1
|
Scheuren PS, Hupp M, Pfender N, Seif M, Zipser CM, Wanivenhaus F, Spirig JM, Betz M, Freund P, Schubert M, Farshad M, Curt A, Hubli M, Rosner J. Contact heat evoked potentials reveal distinct patterns of spinal cord impairment in degenerative cervical myelopathy beyond MRI lesions. Eur J Neurol 2025; 32:e70001. [PMID: 39707788 DOI: 10.1111/ene.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Magnetic resonance imaging may suggest spinal cord compression and structural lesions in degenerative cervical myelopathy (DCM) but cannot reveal functional impairments in spinal pathways. We aimed to assess the value of contact heat evoked potentials (CHEPs) in addition to MRI and hypothesized that abnormal CHEPs may be evident in DCM independent of MR-lesions and are related to dynamic mechanical cord stress. METHODS Individuals with DCM underwent neurologic examination including segmental sensory (pinprick, light touch) and motor testing. The presence or absence of hyperintense signal on T2-weighted MRI (T2-positive/negative) was assessed. Phase-contrast MRI was used to assess spinal cord motion as an indicator of dynamic mechanical stress. Dermatomal somatosensory evoked potentials and CHEPs were recorded after stimulation of dermatomes C6, C8, and T4 (CHEPs only) to assess spinal cord integrity. RESULTS Of 138 individuals included in this study (age 56 ± 13 years), 35% (N = 48) presented with T2-positive and 65% (N = 90) presented with T2-negative DCM. Abnormal CHEPs were present in T2-positive DCM (C6:41%; C8:32%; T4:24%) and T2-negative DCM (C6:35%; C8:54%; T4:26%). Multisegmental CHEP abnormalities at C6 and C8 were related to increased spinal cord motion (p = 0.030; ϵ2 = 0.072), and reduced upper extremity pinprick (p = 0.046; ϵ2 = 0.063) and motor scores (p = 0.005; ϵ2 = 0.108). CONCLUSIONS CHEPs revealed distinct patterns of spinal cord impairment independent of structural T2-positive lesions, which were associated with measures of cord motion. CHEPs thus provide valuable complementary diagnostic insights into spinal cord integrity beyond MRI. This is especially important in incipient myelopathy to inform early diagnosis and timely interventions before the development of definite cord lesions.
Collapse
Affiliation(s)
- Paulina Simonne Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Markus Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Maryam Seif
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Carl Moritz Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Florian Wanivenhaus
- University Spine Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - José Miguel Spirig
- University Spine Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michael Betz
- University Spine Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Patrick Freund
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Mazda Farshad
- University Spine Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- University Spine Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Hubli M, Leone C. Clinical neurophysiology of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:125-154. [PMID: 39580211 DOI: 10.1016/bs.irn.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Timely and accurate diagnosis of neuropathic pain is critical for optimizing therapeutic outcomes and minimizing treatment delays. According to current standards, the diagnosis of definite neuropathic pain requires objective confirmation of a lesion or disease affecting the somatosensory nervous system. This can be provided by specialized neurophysiological techniques as conventional methods like nerve conduction studies and somatosensory evoked potentials may not be sufficient as they do not assess pain pathways. These specialized techniques apply various stimuli, such as thermal, electrical, or mechanical, alongside assessments of spinal/cortical potential or electromyographic reflex recordings. The selection of techniques is guided by the patient's clinical history and examination. The most common neurophysiological tests used in clinical practice are pain-related evoked potentials (PREPs) providing an objective evaluation of nociceptive pathways. Four types of PREPs are employed: laser evoked potentials, contact-heat evoked potentials, intra-epidermal electrical stimulation evoked potentials, and pinprick evoked potentials, with the two former ones being the most robust and reliable ones. These techniques investigate small-diameter fibers, primarily Aδ-fibers, and spinothalamic tracts allowing the identification of peripheral or central nervous system lesions. Yet, they are limited in capturing neuronal mechanisms underlying neuropathic pain or in providing objective quantification of pain sensation. Two neurophysiological measures which investigate the pain system beyond its integrity are the nociceptive withdrawal reflex and the N13 component of somatosensory evoked potentials. Both of these methods are more commonly used in research than clinical practice, but they pose interesting approaches to quantify central sensitization, a key underlying mechanism of neuropathic pain. Future investigations in neuropathic pain are therefore warranted.
Collapse
Affiliation(s)
- Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Caterina Leone
- Department of Human Neuroscience, Sapienza University, Rome, Italy.
| |
Collapse
|
3
|
Júlio SU, Schneuwly M, Scheuren PS, Pfender N, Zipser CM, Hubli M, Schubert M. Intra-epidermal electrically evoked potentials are sensitive to detect degenerative cervical myelopathy suggesting their spinothalamic propagation. Clin Neurophysiol 2024; 167:229-238. [PMID: 39368346 DOI: 10.1016/j.clinph.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 10/07/2024]
Abstract
OBJECTIVE Degenerative cervical myelopathy (DCM) is a centromedullary spinal cord disorder mainly affecting crossing fibers. While contact heat evoked potentials (CHEPs) are sensitive in detecting DCM by testing spinothalamic integrity, somatosensory evoked potentials (dSSEPs) show unaffected dorsal column conduction. Intra-epidermal electrically evoked potentials (IEEPs) have unknown spinal propagation after noxious stimulation. We investigated (1) the spinothalamic tract propagation and (2) the discriminative power in detecting spinal pathology of IEEPs compared to CHEPs and dSSEPs in DCM. METHODS DCM was diagnosed by neurological examination regarding stenosis (MRI). Stimulation of C6, C8, and T4 dermatomes yielded dSSEPs, CHEPs, and IEEPs. (1) Spinal propagation was assessed through concordant or discordant responses, and (2) discriminative power was determined using receiver operating characteristic curves (ROC). RESULTS Twenty-seven patients (8F, 56 ± 12yrs) with DCM were analyzed and compared to age-matched healthy controls. IEEPs were abnormal in 43-54%, CHEPs in 37-69%, and dSSEPs in 4-12%. IEEPs showed high concordance with abnormalities of CHEPs (62-69%). ROC analyses showed good discriminative power of CHEPs and IEEPs contrary to dSSEPs. CONCLUSIONS The concordance of abnormal responses of CHEPs and IEEPs contrary to dSSEPs suggests spinothalamic propagation of IEEPs. SIGNIFICANCE Minimal differences between CHEPs and IEEPs suggest complementary potential by the combined testing of spinothalamic tract integrity.
Collapse
Affiliation(s)
- Sara U Júlio
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Miriam Schneuwly
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Paulina S Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland; International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC, Canada.
| | - Nikolai Pfender
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Carl M Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - Martin Schubert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
4
|
Ishaque AH, Alvi MA, Pedro K, Fehlings MG. Imaging protocols for non-traumatic spinal cord injury: current state of the art and future directions. Expert Rev Neurother 2024; 24:691-709. [PMID: 38879824 DOI: 10.1080/14737175.2024.2363839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
INTRODUCTION Non-traumatic spinal cord injury (NTSCI) is a term used to describe damage to the spinal cord from sources other than trauma. Neuroimaging techniques such as computerized tomography (CT) and magnetic resonance imaging (MRI) have improved our ability to diagnose and manage NTSCIs. Several practice guidelines utilize MRI in the diagnostic evaluation of traumatic and non-traumatic SCI to direct surgical intervention. AREAS COVERED The authors review practices surrounding the imaging of various causes of NTSCI as well as recent advances and future directions for the use of novel imaging modalities in this realm. The authors also present discussions around the use of simple radiographs and advanced MRI modalities in clinical settings, and briefly highlight areas of active research that seek to advance our understanding and improve patient care. EXPERT OPINION Although several obstacles must be overcome, it appears highly likely that novel quantitative imaging features and advancements in artificial intelligence (AI) as well as machine learning (ML) will revolutionize degenerative cervical myelopathy (DCM) care by providing earlier diagnosis, accurate localization, monitoring for deterioration and neurological recovery, outcome prediction, and standardized practice. Some intriguing findings in these areas have been published, including the identification of possible serum and cerebrospinal fluid biomarkers, which are currently in the early phases of translation.
Collapse
Affiliation(s)
- Abdullah H Ishaque
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Hejrati N, Pedro K, Alvi MA, Quddusi A, Fehlings MG. Degenerative cervical myelopathy: Where have we been? Where are we now? Where are we going? Acta Neurochir (Wien) 2023; 165:1105-1119. [PMID: 37004568 DOI: 10.1007/s00701-023-05558-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Degenerative cervical myelopathy (DCM), a recently coined term, encompasses a group of age-related and genetically associated pathologies that affect the cervical spine, including cervical spondylotic myelopathy and ossification of the posterior longitudinal ligament (OPLL). Given the significant contribution of DCM to global disease and disability, there are worldwide efforts to promote research and innovation in this area. An AO Spine effort termed 'RECODE-DCM' was initiated to create an international multistakeholder consensus group, involving patients, caregivers, physicians and researchers, to focus on launching actionable discourse on DCM. In order to improve the management, treatment and results for DCM, the RECODE-DCM consensus group recently identified ten priority areas for translational research. The current article summarizes recent advancements in the field of DCM. We first discuss the comprehensive definition recently refined by the RECODE-DCM group, including steps taken to arrive at this definition and the supporting rationale. We then provide an overview of the recent advancements in our understanding of the pathophysiology of DCM and modalities to clinically assess and diagnose DCM. A focus will be set on advanced imaging techniques that may offer the opportunity to improve characterization and diagnosis of DCM. A summary of treatment modalities, including surgical and nonoperative options, is then provided along with future neuroprotective and neuroregenerative strategies. This review concludes with final remarks pertaining to the genetics involved in DCM and the opportunity to leverage this knowledge toward a personalized medicine approach.
Collapse
Affiliation(s)
- Nader Hejrati
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Karlo Pedro
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Mohammed Ali Alvi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ayesha Quddusi
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, Toronto Western Hospital, University Health Network, 399 Bathurst Street, Suite 4WW-449, Toronto, ON, M5T 2S8, Canada.
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
6
|
Martin AR, Tetreault L, Nouri A, Curt A, Freund P, Rahimi-Movaghar V, Wilson JR, Fehlings MG, Kwon BK, Harrop JS, Davies BM, Kotter MRN, Guest JD, Aarabi B, Kurpad SN. Imaging and Electrophysiology for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 9]. Global Spine J 2022; 12:130S-146S. [PMID: 34797993 PMCID: PMC8859711 DOI: 10.1177/21925682211057484] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVE The current review aimed to describe the role of existing techniques and emerging methods of imaging and electrophysiology for the management of degenerative cervical myelopathy (DCM), a common and often progressive condition that causes spinal cord dysfunction and significant morbidity globally. METHODS A narrative review was conducted to summarize the existing literature and highlight future directions. RESULTS Anatomical magnetic resonance imaging (MRI) is well established in the literature as the key imaging tool to identify spinal cord compression, disc herniation/bulging, and inbuckling of the ligamentum flavum, thus facilitating surgical planning, while radiographs and computed tomography (CT) provide complimentary information. Electrophysiology techniques are primarily used to rule out competing diagnoses. However, signal change and measures of cord compression on conventional MRI have limited utility to characterize the degree of tissue injury, which may be helpful for diagnosis, prognostication, and repeated assessments to identify deterioration. Early translational studies of quantitative imaging and electrophysiology techniques show potential of these methods to more accurately reflect changes in spinal cord microstructure and function. CONCLUSION Currently, clinical management of DCM relies heavily on anatomical MRI, with additional contributions from radiographs, CT, and electrophysiology. Novel quantitative assessments of microstructure, perfusion, and function have the potential to transform clinical practice, but require robust validation, automation, and standardization prior to uptake.
Collapse
Affiliation(s)
- Allan R Martin
- Department of Neurological Surgery, 8789University of California Davis, Davis, CA, USA
| | - Lindsay Tetreault
- Department of Neurology, 5894New York University, Langone Health, Graduate Medical Education, New York, NY, USA
| | - Aria Nouri
- Division of Neurosurgery, Geneva University Hospitals, 27230University of Geneva, Geneva, Switzerland
| | - Armin Curt
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Patrick Freund
- University Spine Center, 31031Balgrist University Hospital, Zurich, Switzerland
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R Wilson
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Michael G Fehlings
- Division of Neurosurgery, Department of Surgery, 7938University of Toronto, Toronto, ON, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - James S Harrop
- Department of Neurological Surgery, 6529Thomas Jefferson University, Philadelphia, PA, USA
| | - Benjamin M Davies
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - Mark R N Kotter
- Department of Neurosurgery, 2152University of Cambridge, Cambridge, UK
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, 12235University of Miami, Miami, FL, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, 1479University of Maryland, Baltimore, MD, USA
| | - Shekar N Kurpad
- Department of Neurosurgery, 5506Medical College of Wisconsin, Wauwatosa, WI, USA
| |
Collapse
|
7
|
Improved acquisition of contact heat evoked potentials with increased heating ramp. Sci Rep 2022; 12:925. [PMID: 35042939 PMCID: PMC8766469 DOI: 10.1038/s41598-022-04867-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/29/2021] [Indexed: 12/05/2022] Open
Abstract
Contact heat evoked potentials (CHEPs) represent an objective and non-invasive measure to investigate the integrity of the nociceptive neuraxis. The clinical value of CHEPs is mostly reflected in improved diagnosis of peripheral neuropathies and spinal lesions. One of the limitations of conventional contact heat stimulation is the relatively slow heating ramp (70 °C/s). This is thought to create a problem of desynchronized evoked responses in the brain, particularly after stimulation in the feet. Recent technological advancements allow for an increased heating ramp of contact heat stimulation, however, to what extent these improve the acquisition of evoked potentials is still unknown. In the current study, 30 healthy subjects were stimulated with contact heat at the hand and foot with four different heating ramps (i.e., 150 °C/s, 200 °C/s, 250 °C/s, and 300 °C/s) to a peak temperature of 60 °C. We examined changes in amplitude, latency, and signal-to-noise ratio (SNR) of the vertex (N2-P2) waveforms. Faster heating ramps decreased CHEP latency for hand and foot stimulation (hand: F = 18.41, p < 0.001; foot: F = 4.19, p = 0.009). Following stimulation of the foot only, faster heating ramps increased SNR (F = 3.32, p = 0.024) and N2 amplitude (F = 4.38, p = 0.007). Our findings suggest that clinical applications of CHEPs should consider adopting faster heating ramps up to 250 °C/s. The improved acquisition of CHEPs might consequently reduce false negative results in clinical cohorts. From a physiological perspective, our results demonstrate the importance of peripherally synchronizing afferents recruitment to satisfactorily acquire CHEPs.
Collapse
|
8
|
Scheuren PS, David G, Kramer JLK, Jutzeler CR, Hupp M, Freund P, Curt A, Hubli M, Rosner J. Combined Neurophysiologic and Neuroimaging Approach to Reveal the Structure-Function Paradox in Cervical Myelopathy. Neurology 2021; 97:e1512-e1522. [PMID: 34380751 DOI: 10.1212/wnl.0000000000012643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To explore the so-called structure-function paradox in individuals with focal spinal lesions by means of tract-specific MRI coupled with multimodal evoked potentials and quantitative sensory testing. METHODS Individuals with signs and symptoms attributable to cervical myelopathy (i.e., no evidence of competing neurologic diagnoses) were recruited at the Balgrist University Hospital, Zurich, Switzerland, between February 2018 and March 2019. We evaluated the relationship between the extent of structural damage within spinal nociceptive pathways (i.e., dorsal horn, spinothalamic tract, anterior commissure) assessed with atlas-based MRI and (1) the functional integrity of spinal nociceptive pathways measured with contact heat-, cold-, and pinprick-evoked potentials and (2) clinical somatosensory phenotypes assessed with quantitative sensory testing. RESULTS Sixteen individuals (mean age 61 years) with either degenerative (n = 13) or posttraumatic (n = 3) cervical myelopathy participated in the study. Most individuals presented with mild myelopathy (modified Japanese Orthopaedic Association score >15; n = 13). A total of 71% of individuals presented with structural damage within spinal nociceptive pathways on MRI. However, 50% of these individuals presented with complete functional sparing (i.e., normal contact heat-, cold-, and pinprick-evoked potentials). The extent of structural damage within spinal nociceptive pathways was not associated with functional integrity of thermal (heat: p = 0.57; cold: p = 0.49) and mechano-nociceptive pathways (p = 0.83) or with the clinical somatosensory phenotype (heat: p = 0.16; cold: p = 0.37; mechanical: p = 0.73). The amount of structural damage to the spinothalamic tract did not correlate with spinothalamic conduction velocity (p > 0.05; ρ = -0.11). DISCUSSION Our findings provide neurophysiologic evidence to substantiate that structural damage in the spinal cord does not equate to functional somatosensory deficits. This study recognizes the pronounced structure-function paradox in cervical myelopathies and underlines the inevitable need for a multimodal phenotyping approach to reveal the eloquence of lesions within somatosensory pathways.
Collapse
Affiliation(s)
- Paulina Simonne Scheuren
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Gergely David
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - John Lawrence Kipling Kramer
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Catherine Ruth Jutzeler
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Markus Hupp
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Patrick Freund
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Armin Curt
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Michèle Hubli
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland
| | - Jan Rosner
- From the Spinal Cord Injury Center (P.S.S., G.D., M. Hupp, P.F., A.C., M. Hubli, J.R.), Balgrist University Hospital, University of Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD) (J.L.K.K.), Department of Anesthesiology, Pharmacology, and Therapeutics, Faculty of Medicine (J.L.K.K.), University of British Columbia, Vancouver, Canada; Department of Biosystems Science and Technology (C.R.J.), Swiss Federal Institute of Technology Zurich, Switzerland; Wellcome Centre for Human Neuroimaging (P.F.), UCL Institute of Neurology, UCL, London, UK; Department of Neurophysics (P.F.), Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; and Department of Neurology (J.R.), University Hospital Bern, Inselspital, University of Bern, Switzerland.
| |
Collapse
|
9
|
Rosner J, Scheuren PS, Stalder SA, Curt A, Hubli M. Pinprick Evoked Potentials-Reliable Acquisition in Healthy Human Volunteers. PAIN MEDICINE 2021; 21:736-746. [PMID: 31216028 DOI: 10.1093/pm/pnz126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Pinprick evoked potentials (PEPs) represent a novel tool to assess the functional integrity of mechano-nociceptive pathways with a potential toward objectifying sensory deficits and gain seen in neurological disorders. The aim of the present study was to evaluate the feasibility and reliability of PEPs with respect to age, stimulation site, and skin type. METHODS Electroencephalographic responses evoked by two pinprick stimulation intensities (128 mN and 256 mN) applied at three sites (hand dorsum, palmar digit II, and foot dorsum) were recorded in 30 healthy individuals. Test-retest reliability was performed for the vertex negative-positive complex amplitudes, N-latencies, and pain ratings evoked by the 256mN stimulation intensity. RESULTS Feasibility of PEP acquisition was demonstrated across age groups, with higher proportions of evoked potentials (>85%) for the 256mN stimulation intensity. Reliability analyses, that is, Bland-Altman and intraclass correlation coefficients, revealed poor to excellent reliability upon retest depending on the stimulation sites. CONCLUSIONS This study highlights the reliability of PEP acquisition from cervical and lumbar segments across clinically representative age groups. Future methodological improvements might further strengthen PEP reliability in order to complement clinical neurophysiology of sensory nerve fibers by a more specific assessment of mechano-nociceptive pathways. Beyond looking at sensory deficits, PEPs may also become applicable to revealing signs of central sensitization, complementing the clinical assessment of mechanical hyperalgesia.
Collapse
Affiliation(s)
- Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Paulina Simonne Scheuren
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stephanie Anja Stalder
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Qi Q, Huang S, Ling Z, Chen Y, Hu H, Zhan P, Zhang B, Zou X, Peng X. A New Diagnostic Medium for Cervical Spondylotic Myelopathy: Dynamic Somatosensory Evoked Potentials. World Neurosurg 2019; 133:e225-e232. [PMID: 31493599 DOI: 10.1016/j.wneu.2019.08.205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To identify and reveal the sensitivity and efficiency of dynamic somatosensory evoked potentials (DSSEPs) in the diagnosis of cervical spondylotic myelopathy (CSM). METHODS This retrospective study included 31 CSM and 15 control patients. All patients received SSEP examination with stimulation of median and ulnar nerves at neutral, flexed, and extended cervical positions; latency and amplitude were recorded at the C2 and C5 spinous processes and in the scalp over the primary sensory area (C3'/4'). The percentage changes in latency and amplitude with dynamic motion were examined for each lead and compared between groups; the diagnostic cutoff values were determined using receiver operating characteristic curve analysis. RESULTS All the patients with CSM received surgeries and were followed up for 1 year. Amplitude parameters varied with a dynamic position in both groups; all recorded dynamic SSEP indices except right median stimulus recorded at C5 spinous process, right ulnar stimulus recorded at scalp point C3, and right ulnar stimulus recorded at C2 spinous process were significantly different between groups (P < 0.05), but latency was not (P > 0.05). At the neutral position, the amplitude of left media stimulus recorded at C2 spinous process (LMC2) was associated with CSM, but with low diagnostic accuracy (area under the curve = 0.199). At a dynamic position, the percentage change in amplitude of LMC2 and of left ulnar stimulus recorded at C2 spinous process (LUC2) were determined to be diagnostic of CSM (P < 0.05), with areas under the curve of 0.891 and 0.912, respectively. Both records had high sensitivity and specificity in the diagnosis of CSM; the diagnostic cutoff values of LMC2 and LUC2 were calculated as 10.2% and 19.25%, respectively. CONCLUSIONS The percentage change in amplitude was obvious during cervical dynamic motion, with records from LMC2 and LUC2 being predictive of CSM diagnosis; dynamic SSEPs provided a simple, accurate, and noninvasive supplementary test for the diagnosis of complicated CSM.
Collapse
Affiliation(s)
- Qihua Qi
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Sheng Huang
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zemin Ling
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Chen
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Hu
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ping Zhan
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Zhang
- Department of Orthopedic, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuenong Zou
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xinsheng Peng
- Department of Spine Surgery, Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
11
|
Franz S, Schulz B, Wang H, Gottschalk S, Grüter F, Friedrich J, Glaesener JJ, Bock F, Schott C, Müller R, Schultes K, Landmann G, Gerner HJ, Dietz V, Treede RD, Weidner N. Management of pain in individuals with spinal cord injury: Guideline of the German-Speaking Medical Society for Spinal Cord Injury. GERMAN MEDICAL SCIENCE : GMS E-JOURNAL 2019; 17:Doc05. [PMID: 31354397 PMCID: PMC6637293 DOI: 10.3205/000271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Introduction: Pain is a prominent complication in spinal cord injury (SCI). It can either occur as a direct or as an indirect consequence of SCI and it often heavily influences the quality of life of affected individuals. In SCI, nociceptive and neuropathic pain can equally emerge at the same time above or below the level of injury. Thus, classification and grading of pain is frequently difficult. Effective treatment of SCI-related pain in general and of neuropathic pain in particular is challenging. Current treatment options are sparse and their evidence is considered to be limited. Considering these aspects, a clinical practice guideline was developed as basis for an optimized, comprehensive and standardized pain management in SCI-related pain. Methods: The German-Speaking Medical Society for Spinal Cord Injury (Deutschsprachige Medizinische Gesellschaft für Paraplegiologie – DMGP) developed a clinical practice guideline that received consensus from seven further German-speaking medical societies and one patient organization. The evidence base from clinical trials and meta-analyses was summarized and subjected to a structured consensus-process in accordance with the regulations of the Association of Scientific Medical Societies in Germany (AWMF) and the methodological requirements of the “German instrument for methodological guideline appraisal”. Results: This consensus-based guideline (S2k classification according to the AWMF guidance manual and rules) resulted in seven on-topic statements and 17 specific recommendations relevant to the classification, assessment and therapy of pain directly or indirectly caused by SCI. Recommended therapeutic approaches comprise pharmacological (e.g. nonsteroidal anti-inflammatory drugs or anticonvulsants) and non-pharmacological (e.g. physical activity or psychotherapeutic techniques) strategies for both nociceptive and neuropathic pain. Discussion: Assessment of SCI-related pain is standardized and respective methods in terms of examination, classification and grading of pain are already in use and validated in German language. In contrast, valid, evidence-based and efficient therapeutic options are limited and ask for further clinical studies, ideally randomized controlled trials and meta-analyses.
Collapse
Affiliation(s)
- Steffen Franz
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Barbara Schulz
- BG Klinikum Bergmannstrost, Abteilung Medizinische Psychologie, Spezielle Traumatherapie (DeGPT), Hypnotherapie und Hypnose (DGH), Halle, Germany
| | - Haili Wang
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Gottschalk
- Zentralklinik Bad Berka GmbH, Querschnittgelähmten-Zentrum/Klinik für Paraplegiologie und Neuro-Urologie, Bad Berka, Germany
| | - Florian Grüter
- Kliniken Beelitz GmbH, Neurologische Rehabilitationsklinik, Beelitz-Heilstätten, Germany
| | | | | | | | - Cordelia Schott
- Orthopädische Privatpraxis Schott (OPS), Im Medizinischen Zentrum Essen, Germany
| | | | - Kevin Schultes
- Fördergemeinschaft der Querschnittgelähmten in Deutschland e.V., Lobbach, Germany
| | - Gunther Landmann
- Center for Pain Medicine, Swiss Paraplegic Centre, Nottwil, Switzerland
| | - Hans Jürgen Gerner
- Fördergemeinschaft der Querschnittgelähmten in Deutschland e.V., Lobbach, Germany
| | - Volker Dietz
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Rolf-Detlef Treede
- Chair of Neurophysiology, Centre of Biomedicine and Medical Technology Mannheim, Heidelberg University, Mannheim, Germany
| | - Norbert Weidner
- Spinal Cord Injury Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Application of electrophysiological measures in spinal cord injury clinical trials: a narrative review. Spinal Cord 2019; 57:909-923. [PMID: 31337870 DOI: 10.1038/s41393-019-0331-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023]
Abstract
STUDY DESIGN Narrative review. OBJECTIVES To discuss how electrophysiology may contribute to future clinical trials in spinal cord injury (SCI) in terms of: (1) improvement of SCI diagnosis, patient stratification and determination of exclusion criteria; (2) the assessment of adverse events; and (3) detection of therapeutic effects following an intervention. METHODS An international expert panel for electrophysiological measures in SCI searched and discussed the literature focused on the topic. RESULTS Electrophysiology represents a valid method to detect, track, and quantify readouts of nerve functions including signal conduction, e.g., evoked potentials testing long spinal tracts, and neural processing, e.g., reflex testing. Furthermore, electrophysiological measures can predict functional outcomes and thereby guide rehabilitation programs and therapeutic interventions for clinical studies. CONCLUSION Objective and quantitative measures of sensory, motor, and autonomic function based on electrophysiological techniques are promising tools to inform and improve future SCI trials. Complementing clinical outcome measures, electrophysiological recordings can improve the SCI diagnosis and patient stratification, as well as the detection of both beneficial and adverse events. Specifically composed electrophysiological measures can be used to characterize the topography and completeness of SCI and reveal neuronal integrity below the lesion, a prerequisite for the success of any interventional trial. Further validation of electrophysiological tools with regard to their validity, reliability, and sensitivity are needed in order to become routinely applied in clinical SCI trials.
Collapse
|
13
|
Rosner J, Rinert J, Ernst M, Curt A, Hubli M. Cold evoked potentials: Acquisition from cervical dermatomes. Neurophysiol Clin 2019; 49:49-57. [DOI: 10.1016/j.neucli.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/06/2023] Open
|
14
|
Rosner J, Hubli M, Hostettler P, Jutzeler CR, Kramer JLK, Curt A. Not Hot, but Sharp: Dissociation of Pinprick and Heat Perception in Snake Eye Appearance Myelopathy. Front Neurol 2019; 9:1144. [PMID: 30622512 PMCID: PMC6308139 DOI: 10.3389/fneur.2018.01144] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/11/2018] [Indexed: 11/19/2022] Open
Abstract
Following a traumatic spinal cord injury, a 53-year-old male developed a central cord syndrome with at-level neuropathic pain. Magnetic resonance imaging revealed a classical “snake eye” appearance myelopathy, with marked hyperintensities at C5-C7. Clinical examination revealed intact pinprick sensation coupled with lost or diminished thermal/heat sensation. This dissociation could be objectively confirmed through multi-modal neurophysiological assessments. Specifically, contact heat evoked potentials were lost at-level, while pinprick evoked potentials were preserved. This pattern corresponds with that seen after surgical commissural myelotomy. To our knowledge, this is the first time such a dissociation has been objectively documented, highlighting the diagnostic potential of multi-modal neurophysiological assessments. In future studies, a comprehensive assessment of different nociceptive modalities may help elucidate the pathophysiology of neuropathic pain.
Collapse
Affiliation(s)
- Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Pascal Hostettler
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Catherine R Jutzeler
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.,International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Abstract
Clinical neurophysiologic investigation of pain pathways in humans is based on specific techniques and approaches, since conventional methods of nerve conduction studies and somatosensory evoked potentials do not explore these pathways. The proposed techniques use various types of painful stimuli (thermal, laser, mechanical, or electrical) and various types of assessments (measurement of sensory thresholds, study of nerve fiber excitability, or recording of electromyographic reflexes or cortical potentials). The two main tests used in clinical practice are quantitative sensory testing and pain-related evoked potentials (PREPs). In particular, PREPs offer the possibility of an objective assessment of nociceptive pathways. Three types of PREPs can be distinguished depending on the type of stimulation used to evoke pain: laser-evoked potentials, contact heat evoked potentials, and intraepidermal electrical stimulation evoked potentials (IEEPs). These three techniques investigate both small-diameter peripheral nociceptive afferents (mainly Aδ nerve fibers) and spinothalamic tracts without theoretically being able to differentiate the level of lesion in the case of abnormal results. In routine clinical practice, PREP recording is a reliable method of investigation for objectifying the existence of a peripheral or central lesion or loss of function concerning the nociceptive pathways, but not the existence of pain. Other methods, such as nerve fiber excitability studies using microneurography, more directly reflect the activities of nociceptive axons in response to provoked pain, but without detecting or quantifying the presence of spontaneous pain. These methods are more often used in research or experimental study design. Thus, it should be kept in mind that most of the results of neurophysiologic investigation performed in clinical practice assess small fiber or spinothalamic tract lesions rather than the neuronal mechanisms directly at the origin of pain and they do not provide objective quantification of pain.
Collapse
Affiliation(s)
- Jean-Pascal Lefaucheur
- Excitabilité Nerveuse et Thérapeutique, Faculté de Médecine de Créteil, Université Paris-Est-Créteil, Hôpital Henri Mondor, Créteil, France; Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri Mondor, Créteil, France.
| |
Collapse
|
16
|
Normative data of contact heat evoked potentials from the lower extremities. Sci Rep 2018; 8:11003. [PMID: 30030450 PMCID: PMC6054620 DOI: 10.1038/s41598-018-29145-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/05/2018] [Indexed: 12/27/2022] Open
Abstract
Contact heat evoked potentials (CHEPs) have become an acknowledged research tool in the assessment of the integrity of the nociceptive system and gained importance in the diagnostic work-up of patients with suspected small fiber neuropathy. For the latter, normative values for CHEP amplitude and latency are indispensable for a clinically meaningful interpretation of the results gathered in patients. To this end, CHEPs were recorded in 100 healthy subjects over a wide age range (20–80 years) and from three different dermatomes of the lower extremities (L2, L5, and S2). A normal baseline (35–52 °C) and increased baseline stimulation (42–52 °C) were applied. Statistical analysis revealed significant effects of stimulation site, stimulation intensity, and sex on CHEP parameters (N2 latency, N2P2 amplitude, and NRS). Significant positive correlations of body height with N2 latency, and pain ratings with N2P2 amplitudes were observed. This is the first time that normative values have been obtained from multiple dermatomes of the lower extremities. The present dataset will facilitate the clinical application of CHEPs in the neurophysiological diagnosis of small fiber neuropathy and by discerning pathological findings help establish a proximal-distal gradient of nerve degeneration in polyneuropathies.
Collapse
|
17
|
Rosner J, Hubli M, Hostettler P, Scheuren PS, Rinert J, Kramer JLK, Hupp M, Curt A, Jutzeler CR. Contact heat evoked potentials: Reliable acquisition from lower extremities. Clin Neurophysiol 2018; 129:584-591. [PMID: 29414402 DOI: 10.1016/j.clinph.2017.12.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/28/2017] [Accepted: 12/17/2017] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To investigate test-retest reliability of contact heat evoked potentials (CHEPs) from lower extremities using two different stimulation protocols, i.e., normal and increased baseline temperature. METHODS A total of 32 able-bodied subjects were included and a subset (N = 22) was retested. CHEPs were recorded from three different dermatomes of the lower extremity (i.e., L2, L5, and S2). Test-retest reliability of CHEPs acquisition after simulation in various lower limb dermatomes using different stimulation protocols was analyzed. RESULTS The study revealed an improved acquisition of CHEPS employing the increased baseline protocol, particularly when stimulating more distal sites, i.e., dermatome L5 and S2. Based on repeatability coefficients, CHEP latency (N2 potential) emerged as the most robust CHEP parameter. Although CHEP amplitudes (N2P2 complex) and pain ratings were decreased in the retest, amplitudes still showed fair to excellent intraclass correlation coefficients using normal baseline or increased baseline temperature, respectively. CONCLUSIONS This is the first study to demonstrate that CHEPs acquisition from the lower extremities is improved by increasing the baseline temperature of the thermode. SIGNIFICANCE This study highlights the usability of CHEPs as a viable diagnostic method to study small fiber integrity.
Collapse
Affiliation(s)
- J Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - M Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
| | - P Hostettler
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - P S Scheuren
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| | - J Rinert
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - J L K Kramer
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada; School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Hupp
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - A Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - C R Jutzeler
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland; International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
18
|
Jutzeler CR, Ulrich A, Huber B, Rosner J, Kramer JL, Curt A. Improved Diagnosis of Cervical Spondylotic Myelopathy with Contact Heat Evoked Potentials. J Neurotrauma 2017; 34:2045-2053. [DOI: 10.1089/neu.2016.4891] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Anett Ulrich
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Barbara Huber
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| | - John L.K. Kramer
- ICORD, University of British Columbia, Vancouver, British Columbia, Canada
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, Zurich, Switzerland
| |
Collapse
|
19
|
Usefulness of laser-evoked potentials and quantitative sensory testing in the diagnosis of neuropathic spinal cord injury pain: a multiple case study. Spinal Cord 2017; 55:575-582. [PMID: 28117333 DOI: 10.1038/sc.2016.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 12/12/2016] [Accepted: 12/18/2016] [Indexed: 12/18/2022]
Abstract
STUDY DESIGN A retrospective study. OBJECTIVES The aim of this study was to investigate the contribution of laser-evoked potentials (LEPs) and quantitative sensory testing (QST) to the diagnosis of neuropathic pain in patients with spinal cord injury (SCI) and inconclusive magnetic resonance imaging (MRI) findings. SETTING A multidisciplinary pain center. METHODS QST (DFNS protocol) and Tm-YAG-laser stimulation of the skin were applied within the pain site corresponding with dermatomes of altered sensation. Available MRI scans were reviewed. RESULTS Thirteen individuals (50±16 years) with SCI were examined. In four cases with no detectable neural lesion on MRI, all QST but three LEP were abnormal. In four patients with poorly defined spinal lesion on MRI, all QST but three LEP only were abnormal. In four cases where pain was not matching adequately with MRI lesions, all patients had abnormal LEP and QST. In one patient showing a spinal cord atrophy, LEP was normal but QST was abnormal. Findings supported the diagnoses at-level (n=5) and below-level (n=8) SCI pain. Spinothalamic tract function assessed by LEP was normal in three cases, but QST was abnormal in all cases. CONCLUSIONS As QST is a psychophysical examination depending on patient cooperation, we suggest that the combination of QST and LEP might be a valuable diagnostic tool to detect lesions of the somatosensory system in a subgroup of patients with neuropathic spinal cord injury pain and inconclusive MRI findings.
Collapse
|
20
|
Jutzeler CR, Rosner J, Rinert J, Kramer JLK, Curt A. Normative data for the segmental acquisition of contact heat evoked potentials in cervical dermatomes. Sci Rep 2016; 6:34660. [PMID: 27708413 PMCID: PMC5052572 DOI: 10.1038/srep34660] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
Contact heat evoked potentials (CHEPs) represent a neurophysiological approach to assess conduction in the spinothalamic tract. The aim of this study was to establish normative values of CHEPs acquired from cervical dermatomes (C4, C6, C8) and examine the potential confounds of age, sex, and height. 101 (49 male) healthy subjects of three different age groups (18–40, 41–60, and 61–80 years) were recruited. Normal (NB, 35–52 °C) followed by increased (IB, 42–52 °C) baseline stimulation protocols were employed to record CHEPs. Multi-variate linear models were used to investigate the effect of age, sex, and height on the CHEPs parameters (i.e., N2 latency, N2P2 amplitude, rating of perceived intensity). Compared to NB, IB stimulation reduced latency jitter within subjects, yielding larger N2P2 amplitudes, and decreased inter-subject N2 latency variability. Age was associated with reduced N2P2 amplitude and prolonged N2 latency. After controlling for height, male subjects had significantly longer N2 latencies than females during IB stimulation. The study provides normative CHEPs data in a large cohort of healthy subjects from segmentally examined cervical dermatomes. Age and sex were identified as important factors contributing to N2 latency and N2P2 amplitude. The normative data will improve the diagnosis of spinal cord pathologies.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.,ICORD, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan Rosner
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - Janosch Rinert
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- ICORD, University of British Columbia, Vancouver, British Columbia, Canada.,School of Kinesiology, University of British Columbia, Vancouver, BC, Canada
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
|
22
|
Voxel-based analysis of grey and white matter degeneration in cervical spondylotic myelopathy. Sci Rep 2016; 6:24636. [PMID: 27095134 PMCID: PMC4837346 DOI: 10.1038/srep24636] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
In this prospective study, we made an unbiased voxel-based analysis to investigate above-stenosis spinal degeneration and its relation to impairment in patients with cervical spondylotic myelopathy (CSM). Twenty patients and 18 controls were assessed with high-resolution MRI protocols above the level of stenosis. Cross-sectional areas of grey matter (GM), white matter (WM), and posterior columns (PC) were measured to determine atrophy. Diffusion indices assessed tract-specific integrity of PC and lateral corticospinal tracts (CST). Regression analysis was used to reveal relationships between MRI measures and clinical impairment. Patients showed mainly sensory impairment. Atrophy was prominent within the cervical WM (13.9%, p = 0.004), GM (7.2%, p = 0.043), and PC (16.1%, p = 0.005). Fractional anisotropy (FA) was reduced in the PC (−11.98%, p = 0.006) and lateral CST (−12.96%, p = 0.014). In addition, radial (+28.47%, p = 0.014), axial (+14.72%, p = 0.005), and mean (+16.50%, p = 0.001) diffusivities were increased in the PC. Light-touch score was associated with atrophy (R2 = 0.3559, p = 0.020) and FA (z score 3.74, p = 0.003) in the PC, as was functional independence and FA in the lateral CST (z score 3.68, p = 0.020). This study demonstrates voxel-based degeneration far above the stenosis at a level not directly affected by the compression and provides unbiased readouts of tract-specific changes that relate to impairment.
Collapse
|
23
|
Levitan Y, Zeilig G, Bondi M, Ringler E, Defrin R. Predicting the Risk for Central Pain Using the Sensory Components of the International Standards for Neurological Classification of Spinal Cord Injury. J Neurotrauma 2015; 32:1684-92. [DOI: 10.1089/neu.2015.3947] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuval Levitan
- Department of Neurological Rehabilitation, Tel-Aviv University, Tel-Aviv, Israel
- Department of Physical Therapy, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabi Zeilig
- Department of Neurological Rehabilitation, Tel-Aviv University, Tel-Aviv, Israel
- Department of Rehabilitation, Tel-Aviv University, Tel-Aviv, Israel
| | - Moshe Bondi
- Department of Neurological Rehabilitation, Tel-Aviv University, Tel-Aviv, Israel
| | - Erez Ringler
- Department of Neurological Rehabilitation, Tel-Aviv University, Tel-Aviv, Israel
| | - Ruth Defrin
- Department of Physical Therapy, Tel-Aviv University, Tel-Aviv, Israel
- Department of Rehabilitation, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
24
|
Ulrich A, Min K, Curt A. High sensitivity of contact-heat evoked potentials in “snake-eye” appearance myelopathy. Clin Neurophysiol 2015; 126:1994-2003. [DOI: 10.1016/j.clinph.2014.12.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/30/2014] [Accepted: 12/10/2014] [Indexed: 12/12/2022]
|
25
|
Jutzeler CR, Curt A, Kramer JLK. Effectiveness of High-Frequency Electrical Stimulation Following Sensitization With Capsaicin. THE JOURNAL OF PAIN 2015; 16:595-605. [PMID: 25866256 DOI: 10.1016/j.jpain.2015.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 02/16/2015] [Accepted: 03/13/2015] [Indexed: 11/26/2022]
Abstract
UNLABELLED Although nonnoxious, high-frequency electrical stimulation applied segmentally (ie, conventional transcutaneous electrical nerve stimulation [TENS]) has been proposed to modulate pain, the mechanisms underlying analgesia remain poorly understood. To further elucidate how TENS modulates pain, we examined evoked responses to noxious thermal stimuli after the induction of sensitization using capsaicin in healthy volunteers. We hypothesized that sensitization caused by capsaicin application would unmask TENS analgesia, which could not be detected in the absence of sensitization. Forty-nine healthy subjects took part in a series of experiments. The experiments comprised the application of topical capsaicin (.075%) on the left hand in the C6 dermatome, varying the location of TENS (segmental, left C6 dermatome, vs extrasegmental, right shoulder), and assessing rating of perception (numeric rating scale: 0-10) and evoked potentials to noxious contact heat stimuli. The extrasegmental site was included as a control condition because previous studies indicate no analgesic effect to remote conventional TENS. Conventional TENS had no significant effect on rating or sensory evoked potentials in subjects untreated with capsaicin. However, segmental TENS applied in conjunction with capsaicin significantly reduced sensation to noxious thermal stimuli following a 60-minute period of sensitization. PERSPECTIVE The study indicates that sensitization with capsaicin unmasks the analgesic effect of conventional TENS on perception of noxious contact heat stimuli. Our findings indicate that TENS may be interacting segmentally to modulate distinct aspects of sensitization, which in turn results in analgesia to thermal stimulation.
Collapse
Affiliation(s)
- Catherine R Jutzeler
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland.
| | - Armin Curt
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland
| | - John L K Kramer
- Spinal Cord Injury Center, University Hospital Balgrist, University of Zurich, Zurich, Switzerland; School of Kinesiology, International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
26
|
Awai L, Curt A. Preserved Sensory-Motor Function Despite Large-Scale Morphological Alterations in a Series of Patients with Holocord Syringomyelia. J Neurotrauma 2015; 32:403-10. [DOI: 10.1089/neu.2014.3536] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lea Awai
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Switzerland
| |
Collapse
|
27
|
Madsen CS, Finnerup NB, Baumgärtner U. Assessment of small fibers using evoked potentials. Scand J Pain 2014; 5:111-118. [DOI: 10.1016/j.sjpain.2013.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 11/16/2013] [Indexed: 01/08/2023]
Abstract
Abstract
Background and purpose
Conventional neurophysiological techniques do not assess the function of nociceptive pathways and are inadequate to detect abnormalities in patients with small-fiber damage. This overview aims to give an update on the methods and techniques used to assess small fiber (Aδ- and C-fibers) function using evoked potentials in research and clinical settings.
Methods
Noxious radiant or contact heat allows the recording of heat-evoked brain potentials commonly referred to as laser evoked potentials (LEPs) and contact heat-evoked potentials (CHEPs). Both methods reliably assess the loss of Aδ-fiber function by means of reduced amplitude and increased latency of late responses, whereas other methods have been developed to record ultra-late C-fiber-related potentials. Methodological considerations with the use of LEPs and CHEPs include fixed versus variable stimulation site, application pressure, and attentional factors. While the amplitude of LEPs and CHEPs often correlates with the reported intensity of the stimulation, these factors may also be dissociated. It is suggested that the magnitude of the response may be related to the saliency of the noxious stimulus (the ability of the stimulus to stand out from the background) rather than the pain perception.
Results
LEPs and CHEPs are increasingly used as objective laboratory tests to assess the pathways mediating thermal pain, but new methods have recently been developed to evaluate other small-fiber pathways. Pain-related electrically evoked potentials with a low-intensity electrical simulation have been proposed as an alternative method to selectively activate Aδ-nociceptors. A new technique using a flat tip mechanical stimulator has been shown to elicit brain potentials following activation of Type I A mechano-heat (AMH) fibers. These pinprick-evoked potentials (PEP) have a morphology resembling those of heat-evoked potentials following activation of Type II AMH fibers, but with a shorter latency. Cool-evoked potentials can be used for recording the non-nociceptive pathways for cooling. At present, the use of cool-evoked potentials is still in the experimental state. Contact thermodes designed to generate steep heat ramps may be programmed differently to generate cool ramps from a baseline of 35◦C down to 32◦C or 30◦C. Small-fiber evoked potentials are valuable tools for assessment of small-fiber function in sensory neuropathy, central nervous system lesion, and for the diagnosis of neuropathic pain. Recent studies suggest that both CHEPs and pinprick-evoked potentials may also be convenient tools to assess sensitization of the nociceptive system.
Conclusions
In future studies, small-fiber evoked potentials may also be used in studies that aim to understand pain mechanisms including different neuropathic pain phenotypes, such as cold- or touch-evoked allodynia, and to identify predictors of response to pharmacological pain treatment.
Implications
Future studies are needed for some of the newly developed methods.
Collapse
Affiliation(s)
- Caspar Skau Madsen
- Danish Pain Research Center , Aarhus University Hospital , Aarhus , Denmark
| | | | - Ulf Baumgärtner
- Department of Neurophysiology, Center for Biomedicine and Medical Technology Mannheim (CBTM) , Heidelberg University , Mannheim , Germany
| |
Collapse
|