1
|
Fang C, Yang L, Xiao F, Yan K, Zhou W. Genotype and phenotype features and prognostic factors of neonatal-onset pyridoxine-dependent epilepsy: A systematic review. Epilepsy Res 2024; 202:107363. [PMID: 38636407 DOI: 10.1016/j.eplepsyres.2024.107363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/29/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is a rare autosomal recessive disorder due to a deficiency of α-aminoadipic semialdehyde dehydrogenase. This study aimed to systematically explore genotypic and phenotypic features and prognostic factors of neonatal-onset PDE. A literature search covering PubMed, Elsevier, and Web of Science was conducted from January 2006 to August 2023. We identified 56 eligible studies involving 169 patients and 334 alleles. The c.1279 G>C variant was the most common variant of neonatal-onset PDE (25.7 %). All patients were treated with pyridoxine; forty patients received dietary intervention therapy. 63.9 % of the patients were completely seizure-free; however, 68.6 % of the patients had neurodevelopmental delays. Additionally, homozygous c.1279 G>C variants were significantly associated with ventriculomegaly, abnormal white matter signal, and cysts (P<0.05). In contrast, homozygous c.1364 T>C was associated with clonic seizure (P=0.031). Pyridoxine used immediately at seizure onset was an independent protective factor for developmental delay (P=0.035; odds ratio [OR]: 3.14). Besides, pyridoxine used early in the neonatal period was a protective factor for language delay (P=0.044; OR: 4.59). In contrast, neonatal respiratory distress (P=0.001; OR: 127.44) and abnormal brain magnetic resonance imaging (P=0.049; OR: 3.64) were risk factors. Prenatal movement abnormality (P=0.041; OR: 20.56) and abnormal white matter signal (P=0.012; OR: 24.30) were risk factors for motor delay. Myoclonic seizure (P=0.023; OR: 7.13) and status epilepticus (P=0.000; OR: 9.93) were risk factors for breakthrough seizures. In conclusion, our study indicated that pyridoxine should be started immediately when unexplained neonatal seizures occur and not later than the neonatal period to prevent poor neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Chuchu Fang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lin Yang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Feifan Xiao
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Kai Yan
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Wenhao Zhou
- Center for Molecular Medicine, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Arntsen V, Jamali A, Sikiric A, Kristensen E, Tangeraas T, Kupliauskiene G, Stefansdottir S, Bindoff LA, Sand T, Brodtkorb E. Utility and limitations of EEG in the diagnosis and management of ALDH7A1-related pyridoxine-dependent epilepsy. A retrospective observational study. Front Neurol 2024; 15:1355861. [PMID: 38419708 PMCID: PMC10899485 DOI: 10.3389/fneur.2024.1355861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Purpose Pyridoxine-dependent epilepsy due to ALDH7A1 variants (PDE-ALDH7A1) is a rare disorder, presenting typically with severe neonatal, epileptic encephalopathy. Early diagnosis is imperative to prevent uncontrolled seizures. We have explored the role of EEG in the diagnosis and management of PDE. Methods A total of 13 Norwegian patients with PDE-ALDH7A1 were identified, of whom five had reached adult age. Altogether 163 EEG recordings were assessed, 101 from the 1st year of life. Results Median age at seizure onset was 9 h (IQR 41), range 1 h-6 days. Median delay from first seizure to first pyridoxine injection was 2 days (IQR 5.5). An EEG burst suppression pattern was seen in eight patients (62%) during the first 5 days of life. Eleven patients had recordings during pyridoxine injections: in three, immediate EEG improvement correlated with seizure control, whereas in six, no change of epileptiform activity occurred. Of these six, one had prompt clinical effect, one had delayed effect (< 1 day), one had no effect, one had uncertain effect, and another had more seizures. A patient without seizures at time of pyridoxine trial remained seizure free for 6 days. Two patients with prompt clinical effect had increased paroxysmal activity, one as a conversion to burst suppression. Autonomic seizures in the form of apnoea appeared to promote respiratory distress and were documented by EEG in one patient. EEG follow-up in adult age did not show signs of progressing encephalopathy. Conclusion A neonatal burst suppression EEG pattern should raise the suspicion of PDE-ALDH7A1. Respiratory distress is common; isolated apnoeic seizures may contribute. EEG responses during pyridoxine trials are diverse, often with poor correlation to immediate clinical effect. Reliance on single trials may lead to under-recognition of this treatable condition. Pyridoxine should be continued until results from biomarkers and genetic testing are available.
Collapse
Affiliation(s)
- Vibeke Arntsen
- Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience, Center for Computational Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alma Sikiric
- Department of Neurohabilitation, Oslo University Hospital, Oslo, Norway
| | - Erle Kristensen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
| | - Trine Tangeraas
- Norwegian National Unit for Newborn Screening, Division of Paediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Guste Kupliauskiene
- Department of Paediatric and Adolescent Medicine, Stavanger University Hospital, Stavanger, Norway
| | - Sigurbjörg Stefansdottir
- Department of Neurology and Clinical Neurophysiology, Stavanger University Hospital, Stavanger, Norway
| | - Laurence A. Bindoff
- Department of Clinical Medicine (K1), University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Trond Sand
- Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eylert Brodtkorb
- Department of Neurology and Clinical Neurophysiology, St. Olav University Hospital, Trondheim, Norway
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|