1
|
Lee JD, Woodruff TM. The emerging role of complement in neuromuscular disorders. Semin Immunopathol 2021; 43:817-828. [PMID: 34705082 DOI: 10.1007/s00281-021-00895-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022]
Abstract
The complement cascade is a key arm of the immune system that protects the host from exogenous and endogenous toxic stimuli through its ability to potently regulate inflammation, phagocytosis, and cell lysis. Due to recent clinical trial successes and drug approvals for complement inhibitors, there is a resurgence in targeting complement as a therapeutic approach to prevent ongoing tissue destruction in several diseases. In particular, neuromuscular diseases are undergoing a recent focus, with demonstrated links between complement activation and disease pathology. This review aims to provide a comprehensive overview of complement activation and its role during the initiation and progression of neuromuscular disorders including myasthenia gravis, amyotrophic lateral sclerosis, and Duchenne muscular dystrophy. We will review the preclinical and clinical evidence for complement in these diseases, with an emphasis on the complement-targeting drugs in clinical trials for these indications.
Collapse
Affiliation(s)
- John D Lee
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Trent M Woodruff
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
2
|
Mantegazza R, Vanoli F, Frangiamore R, Cavalcante P. Complement Inhibition for the Treatment of Myasthenia Gravis. Immunotargets Ther 2020; 9:317-331. [PMID: 33365280 PMCID: PMC7751298 DOI: 10.2147/itt.s261414] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/02/2020] [Indexed: 12/11/2022] Open
Abstract
Generalized myasthenia gravis (gMG) is a rare autoimmune disorder affecting the neuromuscular junction (NMJ). Approximately 80-90% of patients display antibodies directed against the nicotinic acetylcholine receptor (AChR). A major drive of AChR antibody-positive MG pathology is represented by complement activation. The role of the complement cascade has been largely demonstrated in patients and in MG animal models. Complement activation at the NMJ leads to focal lysis of the post-synaptic membrane, disruption of the characteristic folds, and reduction of AChR. Given that the complement system works as an activation cascade, there are many potential targets that can be considered for therapeutic intervention. Preclinical studies have confirmed the efficacy of complement inhibition in ameliorating MG symptoms. Eculizumab, an antibody directed towards C5, has recently been approved for the treatment of AChR antibody-positive gMG. Other complement inhibitors, targeting C5 as well, are currently under phase III study. Complement inhibitors, however, may present prohibitive costs. Therefore, the identification of a subset of patients more or less prone to respond to such therapies would be beneficial. For such purpose, there is a critical need to identify possible biomarkers predictive of therapeutic response, a field not yet sufficiently explored in MG. This review aims to give an overview of the complement cascade involvement in MG, the evolution of complement-inhibiting therapies and possible biomarkers useful to tailor and monitor complement-directed therapies.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fiammetta Vanoli
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rita Frangiamore
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Cavalcante
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Seldeen KL, Thiyagarajan R, Redae Y, Jacob A, Troen BR, Quigg RJ, Alexander JJ. Absence of complement factor H reduces physical performance in C57BL6 mice. Immunobiology 2020; 225:152003. [PMID: 32962822 PMCID: PMC9844077 DOI: 10.1016/j.imbio.2020.152003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
Complement (C) system is a double edge sword acting as the first line of defense on the one hand and causing aggravation of disease on the other. C activation when unregulated affects different organs including muscle regeneration. However, the effect of factor H (FH), a critical regulator of the alternative C pathway in muscle remains to be studied. FH deficiency results in excessive C activation and generates proinflammatory fragments C5a and C3a as byproducts. C3a and C5a signal through their respective receptors, C5aR and C3aR. In this study, we investigated the role of FH and downstream C5a/C5aR signaling in muscle architecture and function. Using the FH knockout (fh-/-) and fh-/-/C5aR-/double knockout mice we explored the role of C, specifically the alternative C pathway in muscle dysfunction. Substantial C3 and C9 deposits occur along the walls of the fh-/- muscle fibers indicative of unrestricted C activation. Physical performance assessments of the fh-/- mice show reduced grip endurance (76 %), grip strength (14 %) and rotarod balance (36 %) compared to controls. Histological analysis revealed a shift in muscle fiber populations indicated by an increase in glycolytic MHC IIB fibers and reduction in oxidative MHC IIA fibers. Consistent with this finding, mitochondrial DNA (mtDNA) and citrate synthase (CS) expression were both reduced indicating possible reduction in mitochondrial biomass. In addition, our results showed a significant increase in TGFβ expression and altered TGFβ localization in this setting. The architecture of cytoskeletal proteins actin and vimentin in the fh-/- muscle was changed that could lead to contractile weakness and loss of skeletal muscle elasticity. The muscle pathology in fh-/- mice was reduced in fh-/-/C5aR-/- double knockout (DKO) mice, highlighting partial C5aR dependence. Our results for the first time demonstrate an important role of FH in physical performance and skeletal muscle health.
Collapse
Affiliation(s)
- Kenneth L. Seldeen
- Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Ramkumar Thiyagarajan
- Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yonas Redae
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Alexander Jacob
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Bruce R. Troen
- Geriatrics and Palliative Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA,Research Service, Veterans Affairs Western New York Healthcare System, Buffalo, NY, USA
| | - Richard J. Quigg
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Jessy J. Alexander
- Department of Medicine, Division of Nephrology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA,Corresponding author. (J.J. Alexander)
| |
Collapse
|
4
|
Albazli K, Kaminski HJ, Howard JF. Complement Inhibitor Therapy for Myasthenia Gravis. Front Immunol 2020; 11:917. [PMID: 32582144 PMCID: PMC7283905 DOI: 10.3389/fimmu.2020.00917] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/20/2020] [Indexed: 01/01/2023] Open
Abstract
Complement activation as a driver of pathology in myasthenia gravis (MG) has been appreciated for decades. The terminal complement component [membrane attack complex (MAC)] is found at the neuromuscular junctions of patients with MG. Animals with experimental autoimmune MG are dependent predominantly on an active complement system to develop weakness. Mice deficient in intrinsic complement regulatory proteins demonstrate a significant increase in the destruction of the neuromuscular junction. As subtypes of MG have been better defined, it has been appreciated that acetylcholine receptor antibody-positive disease is driven by complement activation. Preclinical assessments have confirmed that complement inhibition would be a viable therapeutic approach. Eculizumab, an antibody directed toward the C5 component of complement, was demonstrated to be effective in a Phase 3 trial with subsequent approval by the Federal Drug Administration of the United States and other worldwide regulatory agencies for its use in acetylcholine receptor antibody-positive MG. Second- and third-generation complement inhibitors are in development and approaching pivotal efficacy evaluations. This review will summarize the history and present the state of knowledge of this new therapeutic modality.
Collapse
Affiliation(s)
- Khaled Albazli
- Department of Neurology, George Washington University, Washington, DC, United States
| | - Henry J. Kaminski
- Department of Neurology, George Washington University, Washington, DC, United States
| | - James F. Howard
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
5
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
6
|
Kusner LL, Sengupta M, Kaminski HJ. Acetylcholine receptor antibody-mediated animal models of myasthenia gravis and the role of complement. Ann N Y Acad Sci 2018; 1413:136-142. [PMID: 29356015 DOI: 10.1111/nyas.13555] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 10/23/2017] [Accepted: 10/25/2017] [Indexed: 12/22/2022]
Abstract
Because of the failure of many promising therapeutics identified in preclinical evaluation, funding sources have established guidelines for increased rigor in animal evaluations. The myasthenia gravis (MG) community of scientists has developed guidelines for preclinical assessment for potential MG treatments. Here, we provide a focused summary of these recommendations and the role of complement in disease development in experimental models of MG.
Collapse
Affiliation(s)
- Linda L Kusner
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Manjistha Sengupta
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, DC
| | - Henry J Kaminski
- Department of Neurology, George Washington University School of Medicine and Health Sciences, Washington, DC
| |
Collapse
|
7
|
Tüzün E, Christadoss P. Complement associated pathogenic mechanisms in myasthenia gravis. Autoimmun Rev 2013; 12:904-11. [DOI: 10.1016/j.autrev.2013.03.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/26/2022]
|
8
|
Sommer N, Tackenberg B, Hohlfeld R. The immunopathogenesis of myasthenia gravis. HANDBOOK OF CLINICAL NEUROLOGY 2008; 91:169-212. [PMID: 18631843 DOI: 10.1016/s0072-9752(07)01505-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Norbert Sommer
- Clinical Neuroimmunology Group, Philipps-University, Marburg, Germany
| | | | | |
Collapse
|
9
|
Mozrzymas JW, Lorenzon P, Riviera AP, Tedesco F, Ruzzier F. An electrophysiological study of the effects of myasthenia gravis sera and complement on rat isolated muscle fibres. J Neuroimmunol 1993; 45:155-62. [PMID: 8331159 DOI: 10.1016/0165-5728(93)90176-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effect of human myasthenia gravis (MG) sera and complement on isolated adult rat muscle fibres was investigated. Heat-inactivated MG sera reduced the frequency of single acetylcholine receptor (AChR)-channel activity. One of the MG sera tested had a stronger effect on the extrajunctional type of AChRs than on the junctional type. The simultaneous addition of normal human serum (NHS), as source of complement, and MG serum to freshly dissociated muscle fibres caused contraction restricted to the endplate area and progressive depolarization of the muscle membrane, followed by contracture. An MG antibody-dependent complement-mediated damage of the muscle fibres is suggested.
Collapse
Affiliation(s)
- J W Mozrzymas
- Istituto di Fisiologia, Università di Trieste, Italy
| | | | | | | | | |
Collapse
|
10
|
Graus YM, De Baets MH. Myasthenia gravis: an autoimmune response against the acetylcholine receptor. Immunol Res 1993; 12:78-100. [PMID: 7685805 DOI: 10.1007/bf02918370] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Myasthenia gravis (MG) is an organ-specific autoimmune disease caused by an antibody-mediated assault on the muscle nicotinic acetylcholine receptor (AChR) at the neuromuscular junction. Binding of antibodies to the AChR leads to loss of functional AChRs and impairs the neuromuscular signal transmission, resulting in muscular weakness. Although a great deal of information on the immunopathological mechanisms involved in AChR destruction exists due to well-characterized animal models, it is not known which etiological factors determine the susceptibility for the disease. This review gives an overview of the literature on the AChR, MG and experimental models for this autoimmune disease.
Collapse
Affiliation(s)
- Y M Graus
- Department of Immunology, University of Limburg, Maastricht, The Netherlands
| | | |
Collapse
|
11
|
Eymard B, de la Porte S, Pannier C, Berrih-Aknin S, Morel E, Fardeau M, Bach JF, Koenig J. Effect of myasthenic patient sera on the number and distribution of acetylcholine receptors in muscle and nerve-muscle cultures from rat. Correlations with clinical state. J Neurol Sci 1988; 86:41-59. [PMID: 3171596 DOI: 10.1016/0022-510x(88)90006-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We studied the functional activities (FA) of sera obtained from 83 myasthenic patients on rat muscle cultures. Using the same sets of cultures, two parameters were evaluated after exposure to sera: residual fraction (RF) of acetylcholine receptors (AChR) coupled to 125I-labelled alpha-bungarotoxin (alpha Bgt) (81 sera) and the number of rhodamine labelled clusters (56 sera). Two types of culture were assayed: muscle alone and nerve-muscle cocultures (12 cases). In all combinations (fluorescence, radiolabelling, muscle alone and nerve-muscle cocultures), we found a significant correlation between FA and antibody (Ab) titre, and no correlation between FA and clinical severity: only sera with a high or intermediate Ab titre were effective, whatever the clinical severity of disease. With active sera, AChR loss was about 50% whereas the disappearance of AChR clusters was quite complete, which suggests AChR redistribution induced by MG sera.
Collapse
Affiliation(s)
- B Eymard
- CNRS UA 1159, Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson, France
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- L A Childs
- Department of Biochemistry, University of Bath, England
| | | | | |
Collapse
|
13
|
Engel AG, Arahata K. The membrane attack complex of complement at the endplate in myasthenia gravis. Ann N Y Acad Sci 1987; 505:326-32. [PMID: 3318619 DOI: 10.1111/j.1749-6632.1987.tb51301.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- A G Engel
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905
| | | |
Collapse
|
14
|
ASHIZAWA TETSUO, APPEL STANLEYH. Complement-Dependent Pathogenicity of Myasthenic Immunoglobulins: An in Vitro Study. Ann N Y Acad Sci 1987. [DOI: 10.1111/j.1749-6632.1987.tb51346.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|