1
|
Reyes-Bello JS, Moscote-Salazar LR, Janjua T. Sedation Vacations in Neurocritical Care: Friend or Foe? Curr Neurol Neurosci Rep 2024; 24:671-680. [PMID: 39352612 DOI: 10.1007/s11910-024-01383-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2024] [Indexed: 11/06/2024]
Abstract
PURPOSE OF REVIEW To evaluate the role of sedation vacations in optimizing patient outcomes and enhancing the quality of care in neurological intensive care units (ICUs). We discuss the importance of sedation management in neurocritical care, considering recent research findings and clinical guidelines. RECENT FINDINGS Recent studies have highlighted the significance of sedation interruption protocols in improving patient outcomes in the ICU setting. Evidence suggests that daily sedation interruptions can reduce the duration of mechanical ventilation, ICU length of stay, and mortality rates. However, the implementation of these protocols requires careful consideration of patient-specific factors and a multidisciplinary approach. Sedation vacations play a critical role in neurocritical care by reducing mechanical ventilation duration, ICU stay length, and mortality rates. Despite the benefits, the presence of complications must be addressed to avoid adverse outcomes. Continued research is necessary to refine these strategies and improve guideline quality, ensuring safe and effective sedation management in critically ill neurological patients.
Collapse
Affiliation(s)
| | - Luis Rafael Moscote-Salazar
- Department of Research, Colombian Clinical Research Group in Neurocritical Care, Bogotá, Colombia.
- AV HealthCare Innovators, LLC, Madison, Wisconsin, USA.
| | - Tariq Janjua
- Department of Neurology, Regions Hospital, Saint Paul, MN, USA.
| |
Collapse
|
2
|
Finney JD, Schuler PD, Rudloff JR, Agostin N, Lobanov OV, Siegler J, Shah MI, Guterman EL, Chamberlain JM, Ahmad FA. Evaluation of the Use of Ketamine in Prehospital Seizure Management: A Retrospective Review of the ESO Database. PREHOSP EMERG CARE 2024:1-8. [PMID: 39058382 DOI: 10.1080/10903127.2024.2382367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
OBJECTIVES Benzodiazepines are the primary antiseizure medication used by Emergency Medical Services (EMS) for seizures. Available literature in the United States and internationally shows 30% to 40% of seizures do not terminate with benzodiazepines called benzodiazepine refractory status epilepticus (BRSE). Ketamine is a potential treatment for BRSE due to its unique pharmacology. However, its application in the prehospital setting is mostly documented in case reports. Little is known about its use by EMS professionals for seizure management, whether as initial treatment or for BRSE, creating an opportunity to describe its current use and inform future research. METHODS We performed a retrospective review of 9-1-1 EMS encounters with a primary or secondary impression of seizure using the ESO Data Collaborative from 2018 to 2021. We isolated encounters during which ketamine was administered. We excluded medication administrations prior to EMS arrival and encounters without medication administration. Subgroup analysis was performed to control for airway procedure as an indication for ketamine administration. We also evaluated for co-administration with other antiseizure medications, dose and route of administration, and response to treatment. RESULTS We identified 99,576 encounters that met inclusion. There were 2,531/99,576 (2.54%) encounters with ketamine administration and 50.7% (1,283/2,531) received ketamine without an airway procedure. There were 616 cases (48%, 616/1,283) where ketamine was given without another antiseizure medication (ASM) and without any airway procedure. The remaining 667 (52%) cases received ketamine with at least one other ASM, most commonly midazolam (89%, 593/667). Adjusted for the growth in the ESO dataset, ketamine use by EMS professionals during encounters for seizures without an airway procedure increased from 0.90% (139/15,375) to 1.45% (416/28,651) an increase of 62% over the study period. CONCLUSIONS In this retrospective review of the ESO Data Collaborative, ketamine administration for seizure encounters without an airway procedure increased over the study period, both as a single agent and with another ASM. Most ketamine administrations were for adult patients in the south and in urban areas. The frequency of BRSE, the need for effective treatment, and the growth in ketamine use warrant prospective prehospital research to evaluate the value of ketamine in prehospital seizure management.
Collapse
Affiliation(s)
- Joseph Daniel Finney
- Department of Pediatrics, Washington University in Saint Louis, Saint Louis, Missouri
| | - Paul D Schuler
- Department of Emergency Medicine, School of Medicine, University of Missouri, Columbia, Missouri
| | - James R Rudloff
- Department of Pediatrics, Institute for Informatics Data Science and Biostatistics, Washington University in Saint Louis, St. Louis, Missouri
| | - Nicholas Agostin
- Department of Pediatrics, Washington University in Saint Louis, Saint Louis, Missouri
| | - Oleg V Lobanov
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Jeffrey Siegler
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Manish I Shah
- Department of Emergency Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Elan L Guterman
- Philip R. Lee Institute for Health Policy Studies and Department of Neurology, University of California, San Francisco, California
| | - James M Chamberlain
- Pediatrics and Emergency Medicine, George Washington University, Washington, District of Columbia
| | - Fahd A Ahmad
- Department of Pediatrics, Washington University in Saint Louis, Saint Louis, Missouri
| |
Collapse
|
3
|
Li X, Yue W. Comparative analysis of dexmedetomidine, midazolam, and propofol impact on epilepsy-related mortality in the ICU: insights from the MIMIC-IV database. BMC Neurol 2024; 24:193. [PMID: 38849716 PMCID: PMC11157909 DOI: 10.1186/s12883-024-03693-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Dexmedetomidine (Dex), midazolam, and propofol are three distinct sedatives characterized by varying pharmacological properties. Previous literature has indicated the positive impact of each of these sedatives on ICU patients. However, there is a scarcity of clinical evidence comparing the efficacy of Dex, midazolam, and propofol in reducing mortality among people with epilepsy (PWE). This study aimed to assess the impact of Dex, midazolam, and propofol on the survival of PWE. METHODS The data were retrospectively retrieved from the Medical Information Mart for Intensive Care (MIMIC)-IV database (version 2.0). PWE were categorized into Dex, midazolam, and propofol groups based on the intravenously administered sedatives. PWE without standard drug therapy were included in the control group. Comparative analyses were performed on the data among the groups. RESULTS The Dex group exhibited a significantly lower proportion of in-hospital deaths and a markedly higher in-hospital survival time compared to the midazolam and propofol groups (p < 0.01) after propensity score matching. Kaplan-Meier curves demonstrated a significant improvement in survival rates for the Dex group compared to the control group (p = 0.025). Analysis of Variance (ANOVA) revealed no significant differences in survival rates among the Dex, midazolam, and propofol groups (F = 1.949, p = 0.143). The nomogram indicated that compared to midazolam and propofol groups, Dex was more effective in improving the survival rate of PWE. CONCLUSION Dex might improve the survival rate of PWE in the ICU compared to no standard drug intervention. However, Dex did not exhibit superiority in improving survival rates compared to midazolam and propofol.
Collapse
Affiliation(s)
- Xun Li
- Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China
- Department of Neurology, Tianjin Huanhu Hospital, No.6 Ji Zhao Road, Jinnan District, Tianjin, 300060, China
| | - Wei Yue
- Clinical College of Neurology, Neurosurgery, and Neurorehabilitation, Tianjin Medical University, Tianjin, China.
- Department of Neurology, Tianjin Huanhu Hospital, No.6 Ji Zhao Road, Jinnan District, Tianjin, 300060, China.
| |
Collapse
|
4
|
Rubinos C. Emergent Management of Status Epilepticus. Continuum (Minneap Minn) 2024; 30:682-720. [PMID: 38830068 DOI: 10.1212/con.0000000000001445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVE Status epilepticus is a neurologic emergency that can be life- threatening. The key to effective management is recognition and prompt initiation of treatment. Management of status epilepticus requires a patient-specific-approach framework, consisting of four axes: (1) semiology, (2) etiology, (3) EEG correlate, and (4) age. This article provides a comprehensive overview of status epilepticus, highlighting the current treatment approaches and strategies for management and control. LATEST DEVELOPMENTS Administering appropriate doses of antiseizure medication in a timely manner is vital for halting seizure activity. Benzodiazepines are the first-line treatment, as demonstrated by three randomized controlled trials in the hospital and prehospital settings. Benzodiazepines can be administered through IV, intramuscular, rectal, or intranasal routes. If seizures persist, second-line treatments such as phenytoin and fosphenytoin, valproate, or levetiracetam are warranted. The recently published Established Status Epilepticus Treatment Trial found that all three of these drugs are similarly effective in achieving seizure cessation in approximately half of patients. For cases of refractory and super-refractory status epilepticus, IV anesthetics, including ketamine and γ-aminobutyric acid-mediated (GABA-ergic) medications, are necessary. There is an increasing body of evidence supporting the use of ketamine, not only in the early phases of stage 3 status epilepticus but also as a second-line treatment option. ESSENTIAL POINTS As with other neurologic emergencies, "time is brain" when treating status epilepticus. Antiseizure medication should be initiated quickly to achieve seizure cessation. There is a need to explore newer generations of antiseizure medications and nonpharmacologic modalities to treat status epilepticus.
Collapse
|
5
|
Au YK, Kananeh MF, Rahangdale R, Moore TE, Panza GA, Gaspard N, Hirsch LJ, Fernandez A, Shah SO. Treatment of Refractory Status Epilepticus With Continuous Intravenous Anesthetic Drugs: A Systematic Review. JAMA Neurol 2024; 81:534-548. [PMID: 38466294 DOI: 10.1001/jamaneurol.2024.0108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Importance Multiple continuous intravenous anesthetic drugs (CIVADs) are available for the treatment of refractory status epilepticus (RSE). There is a paucity of data comparing the different types of CIVADs used for RSE. Objective To systematically review and compare outcome measures associated with the initial CIVAD choice in RSE in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Evidence Review Data sources included English and non-English articles using Embase, MEDLINE, PubMed, and Web of Science (January 1994-June 2023) as well as manual search. Study selection included peer-reviewed studies of 5 or more patients and at least 1 patient older than 12 years with status epilepticus refractory to a benzodiazepine and at least 1 standard antiseizure medication, treated with continuously infused midazolam, ketamine, propofol, pentobarbital, or thiopental. Independent extraction of articles was performed using prespecified data items. The association between outcome variables and CIVAD was examined with an analysis of variance or χ2 test where appropriate. Binary logistic regressions were used to examine the association between outcome variables and CIVAD with etiology, change in mortality over time, electroencephalography (EEG) monitoring (continuous vs intermittent), and treatment goal (seizure vs burst suppression) included as covariates. Risk of bias was addressed by listing the population and type of each study. Findings A total of 66 studies with 1637 patients were included. Significant differences among CIVAD groups in short-term failure, hypotension, and CIVAD substitution during treatment were observed. Non-epilepsy-related RSE (vs epilepsy-related RSE) was associated with a higher rate of CIVAD substitution (60 of 120 [50.0%] vs 11 of 43 [25.6%]; odds ratio [OR], 3.11; 95% CI, 1.44-7.11; P = .006) and mortality (98 of 227 [43.2%] vs 7 of 63 [11.1%]; OR, 17.0; 95% CI, 4.71-109.35; P < .001). Seizure suppression was associated with mortality (OR, 7.72; 95% CI, 1.77-39.23; P = .005), but only a small subgroup was available for analysis (seizure suppression: 17 of 22 [77.3%] from 3 publications vs burst suppression: 25 of 98 [25.5%] from 12 publications). CIVAD choice and EEG type were not predictors of mortality. Earlier publication year was associated with mortality, although the observation was no longer statistically significant after adjusting SEs for clustering. Conclusions and Relevance Epilepsy-related RSE was associated with lower mortality compared with other RSE etiologies. A trend of decreasing mortality over time was observed, which may suggest an effect of advances in neurocritical care. The overall data are heterogeneous, which limits definitive conclusions on the choice of optimal initial CIVAD in RSE treatment.
Collapse
Affiliation(s)
- Yu Kan Au
- Department of Neurosciences, Hartford Hospital, University of Connecticut, Hartford, Connecticut
- Department of Neurology, University of Connecticut, Farmington
| | - Mohammed F Kananeh
- Department of Neurology, Hackensack University Medical Center, Hackensack, New Jersey
- Department of Neurology, Hackensack Meridian School of Medicine, Hackensack, New Jersey
| | - Rahul Rahangdale
- Neuroscience Institute, Ascension St John Medical Center, Tulsa, Oklahoma
| | - Timothy Eoin Moore
- Statistical Consulting Services, Center for Open Research Resources & Equipment, University of Connecticut, Storrs
| | - Gregory A Panza
- Department of Research, Hartford HealthCare, Hartford, Connecticut
| | - Nicolas Gaspard
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
- Université Libre de Bruxelles and Service de Neurologie, Hôpital Universitaire de Bruxelles - Hôpital Erasme, Brussels, Belgium
| | - Lawrence J Hirsch
- Department of Neurology, Yale University School of Medicine, New Haven, Connecticut
| | - Andres Fernandez
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Syed Omar Shah
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
6
|
Benghanem S, Pruvost-Robieux E, Neligan A, Walker MC. Status epilepticus: what's new for the intensivist. Curr Opin Crit Care 2024; 30:131-141. [PMID: 38441162 DOI: 10.1097/mcc.0000000000001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
PURPOSE OF REVIEW Status epilepticus (SE) is a common neurologic emergency affecting about 36.1/100 000 person-years that frequently requires intensive care unit (ICU) admission. There have been advances in our understanding of epidemiology, pathophysiology, and EEG monitoring of SE, and there have been large-scale treatment trials, discussed in this review. RECENT FINDINGS Recent changes in the definitions of SE have helped guide management protocols and we have much better predictors of outcome. Observational studies have confirmed the efficacy of benzodiazepines and large treatment trials indicate that all routinely used second line treatments (i.e., levetiracetam, valproate and fosphenytoin) are equally effective. Better understanding of the pathophysiology has indicated that nonanti-seizure medications aimed at underlying pathological processes should perhaps be considered in the treatment of SE; already immunosuppressant treatments are being more widely used in particular for new onset refractory status epilepticus (NORSE) and Febrile infection-related epilepsy syndrome (FIRES) that sometimes revealed autoimmune or paraneoplastic encephalitis. Growing evidence for ICU EEG monitoring and major advances in automated analysis of the EEG could help intensivist to assess the control of electrographic seizures. SUMMARY Research into the morbi-mortality of SE has highlighted the potential devastating effects of this condition, emphasizing the need for rapid and aggressive treatment, with particular attention to cardiorespiratory and neurological complications. Although we now have a good evidence-base for the initial status epilepticus management, the best treatments for the later stages are still unclear and clinical trials of potentially disease-modifying therapies are long overdue.
Collapse
Affiliation(s)
- Sarah Benghanem
- Medical Intensive Care Unit, Cochin hospital, APHP.Centre
- University of Paris cite - Medical School
- INSERM 1266, psychiatry and neurosciences institute of Paris (IPNP)
| | - Estelle Pruvost-Robieux
- University of Paris cite - Medical School
- INSERM 1266, psychiatry and neurosciences institute of Paris (IPNP)
- Neurophysiology and epileptology department, Sainte Anne hospital, Paris, France
| | - Aidan Neligan
- Homerton University Hospital NHS Foundation Trust, Homerton Row
- UCL Queen Square Institute of Neurology, Queen Square, London
- Centre for Preventive Neurology, Wolfson Institute of Population Health, QMUL, UK
| | | |
Collapse
|
7
|
Frauscher B, Rossetti AO, Beniczky S. Recent advances in clinical electroencephalography. Curr Opin Neurol 2024; 37:134-140. [PMID: 38230652 DOI: 10.1097/wco.0000000000001246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
PURPOSE OF REVIEW Clinical electroencephalography (EEG) is a conservative medical field. This explains likely the significant gap between clinical practice and new research developments. This narrative review discusses possible causes of this discrepancy and how to circumvent them. More specifically, we summarize recent advances in three applications of clinical EEG: source imaging (ESI), high-frequency oscillations (HFOs) and EEG in critically ill patients. RECENT FINDINGS Recently published studies on ESI provide further evidence for the accuracy and clinical utility of this method in the multimodal presurgical evaluation of patients with drug-resistant focal epilepsy, and opened new possibilities for further improvement of the accuracy. HFOs have received much attention as a novel biomarker in epilepsy. However, recent studies questioned their clinical utility at the level of individual patients. We discuss the impediments, show up possible solutions and highlight the perspectives of future research in this field. EEG in the ICU has been one of the major driving forces in the development of clinical EEG. We review the achievements and the limitations in this field. SUMMARY This review will promote clinical implementation of recent advances in EEG, in the fields of ESI, HFOs and EEG in the intensive care.
Collapse
Affiliation(s)
- Birgit Frauscher
- Department of Neurology, Duke University Medical Center & Department of Biomedical Engineering, Duke Pratt School of Engineering, Durham, North Carolina, USA
| | - Andrea O Rossetti
- Department of Clinical Neuroscience, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Sándor Beniczky
- Department of Clinical Neurophysiology, Danish Epilepsy Centre, Dianalund
- Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Damien C, Leitinger M, Kellinghaus C, Strzelczyk A, De Stefano P, Beier CP, Sutter R, Kämppi L, Strbian D, Taubøll E, Rosenow F, Helbok R, Rüegg S, Damian M, Trinka E, Gaspard N. Sustained effort network for treatment of status epilepticus/European academy of neurology registry on adult refractory status epilepticus (SENSE-II/AROUSE). BMC Neurol 2024; 24:19. [PMID: 38178048 PMCID: PMC10765797 DOI: 10.1186/s12883-023-03505-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Status Epilepticus (SE) is a common neurological emergency associated with a high rate of functional decline and mortality. Large randomized trials have addressed the early phases of treatment for convulsive SE. However, evidence regarding third-line anesthetic treatment and the treatment of nonconvulsive status epilepticus (NCSE) is scarce. One trial addressing management of refractory SE with deep general anesthesia was terminated early due to insufficient recruitment. Multicenter prospective registries, including the Sustained Effort Network for treatment of Status Epilepticus (SENSE), have shed some light on these questions, but many answers are still lacking, such as the influence exerted by distinct EEG patterns in NCSE on the outcome. We therefore initiated a new prospective multicenter observational registry to collect clinical and EEG data that combined may further help in clinical decision-making and defining SE. METHODS Sustained effort network for treatment of status epilepticus/European Academy of Neurology Registry on refractory Status Epilepticus (SENSE-II/AROUSE) is a prospective, multicenter registry for patients treated for SE. The primary objectives are to document patient and SE characteristics, treatment modalities, EEG, neuroimaging data, and outcome of consecutive adults admitted for SE treatment in each of the participating centers and to identify factors associated with outcome and refractoriness. To reach sufficient statistical power for multivariate analysis, a cohort size of 3000 patients is targeted. DISCUSSION The data collected for the registry will provide both valuable EEG data and information about specific treatment steps in different patient groups with SE. Eventually, the data will support clinical decision-making and may further guide the planning of clinical trials. Finally, it could help to redefine NCSE and its management. TRIAL REGISTRATION NCT number: NCT05839418.
Collapse
Affiliation(s)
- Charlotte Damien
- Department of Neurology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Brussels, Belgium
| | - Markus Leitinger
- Department of Neurology Neurointensive Care and Neurorehabilitation, Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Department of Neurology, Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | | | - Adam Strzelczyk
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Pia De Stefano
- EEG & Epilepsy Unit, Department of Clinical Neurosciences, University Hospital of Geneva, Geneva, Switzerland
- Neuro-Intensive Care Unit, Department of Intensive Care, University Hospital of Geneva, Geneva, Switzerland
| | - Christoph P Beier
- Department of Neurology, Odense University Hospital, Odense, Denmark
| | - Raoul Sutter
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Intensive Care Units, University Hospital Basel, Basel, Switzerland
| | - Leena Kämppi
- Department of Neurology, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Daniel Strbian
- Department of Neurology, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Erik Taubøll
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Felix Rosenow
- Department of Neurology and Epilepsy Center Frankfurt Rhine-Main, Goethe-University and University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Raimund Helbok
- Department of Neurology, Johannes Kepler University Linz, Linz, Austria
| | - Stephan Rüegg
- Department of Neurology, Epilepsia Helsinki, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Maxwell Damian
- Department of Critical Care, Essex Cardiothoracic Centre, Basildon, UK
| | - Eugen Trinka
- Department of Neurology Neurointensive Care and Neurorehabilitation, Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, European Reference Network EpiCARE, Salzburg, Austria
- Neuroscience Institute, Department of Neurology, Centre for Cognitive Neuroscience, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
- Karl Landsteiner Institute of Neurorehabilitation and Space Neurology, Salzburg, Austria
- Department of Public Health, Health Services Research and Health Technology Assessment, UMIT - University for Health Sciences, Medical Informatics and Technology, Hall en Tyrol, Austria
| | - Nicolas Gaspard
- Department of Neurology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Brussels, Belgium.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
9
|
Rossetti AO, Claassen J, Gaspard N. Status epilepticus in the ICU. Intensive Care Med 2024; 50:1-16. [PMID: 38117319 DOI: 10.1007/s00134-023-07263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/26/2023] [Indexed: 12/21/2023]
Abstract
Status epilepticus (SE) is a common medical emergency associated with significant morbidity and mortality. Management that follows published guidelines is best suited to improve outcomes, with the most severe cases frequently being managed in the intensive care unit (ICU). Diagnosis of convulsive SE can be made without electroencephalography (EEG), but EEG is required to reliably diagnose nonconvulsive SE. Rapidly narrowing down underlying causes for SE is crucial, as this may guide additional management steps. Causes may range from underlying epilepsy to acute brain injuries such as trauma, cardiac arrest, stroke, and infections. Initial management consists of rapid administration of benzodiazepines and one of the following non-sedating intravenous antiseizure medications (ASM): (fos-)phenytoin, levetiracetam, or valproate; other ASM are increasingly used, such as lacosamide or brivaracetam. SE that continues despite these medications is called refractory, and most commonly treated with continuous infusions of midazolam or propofol. Alternatives include further non-sedating ASM and non-pharmacologic approaches. SE that reemerges after weaning or continues despite management with propofol or midazolam is labeled super-refractory SE. At this step, management may include non-sedating or sedating compounds including ketamine and barbiturates. Continuous video EEG is necessary for the management of refractory and super-refractory SE, as these are almost always nonconvulsive. If possible, management of the underlying cause of seizures is crucial particularly for patients with autoimmune encephalitis. Short-term mortality ranges from 10 to 15% after SE and is primarily related to increasing age, underlying etiology, and medical comorbidities. Refractoriness of treatment is clearly related to outcome with mortality rising from 10% in responsive cases, to 25% in refractory, and nearly 40% in super-refractory SE.
Collapse
Affiliation(s)
- Andrea O Rossetti
- Department of Neurology, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| | - Jan Claassen
- Department of Neurology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - Nicolas Gaspard
- Service de Neurologie, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Route de Lennik 808, 1070, Brussels, Belgium.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Bechri I, Shimi A, Derkaoui A, Khatouf M. Status Epilepticus in a Tertiary Care Hospital in Morocco: A Retrospective Analysis. Cureus 2023; 15:e50591. [PMID: 38222150 PMCID: PMC10788123 DOI: 10.7759/cureus.50591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 01/16/2024] Open
Abstract
Background Status epilepticus (SE) is a common neurologic emergency with high rates of mortality and morbidity. Objective To analyze the clinical characteristics, causes, management, and outcomes of patients with SE in a tertiary care hospital in Morocco. Methods A retrospective study was conducted from January 2019 to December 2021, including all patients admitted to the medico-surgical general intensive care unit (ICU) with a diagnosis of SE. We recorded demographic characteristics, SE clinical history, management, causes, and discharge outcomes. Results Overall, 82 patients with SE were included, the median age was 39.5 years (18-95), 61% of the patients were male, the majority of semiology was convulsive SE (93%, N: 77), epilepsy of unknown cause was the most common diagnosis (41.2%, N: 34), and the most known etiology was acute/subacute cerebrovascular events (12 patients, 14.4%). All patients received benzodiazepines, 96.4% of them received phenobarbital as a second line of treatment, 65 patients required anesthesia, 52 patients developed one complication at least - the most common complication being systemic infection, and the mortality rate was noted to be 38% among patients with SE (N: 31). In this study, the factors associated with mortality were ischemic stroke (as an etiology of SE (p=0.048), history of epilepsy (p=0.005), poor therapeutic adherence (p=0.001), cardiovascular complications, presence of multiple complications (p=0.0001), pneumonia (p=0.0001), and the recurrence of SE (p=0.050). Conclusions We provide a single-center retrospective analysis of admissions in SE and note that mortality among SE patients is high in our settings. Improving prehospital emergency care and implementing elective ICU admission for patients at high risk could improve the mortality rate.
Collapse
Affiliation(s)
- Ibrahim Bechri
- Anesthesiology and Intensive Care Department, Hassan II University Hospital, Fez, MAR
| | - Abdelkrarim Shimi
- Anesthesiology and Intensive Care Department, Hassan II University Hospital, Fez, MAR
| | - Ali Derkaoui
- Anesthesiology and Intensive Care Department, Hassan II University Hospital, Fez, MAR
| | - Mohammed Khatouf
- Anesthesiology and Intensive Care Department, Hassan II University Hospital, Fez, MAR
| |
Collapse
|
11
|
Vossler DG. Midazolam, Ketamine, and Propofol: While We Slept, Others Worked on Anesthetizing Infusions for Refractory Status Epilepticus. Epilepsy Curr 2023; 23:230-232. [PMID: 37662457 PMCID: PMC10470094 DOI: 10.1177/15357597231171240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023] Open
Abstract
Management of Refractory Status Epilepticus: An International Cohort Study (MORSE CODe) Analysis of Patients Managed in the ICU Chiu WT, Campozano V, Schiefecker A, Rodriguez DR, Ferreira D, Headlee A, Zeidan S, Grinea A, Huang YH, Doyle K, Shen Q, Gómez D, Hocker SE, Rohaut B, Sonneville R, Hong C-T, Demeret S, Kurtz P, Maldonado N, Helbok R, Fernandez T, Claassen J. Neurology . 2022;99(11):e1191-e1201. doi:10.1212/WNL.0000000000200818 Background and Objectives: Status epilepticus that continues after the initial benzodiazepine and a second anticonvulsant medication is known as refractory status epilepticus (RSE). Management is highly variable because adequately powered clinical trials are missing. We aimed to determine whether propofol and midazolam were equally effective in controlling RSE in the intensive care unit, focusing on management in resource-limited settings. Methods: Patients with RSE treated with midazolam or propofol between January 2015 and December 2018 were retrospectively identified among 9 centers across 4 continents from upper-middle-income economies in Latin America and high-income economies in North America, Europe, and Asia. Demographics, Status Epilepticus Severity Score, etiology, treatment details, and discharge modified Rankin Scale (mRS) were collected. The primary outcome measure was good functional outcome defined as a mRS score of 0-2 at hospital discharge. Results: Three hundred eighty-seven episodes of RSE (386 patients) were included, with 162 (42%) from upper-middle-income and 225 (58%) from high-income economies. Three hundred six (79%) had acute and 79 (21%) remote etiologies. Initial RSE management included midazolam in 266 (69%) and propofol in 121 episodes (31%). Seventy episodes (26%) that were initially treated with midazolam and 42 (35%) with propofol required the addition of a second anesthetic to treat RSE. Baseline characteristics and outcomes of patients treated with midazolam or propofol were similar. Breakthrough (odds ratio [OR] 1.6, 95% CI 1.3-2.0) and withdrawal seizures (OR 2.0, 95% CI 1.7-2.5) were associated with an increased number of days requiring continuous intravenous anticonvulsant medications (cIV-ACMs). Prolonged EEG monitoring was associated with fewer days of cIV-ACMs (1-24 hours OR 0.5, 95% CI 0.2-0.9, and >24 hours OR 0.7, 95% CI 0.5-1.0; reference EEG <1 hour). This association was seen in both, high-income and upper-middle-income economies, but was particularly prominent in high-income countries. One hundred ten patients (28%) were dead, and 80 (21%) had good functional outcomes at hospital discharge. Discussion: Outcomes of patients with RSE managed in the intensive care unit with propofol or midazolam infusions are comparable. Prolonged EEG monitoring may allow physicians to decrease the duration of anesthetic infusions safely, but this will depend on the implementation of RSE management protocols. Goal-directed management approaches including EEG targets may hold promise for patients with RSE. Ketamine for Management of Neonatal and Pediatric Refractory Status Epilepticus Jacobwitz M, Mulvihill C, Kaufman MC, Gonzalez AK, Resendiz K, MacDonald JM, Francoeur C, Helbig I, Topjian AA, Abend NS. Neurology . 2022;99(12):e1227-e1238. doi:10.1212/WNL.0000000000200889 Background and Objectives: Few data are available regarding the use of anesthetic infusions for refractory status epilepticus (RSE) in children and neonates, and ketamine use is increasing despite limited data. We aimed to describe the impact of ketamine for RSE in children and neonates. Methods: Retrospective single-center cohort study of consecutive patients admitted to the intensive care units of a quaternary care children’s hospital treated with ketamine infusion for RSE. Results: Sixty-nine patients were treated with a ketamine infusion for RSE. The median age at onset of RSE was 0.7 years (interquartile range 0.15-7.2), and the cohort included 13 (19%) neonates. Three patients (4%) had adverse events requiring intervention during or within 12 hours of ketamine administration, including hypertension in 2 patients and delirium in 1 patient. Ketamine infusion was followed by seizure termination in 32 patients (46%), seizure reduction in 19 patients (28%), and no change in 18 patients (26%). Discussion: Ketamine administration was associated with few adverse events, and seizures often terminated or improved after ketamine administration. Further data are needed comparing first-line and subsequent anesthetic medications for treatment of pediatric and neonatal RSE.
Collapse
|
12
|
Kellinghaus C. Making SENSE of what we do - How to bring evidence to clinical practice. Epilepsy Behav 2023; 140:109103. [PMID: 36739635 DOI: 10.1016/j.yebeh.2023.109103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023]
Abstract
Status epilepticus is a frequent neurological emergency. Several audits and registries have enhanced our knowledge regarding patient demography, etiology, treatment, and outcome. Several large registries have also contributed significantly to current treatment guidelines that emphasize the importance of instant and effective treatment onset. Large registries also document that deviation from these treatment guidelines is not the exception but the rule. Therefore, careful analysis of the treatment pathways as well as balanced intervention efforts are necessary to overcome the gap between knowledge and action. This paper was presented at the 8th London-Innsbruck Colloquium on Status Epilepticus and Acute Seizures held in September 2022.
Collapse
Affiliation(s)
- Christoph Kellinghaus
- Department of Neurology, Klinikum Osnabrück, Am Finkenhügel 1, 49076 Osnabrück, Germany.
| |
Collapse
|
13
|
Alkhachroum A, Appavu B, Egawa S, Foreman B, Gaspard N, Gilmore EJ, Hirsch LJ, Kurtz P, Lambrecq V, Kromm J, Vespa P, Zafar SF, Rohaut B, Claassen J. Electroencephalogram in the intensive care unit: a focused look at acute brain injury. Intensive Care Med 2022; 48:1443-1462. [PMID: 35997792 PMCID: PMC10008537 DOI: 10.1007/s00134-022-06854-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/31/2022] [Indexed: 02/04/2023]
Abstract
Over the past decades, electroencephalography (EEG) has become a widely applied and highly sophisticated brain monitoring tool in a variety of intensive care unit (ICU) settings. The most common indication for EEG monitoring currently is the management of refractory status epilepticus. In addition, a number of studies have associated frequent seizures, including nonconvulsive status epilepticus (NCSE), with worsening secondary brain injury and with worse outcomes. With the widespread utilization of EEG (spot and continuous EEG), rhythmic and periodic patterns that do not fulfill strict seizure criteria have been identified, epidemiologically quantified, and linked to pathophysiological events across a wide spectrum of critical and acute illnesses, including acute brain injury. Increasingly, EEG is not just qualitatively described, but also quantitatively analyzed together with other modalities to generate innovative measurements with possible clinical relevance. In this review, we discuss the current knowledge and emerging applications of EEG in the ICU, including seizure detection, ischemia monitoring, detection of cortical spreading depolarizations, assessment of consciousness and prognostication. We also review some technical aspects and challenges of using EEG in the ICU including the logistics of setting up ICU EEG monitoring in resource-limited settings.
Collapse
Affiliation(s)
- Ayham Alkhachroum
- Department of Neurology, University of Miami, Miami, FL, USA
- Department of Neurology, Jackson Memorial Hospital, Miami, FL, USA
| | - Brian Appavu
- Department of Child Health and Neurology, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
- Department of Neurosciences, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Satoshi Egawa
- Neurointensive Care Unit, Department of Neurosurgery, and Stroke and Epilepsy Center, TMG Asaka Medical Center, Saitama, Japan
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH, USA
| | - Nicolas Gaspard
- Department of Neurology, Erasme Hospital, Free University of Brussels, Brussels, Belgium
| | - Emily J Gilmore
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
- Neurocritical Care and Emergency Neurology, Department of Neurology, Ale University School of Medicine, New Haven, CT, USA
| | - Lawrence J Hirsch
- Comprehensive Epilepsy Center, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Pedro Kurtz
- Department of Intensive Care Medicine, D'or Institute for Research and Education, Rio de Janeiro, Brazil
- Neurointensive Care, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | - Virginie Lambrecq
- Department of Clinical Neurophysiology and Epilepsy Unit, AP-HP, Pitié Salpêtrière Hospital, Reference Center for Rare Epilepsies, 75013, Paris, France
| | - Julie Kromm
- Departments of Critical Care Medicine and Clinical Neurosciences, Cumming School of Medicine, Calgary, AB, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, Calgary, AB, Canada
| | - Paul Vespa
- Brain Injury Research Center, Department of Neurosurgery, University of California, Los Angeles, USA
| | - Sahar F Zafar
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Benjamin Rohaut
- Department of Neurology, Sorbonne Université, Pitié-Salpêtrière-AP-HP and Paris Brain Institute, ICM, Inserm, CNRS, Paris, France
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University, New York Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
| |
Collapse
|