from pathological ageing suggesting that callosal WMH disrupt the neural networks supporting a range of cognitive functions.
Collapse
Affiliation(s)
- Veronika Vadinova
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneAustralia
| | - A. J. Sihvonen
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneAustralia
- Cognitive Brain Research Unit (CBRU)University of HelsinkiHelsinkiFinland
- Centre of Excellence in Music, Mind, Body and BrainUniversity of HelsinkiHelsinkiFinland
| | - F. Wee
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
| | - K. L. Garden
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneAustralia
| | - L. Ziraldo
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
| | - T. Roxbury
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
| | - K. O'Brien
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
| | - D. A. Copland
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneAustralia
| | - K. L. McMahon
- School of Clinical Sciences, Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneAustralia
| | - S. L. E. Brownsett
- Queensland Aphasia Research CentreUniversity of QueenslandBrisbaneAustralia
- School of Health and Rehabilitation SciencesUniversity of QueenslandBrisbaneAustralia
- Centre of Research Excellence in Aphasia Recovery and RehabilitationLa Trobe UniversityMelbourneAustralia
| |
Collapse
|
7
|
Wang X, Shi Y, Chen Y, Gao Y, Wang T, Li Z, Wang Y. Blood-Brain Barrier Breakdown is a Sensitive Biomarker of Cognitive and Language Impairment in Patients with White Matter Hyperintensities. Neurol Ther 2023; 12:1745-1758. [PMID: 37490234 PMCID: PMC10444912 DOI: 10.1007/s40120-023-00527-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023] Open
Abstract
INTRODUCTION Similar white matter hyperintensities (WMH) burden may have varied cognitive outcomes in patients with cerebral small vessel disease (CSVD). This study aimed to evaluate whether blood-brain barrier (BBB) permeability is associated with cognitive impairment (CI) heterogeneity in patients with WMH. METHODS We recruited 51 participants with WMH. We evaluated WMH burden using the Fazekas scale and WMH volume on structural magnetic resonance imaging (MRI), and assessed BBB permeability using dynamic contrast-enhanced (DCE)-MRI. We used permeability-surface area product (PS) from the Patlak model to represent BBB permeability. All patients underwent Mini-Mental State Examination (MMSE), Boston Naming Test (BNT) and animal verbal fluency test (VFT) for cognitive assessment. We divided patients into CI and non-CI groups based on their MMSE scores (< 27 or ≥ 27) and used multiple linear regression models to investigate the associations between MRI parameters and cognitive function. RESULTS Patients in the two groups did not differ in Fazekas scores and WMH volume. However, patients in the CI group showed significantly higher PS in the WMH regions than those in non-CI group (1.89 × 10-3 versus 1.00 × 10-3, p = 0.032 in periventricular WMH [PVWMH]; 1.27 × 10-3 versus 0.74 × 10-3, p = 0.043 in deep WMH [DWMH]), indicating the breakdown of BBB in the CI group. In all patients with WMH, increased BBB permeability in PVWMH and DWMH was significantly associated with lower cognitive and language function after adjustment for age, education level (EL) and intracranial volume (ICV). In the CI group, this correlation remained significant. WMH volume was not associated with cognitive performance in either all patients or those with CI. CONCLUSION BBB impairment might be a more sensitive indicator for cognitive and language dysfunction than WMH volume in patients with WMH and possibly explains the heterogeneity of cognitive performance in patients with similar WMH burden.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Chinese Institute for Brain Research, Beijing, 100070, China
- National Centre for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100070, China
| | - Yulu Shi
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Chinese Institute for Brain Research, Beijing, 100070, China
- National Centre for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100070, China
| | - Yiyi Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Chinese Institute for Brain Research, Beijing, 100070, China
- National Centre for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100070, China
| | - Ying Gao
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Chinese Institute for Brain Research, Beijing, 100070, China
- National Centre for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100070, China
| | - Tingting Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Chinese Institute for Brain Research, Beijing, 100070, China
- National Centre for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100070, China
| | - Zhengyang Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China
- Chinese Institute for Brain Research, Beijing, 100070, China
- National Centre for Neurological Diseases, Beijing, 100070, China
- Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100070, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, China.
- Chinese Institute for Brain Research, Beijing, 100070, China.
- National Centre for Neurological Diseases, Beijing, 100070, China.
- Advanced Innovation Centre for Human Brain Protection, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Centre for Neurological Diseases, Beijing, 100070, China.
- Beijing Laboratory of Oral Health, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
8
|
Matsuda K, Shinohara M, Ii Y, Tabei KI, Ueda Y, Nakamura N, Hirata Y, Ishikawa H, Matsuyama H, Matsuura K, Satoh M, Maeda M, Momosaki R, Tomimoto H, Shindo A. Magnetic resonance imaging and neuropsychological findings for predicting of cognitive deterioration in memory clinic patients. Front Aging Neurosci 2023; 15:1155122. [PMID: 37600513 PMCID: PMC10435295 DOI: 10.3389/fnagi.2023.1155122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/29/2023] [Indexed: 08/22/2023] Open
Abstract
Objective The severity of cerebral small vessel disease (SVD) on magnetic resonance imaging (MRI) has been assessed using hypertensive arteriopathy SVD and cerebral amyloid angiopathy (CAA)-SVD scores. In addition, we reported the modified CAA-SVD score including cortical microinfarcts and posterior dominant white matter hyperintensity. Each SVD score has been associated with cognitive function, but the longitudinal changes remain unclear. Therefore, this study prospectively examined the prognostic value of each SVD score, imaging findings of cerebral SVD, and neuropsychological assessment. Methods This study included 29 patients diagnosed with mild cognitive impairment or mild dementia at memory clinic in our hospital, who underwent clinical dementia rating (CDR) and brain MRI (3D-fluid attenuated inversion recovery, 3D-double inversion recovery, and susceptibility-weighted imaging) at baseline and 1 year later. Each SVD score and neuropsychological tests including the Mini-Mental State Examination, Japanese Raven's Colored Progressive Matrices, Trail Making Test -A/-B, and the Rivermead Behavioral Memory Test were evaluated at baseline and 1 year later. Results Twenty patients had unchanged CDR (group A), while nine patients had worsened CDR (group B) after 1 year. At baseline, there was no significant difference in each SVD score; after 1 year, group B had significantly increased CAA-SVD and modified CAA-SVD scores. Group B also showed a significantly higher number of lobar microbleeds than group A at baseline. Furthermore, group B had significantly longer Japanese Raven's Colored Progressive Matrices and Trail Making test-A times at baseline. After 1 year, group B had significantly lower Mini-Mental State Examination, Japanese Raven's Colored Progressive Matrices, and Rivermead Behavioral Memory Test scores and significantly fewer word fluency (letters). Conclusion Patients with worsened CDR 1 year after had a higher number of lobar microbleeds and prolonged psychomotor speed at baseline. These findings may become predictors of cognitive deterioration in patients who visit memory clinics.
Collapse
Affiliation(s)
- Kana Matsuda
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masaki Shinohara
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ken-ichi Tabei
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yukito Ueda
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Naoko Nakamura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinori Hirata
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masayuki Satoh
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryo Momosaki
- Department of Rehabilitation Medicine, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Akihiro Shindo
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
9
|
Kim MK, Choi W, Moon HJ, Han S, Shin HJ. Targeted photothrombotic subcortical small vessel occlusion using in vivo real-time fiber bundle endomicroscopy in mice. BIOMEDICAL OPTICS EXPRESS 2023; 14:687-702. [PMID: 36874485 PMCID: PMC9979683 DOI: 10.1364/boe.473407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
The development of an accurate subcortical small vessel occlusion model for pathophysiological studies of subcortical ischemic stroke is still insignificant. In this study, in vivo real-time fiber bundle endomicroscopy (FBEµ) was applied to develop subcortical photothrombotic small vessel occlusion model in mice with minimal invasiveness. Our FBFµ system made it possible to precisely target specific blood vessels in deep brain and simultaneously observe the clot formation and blood flow blockage inside the target blood vessel during photochemical reactions. A fiber bundle probe was directly inserted into the anterior pretectal nucleus of the thalamus in brain of live mice to induce a targeted occlusion in small vessels. Then, targeted photothrombosis was performed using a patterned laser, observing the process through the dual-color fluorescence imaging. On day one post occlusion, infarct lesions are measured using TTC staining and post hoc histology. The results show that FBEµ applied to targeted photothrombosis can successfully generate a subcortical small vessel occlusion model for lacunar stroke.
Collapse
Affiliation(s)
- Min-kyung Kim
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Wonseok Choi
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biomedical Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, Republic of Korea
| | - Hyuk-June Moon
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sungmin Han
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyun-joon Shin
- Bionics Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| |
Collapse
|
10
|
Associations of Peak-Width Skeletonized Mean Diffusivity and Post-Stroke Cognition. Life (Basel) 2022; 12:life12091362. [PMID: 36143398 PMCID: PMC9504440 DOI: 10.3390/life12091362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Post-stroke cognitive impairment is common and can have major impact on life after stroke. Peak-width of Skeletonized Mean Diffusivity (PSMD) is a diffusion imaging marker of white matter microstructure and is also associated with cognition. Here, we examined associations between PSMD and post-stroke global cognition in an ongoing study of mild ischemic stroke patients. We studied cross-sectional associations between PSMD and cognition at both 3-months (N = 229) and 1-year (N = 173) post-stroke, adjusted for premorbid IQ, sex, age, stroke severity and disability, as well as the association between baseline PSMD and 1-year cognition. At baseline, (mean age = 65.9 years (SD = 11.1); 34% female), lower Montreal Cognitive Assessment (MoCA) scores were associated with older age, lower premorbid IQ and higher stroke severity, but not with PSMD (βstandardized = −0.116, 95% CI −0.241, 0.009; p = 0.069). At 1-year, premorbid IQ, older age, higher stroke severity and higher PSMD (βstandardized = −0.301, 95% CI −0.434, −0.168; p < 0.001) were associated with lower MoCA. Higher baseline PSMD was associated with lower 1-year MoCA (βstandardized = −0.182, 95% CI −0.308, −0.056; p = 0.005). PSMD becomes more associated with global cognition at 1-year post-stroke, possibly once acute effects have settled. Additionally, PSMD in the subacute phase after a mild stroke could help predict long-term cognitive impairment.
Collapse
|