1
|
Alfayyadh MM, Maksemous N, Sutherland HG, Lea RA, Griffiths LR. Unravelling the Genetic Landscape of Hemiplegic Migraine: Exploring Innovative Strategies and Emerging Approaches. Genes (Basel) 2024; 15:443. [PMID: 38674378 PMCID: PMC11049430 DOI: 10.3390/genes15040443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Migraine is a severe, debilitating neurovascular disorder. Hemiplegic migraine (HM) is a rare and debilitating neurological condition with a strong genetic basis. Sequencing technologies have improved the diagnosis and our understanding of the molecular pathophysiology of HM. Linkage analysis and sequencing studies in HM families have identified pathogenic variants in ion channels and related genes, including CACNA1A, ATP1A2, and SCN1A, that cause HM. However, approximately 75% of HM patients are negative for these mutations, indicating there are other genes involved in disease causation. In this review, we explored our current understanding of the genetics of HM. The evidence presented herein summarises the current knowledge of the genetics of HM, which can be expanded further to explain the remaining heritability of this debilitating condition. Innovative bioinformatics and computational strategies to cover the entire genetic spectrum of HM are also discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | - Lyn R. Griffiths
- Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; (M.M.A.); (N.M.); (H.G.S.); (R.A.L.)
| |
Collapse
|
2
|
Xiang Y, Li F, Song Z, Yi Z, Yang C, Xue J, Zhang Y. Two pediatric patients with hemiplegic migraine presenting as acute encephalopathy: case reports and a literature review. Front Pediatr 2023; 11:1214837. [PMID: 37576133 PMCID: PMC10419215 DOI: 10.3389/fped.2023.1214837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction Hemiplegic migraine (HM) is a rare subtype of migraine. HM in children may be atypical in the initial stage of the disease, which could easily lead to misdiagnosis. Methods We report two cases of atypical hemiplegic migraine that onset as an acute encephalopathy. And a comprehensive search was performed using PubMed, Web of Science, and Scopus. We selected only papers that reported complete clinical information about the patients with CACNA1A or ATP1A2 gene mutation. Results Patient #1 showed a de novo mutation, c.674C>A (p. Pro225His), in exon 5 of the CACNA1A gene. And patient #2 showed a missense mutation (c.2143G>A, p. Gly715Arg) in exon 16 of the ATP1A2. Together with our two cases, a total of 160 patients (73 CACNA1A and 87 ATP1A2) were collected and summarized finally. Discussion Acute encephalopathy is the main manifestation of severe attacks of HM in children, which adds to the difficulty of diagnosis. Physicians should consider HM in the differential diagnosis of patients presenting with somnolence, coma, or convulsion without structural, epileptic, infectious, or inflammatory explanation. When similar clinical cases appear, gene detection is particularly important, which is conducive to early diagnosis and treatment. Early recognition and treatment of the disease can help improve the prognosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ying Zhang
- Department of Pediatric Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Bonemazzi I, Brunello F, Pin JN, Pecoraro M, Sartori S, Nosadini M, Toldo I. Hemiplegic Migraine in Children and Adolescents. J Clin Med 2023; 12:jcm12113783. [PMID: 37297978 DOI: 10.3390/jcm12113783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND Only a few studies have focused on hemiplegic migraine (HM) in children despite its early age of onset. The aim of this review is to describe the peculiar characteristics of pediatric HM. METHODS This is a narrative review based on 14 studies on pediatric HM selected from 262 papers. RESULTS Different from HM in adults, pediatric HM affects both genders equally. Early transient neurological symptoms (prolonged aphasia during a febrile episode, isolated seizures, transient hemiparesis, and prolonged clumsiness after minor head trauma) can precede HM long before its onset. The prevalence of non-motor auras among children is lower than it is in adults. Pediatric sporadic HM patients have longer and more severe attacks compared to familial cases, especially during the initial years after disease onset, while familial HM cases tend to have the disease for longer. During follow-up, the frequency, intensity, and duration of HM attacks often decrease. The outcome is favorable in most patients; however, neurological conditions and comorbidities can be associated. CONCLUSION Further studies are needed to better define the clinical phenotype and the natural history of pediatric HM and to refine genotype-phenotype correlations in order to improve the knowledge on HM physiopathology, diagnosis, and outcome.
Collapse
Affiliation(s)
- Ilaria Bonemazzi
- Juvenile Headache Center, Department of Woman's and Child's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Francesco Brunello
- Juvenile Headache Center, Department of Woman's and Child's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Jacopo Norberto Pin
- Juvenile Headache Center, Department of Woman's and Child's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Mattia Pecoraro
- Juvenile Headache Center, Department of Woman's and Child's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Stefano Sartori
- Juvenile Headache Center, Department of Woman's and Child's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Margherita Nosadini
- Juvenile Headache Center, Department of Woman's and Child's Health, University Hospital of Padua, 35128 Padua, Italy
| | - Irene Toldo
- Juvenile Headache Center, Department of Woman's and Child's Health, University Hospital of Padua, 35128 Padua, Italy
| |
Collapse
|
4
|
Grangeon L, Lange KS, Waliszewska-Prosół M, Onan D, Marschollek K, Wiels W, Mikulenka P, Farham F, Gollion C, Ducros A, on behalf of the European Headache Federation School of Advanced Studies (EHF-SAS). Genetics of migraine: where are we now? J Headache Pain 2023; 24:12. [PMID: 36800925 PMCID: PMC9940421 DOI: 10.1186/s10194-023-01547-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 02/21/2023] Open
Abstract
Migraine is a complex brain disorder explained by the interaction of genetic and environmental factors. In monogenic migraines, including familial hemiplegic migraine and migraine with aura associated with hereditary small-vessel disorders, the identified genes code for proteins expressed in neurons, glial cells, or vessels, all of which increase susceptibility to cortical spreading depression. The study of monogenic migraines has shown that the neurovascular unit plays a prominent role in migraine. Genome-wide association studies have identified numerous susceptibility variants that each result in only a small increase in overall migraine risk. The more than 180 known variants belong to several complex networks of "pro-migraine" molecular abnormalities, which are mainly neuronal or vascular. Genetics has also highlighted the importance of shared genetic factors between migraine and its major co-morbidities, including depression and high blood pressure. Further studies are still needed to map all of the susceptibility loci for migraine and then to understand how these genomic variants lead to migraine cell phenotypes.
Collapse
Affiliation(s)
- Lou Grangeon
- grid.41724.340000 0001 2296 5231Neurology Department, CHU de Rouen, Rouen, France
| | - Kristin Sophie Lange
- grid.6363.00000 0001 2218 4662Neurology Department, Charité – Universitätsmedizin Berlin, Berlin, Germany ,grid.6363.00000 0001 2218 4662Center for Stroke Research Berlin (CSB), Charité – Universitätsmedizin, Berlin, Germany
| | - Marta Waliszewska-Prosół
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Dilara Onan
- grid.14442.370000 0001 2342 7339Hacettepe University, Faculty of Physical Therapy and Rehabilitation, Ankara, Turkey
| | - Karol Marschollek
- grid.4495.c0000 0001 1090 049XDepartment of Neurology, Wrocław Medical University, Wrocław, Poland
| | - Wietse Wiels
- grid.8767.e0000 0001 2290 8069Department of Neurology, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Petr Mikulenka
- grid.412819.70000 0004 0611 1895Department of Neurology, Third Faculty of Medicine, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Fatemeh Farham
- grid.411705.60000 0001 0166 0922Headache Department, Iranian Centre of Neurological Researchers, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Cédric Gollion
- grid.411175.70000 0001 1457 2980Neurology Department, CHU de Toulouse, Toulouse, France
| | - Anne Ducros
- Neurology Department, CHU de Montpellier, 80 avenue Augustin Fliche, 34295, Montpellier, France.
| | | |
Collapse
|
5
|
Indelicato E, Boesch S. CACNA1A-Related Channelopathies: Clinical Manifestations and Treatment Options. Handb Exp Pharmacol 2023; 279:227-248. [PMID: 36592223 DOI: 10.1007/164_2022_625] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In the last decade, variants in the Ca2+ channel gene CACNA1A emerged as a frequent aetiology of rare neurological phenotypes sharing a common denominator of variable paroxysmal manifestations and chronic cerebellar dysfunction. The spectrum of paroxysmal manifestations encompasses migraine with hemiplegic aura, episodic ataxia, epilepsy and paroxysmal non-epileptic movement disorders. Additional chronic neurological symptoms range from severe developmental phenotypes in early-onset cases to neurobehavioural disorders and chronic cerebellar ataxia in older children and adults.In the present review we systematically approach the clinical manifestations of CACNA1A variants, delineate genotype-phenotype correlations and elaborate on the emerging concept of an age-dependent phenotypic spectrum in CACNA1A disease. We furthermore reflect on different therapy options available for paroxysmal symptoms in CACNA1A and address open issues to prioritize in the future clinical research.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Baviera-Muñoz R, Carretero-Vilarroig L, Vázquez-Costa JF, Morata-Martínez C, Campins-Romeu M, Muelas N, Sastre-Bataller I, Martínez-Torres I, Pérez-García J, Sivera R, Sevilla T, Vilchez JJ, Jaijo T, Espinós C, Millán JM, Bataller L, Aller E. Diagnostic Efficacy of Genetic Studies in a Series of Hereditary Cerebellar Ataxias in Eastern Spain. NEUROLOGY GENETICS 2022; 8:e200038. [DOI: 10.1212/nxg.0000000000200038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Background and ObjectivesTo determine the diagnostic efficacy of clinical exome-targeted sequencing (CES) and spinocerebellar ataxia 36 (SCA36) screening in a real-life cohort of patients with cerebellar ataxia (CA) from Eastern Spain.MethodsA total of 130 unrelated patients with CA, negative for common trinucleotide repeat expansions (SCA1, SCA2, SCA3, SCA6, SCA7, SCA8, SCA12, SCA17, dentatorubral pallidoluysian atrophy [DRPLA], and Friedreich ataxia), were studied with CES. Bioinformatic and genotype-phenotype analyses were performed to assess the pathogenicity of the variants encountered. Copy number variants were analyzed when appropriate. In undiagnosed dominant and sporadic cases, repeat primed PCR was used to screen for the presence of a repeat expansion in theNOP56gene.ResultsCES identified pathogenic or likely pathogenic variants in 50 families (39%), including 23 novel variants. Overall, there was a high genetic heterogeneity, and the most frequent genetic diagnosis wasSPG7(n = 15), followed bySETX(n = 6),CACNA1A(n = 5),POLR3A(n = 4), andSYNE1(n = 3). In addition, 17 families displayed likely pathogenic/pathogenic variants in 14 different genes:KCND3(n = 2),KIF1C(n = 2),CYP27A1A(n = 2),AFG3L2(n = 1),ANO10(n = 1),CAPN1(n = 1),CWF19L1(n = 1),ITPR1(n = 1),KCNA1(n = 1),OPA1(n = 1),PNPLA6(n = 1),SPG11(n = 1),SPTBN2(n = 1), andTPP1(n = 1). Twenty-two novel variants were characterized. SCA36 was diagnosed in 11 families, all with autosomal dominant (AD) presentation. SCA36 screening increased the total diagnostic rate to 47% (n = 61/130). Ultimately, undiagnosed patients showed delayed age at onset (p< 0.05) and were more frequently sporadic.DiscussionOur study provides insight into the genetic landscape of CA in Eastern Spain. Although CES was an effective approach to capture genetic heterogeneity, most patients remained undiagnosed. SCA36 was found to be a relatively frequent form and, therefore, should be tested prior to CES in familial AD presentations in particular geographical regions.
Collapse
|
7
|
Batum M, Kısabay Ak A, Çetin G, Çelebi HBG, Çam S, Mavioğlu H. Coincidental occurance of episodic ataxia and multiple sclerosis: a case report and review of the literature. Int J Neurosci 2022; 132:656-661. [DOI: 10.1080/00207454.2020.1835896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Melike Batum
- Neurology Department, Celal Bayar Unıversity, Manisa, Turkey
| | | | - Güldeniz Çetin
- Neurology Department, Celal Bayar Unıversity, Manisa, Turkey
| | | | - Sırrı Çam
- Genetics Department, Celal Bayar Unıversity, Manisa, Turkey
| | - Hatice Mavioğlu
- Neurology Department, Celal Bayar Unıversity, Manisa, Turkey
| |
Collapse
|
8
|
Ghorbani F, Alimohamed MZ, Vilacha JF, Van Dijk KK, De Boer-Bergsma J, Fokkens MR, Lemmink H, Sijmons RH, Sikkema-Raddatz B, Groves MR, Verschuuren-Bemelmans CC, Verbeek DS, Van Diemen CC, Westers H. Feasibility of Follow-Up Studies and Reclassification in Spinocerebellar Ataxia Gene Variants of Unknown Significance. Front Genet 2022; 13:782685. [PMID: 35401678 PMCID: PMC8990126 DOI: 10.3389/fgene.2022.782685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous group of neurodegenerative disorders with autosomal dominant inheritance. Genetic testing for SCA leads to diagnosis, prognosis and risk assessment for patients and their family members. While advances in sequencing and computing technologies have provided researchers with a rapid expansion in the genetic test content that can be used to unravel the genetic causes that underlie diseases, the large number of variants with unknown significance (VUSes) detected represent challenges. To minimize the proportion of VUSes, follow-up studies are needed to aid in their reclassification as either (likely) pathogenic or (likely) benign variants. In this study, we addressed the challenge of prioritizing VUSes for follow-up using (a combination of) variant segregation studies, 3D protein modeling, in vitro splicing assays and functional assays. Of the 39 VUSes prioritized for further analysis, 13 were eligible for follow up. We were able to reclassify 4 of these VUSes to LP, increasing the molecular diagnostic yield by 1.1%. Reclassification of VUSes remains difficult due to limited possibilities for performing variant segregation studies in the classification process and the limited availability of routine functional tests.
Collapse
Affiliation(s)
- Fatemeh Ghorbani
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Mohamed Z. Alimohamed
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Hematology and Blood Transfusion, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Shree Hindu Mandal Hospital, Dar es Salaam, Tanzania
| | - Juliana F. Vilacha
- Groningen Biomolecular Sciences and Biotechnology Institute, Zernike Institute for Advanced Materials, University of Groningen, Groningen, Netherlands
| | - Krista K. Van Dijk
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jelkje De Boer-Bergsma
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Michiel R. Fokkens
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Henny Lemmink
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Rolf H. Sijmons
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Birgit Sikkema-Raddatz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Matthew R. Groves
- Structural Biology in Drug Design, Department of Drug Design, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | | | - Dineke S. Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- *Correspondence: Dineke S. Verbeek,
| | - Cleo C. Van Diemen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Helga Westers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
9
|
Migraine and Stroke. Stroke 2022. [DOI: 10.1016/b978-0-323-69424-7.00043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Moon D, Park HW, Surl D, Won D, Lee ST, Shin S, Choi JR, Han J. Precision Medicine through Next-Generation Sequencing in Inherited Eye Diseases in a Korean Cohort. Genes (Basel) 2021; 13:genes13010027. [PMID: 35052368 PMCID: PMC8774510 DOI: 10.3390/genes13010027] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated medically or surgically actionable genes in inherited eye disease, based on clinical phenotype and genomic data. This retrospective consecutive case series included 149 patients with inherited eye diseases, seen by a single pediatric ophthalmologist, who underwent genetic testing between 1 March 2017 and 28 February 2018. Variants were detected using a target enrichment panel of 429 genes and known deep intronic variants associated with inherited eye disease. Among 149 patients, 38 (25.5%) had a family history, and this cohort includes heterogeneous phenotype including anterior segment dysgenesis, congenital cataract, infantile nystagmus syndrome, optic atrophy, and retinal dystrophy. Overall, 90 patients (60.4%) received a definite molecular diagnosis. Overall, NGS-guided precision care was provided to 8 patients (5.4%). The precision care included cryotherapy to prevent retinal detachment in COL2A1 Stickler syndrome, osteoporosis management in patients with LRP5-associated familial exudative vitreoretinopathy, and avoidance of unnecessary phlebotomy in hyperferritinemia-cataract syndrome. A revision of the initial clinical diagnosis was made in 22 patients (14.8%). Unexpected multi-gene deletions and dual diagnosis were noted in 4 patients (2.7%). We found that precision medical or surgical managements were provided for 8 of 149 patients (5.4%), and multiple locus variants were found in 2.7% of cases. These findings are important because individualized management of inherited eye diseases can be achieved through genetic testing.
Collapse
Affiliation(s)
- Dabin Moon
- Department of Medicine, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Hye Won Park
- Department of Ophthalmology, Konyang University College of Medicine, Daejeon 35365, Korea;
| | - Dongheon Surl
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Dongju Won
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea; (D.W.); (S.-T.L.); (S.S.); (J.R.C.)
| | - Jinu Han
- Department of Ophthalmology, Institute of Vision Research, Severance Hospital, Yonsei University College of Medicine, Seoul 03722, Korea;
- Department of Ophthalmology, Institute of Vision Research, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Korea
- Correspondence: ; Tel.: +82-2-2019-3445; Fax: +82-2-3463-1049
| |
Collapse
|
11
|
Ko PY, Glass IA, Crandall S, Weiss A, Dorschner MO, Kelly JP, Phillips JO, Lopez J. Two Missense CACNA1A Variants in a Single Family with Variable Neurobehavioral, Cerebellar, Epileptic, and Oculomotor Features. Neuropediatrics 2021; 52:186-191. [PMID: 33445191 DOI: 10.1055/s-0040-1721686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We describe two novel missense variants in CACNA1A segregating in a family with variable severity of ataxia/oculomotor dysfunction, neurobehavioral impairments, and epilepsy. The most severe outcome occurred in a compound heterozygous proband, which could represent variable expression of the paternal allele or biallelic modulation of calcium channel function. Acetazolamide and lamotrigine were effective for seizure control.
Collapse
Affiliation(s)
- Pin-Yi Ko
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington, United States
| | - Ian A Glass
- Center for Integrative Brain Research, Seattle, Washington, United States.,Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, Washington, United States.,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - Suzanne Crandall
- Department of Neurology, Saint Luke's Hospital of Kansas City, Kansas City, Missouri, United States
| | - Avery Weiss
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Michael O Dorschner
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington, United States
| | - John P Kelly
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - James O Phillips
- Department of Otolaryngology-HNS, University of Washington, Seattle, Washington, United States
| | - Jonathan Lopez
- Division of Pediatric Neurology, Department of Neurology, University of Washington, Seattle, Washington, United States
| |
Collapse
|
12
|
Albamonte E, Barp A, Duga V, Carraro E, Passarini A, Bergamoni S, Maggi L, Sansone VA. Sporadic Hemiplegic Migraine Type 1 and Congenital Ataxia due to a Single Amino Acid Deletion (ΔF1502) in CACNA1A: A Challenging Diagnosis. JOURNAL OF PEDIATRIC NEUROLOGY 2021. [DOI: 10.1055/s-0041-1725984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractMutations in the CACNA1A gene have been classically related to three neurologic disorders: hemiplegic migraine type 1 (both familiar and sporadic FHM1/SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). More recently, pathogenic variants in CACNA1A have been recognized as causative of an early-onset cerebellar syndrome consistent with the definition of congenital ataxia (CA), variably associated with paroxysmal symptoms. Early recognition of congenital ataxia is challenging because the presenting symptoms, such as hypotonia, weak deep tendon reflexes, and delayed motor milestones, are unspecific while clear signs of a cerebellar syndrome which are usually not seen before the second or third year. Here, we report on a case of nonepisodic ataxia of congenital onset and severe SHM1 where the diagnosis of congenital ataxia was made retrospectively after the identification of the ΔF1502 pathogenic variant in CACNA1A by an hemiplegic migraine multigene panel, conducted for the onset of hemiplegic migraine attacks associated with hemispheric swelling. A significant reduction in migraine attacks frequency was achieved with acetazolamide.
Collapse
Affiliation(s)
- Emilio Albamonte
- NEuroMuscular Omnicentre, The NeMO Clinical Center in Milan, University of Milan, Milan, Italy
| | - Andrea Barp
- NEuroMuscular Omnicentre, The NeMO Clinical Center in Milan, University of Milan, Milan, Italy
| | - Valentina Duga
- Child Neurology Unit, IRCCS Neurological Institute Foundation “Carlo Besta,” Milan, Italy
| | - Elena Carraro
- NEuroMuscular Omnicentre, The NeMO Clinical Center in Milan, University of Milan, Milan, Italy
| | - Alice Passarini
- Child Neurology Unit, Niguarda Ca' Granda Hospital, Milan, Italy
| | | | - Lorenzo Maggi
- Neuroimmunology and Neuromuscular Diseases Unit, IRCCS Neurological Institute Foundation “Carlo Besta,” Milan, Italy
| | - Valeria Ada Sansone
- NEuroMuscular Omnicentre, The NeMO Clinical Center in Milan, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Kowalska M, Prendecki M, Piekut T, Kozubski W, Dorszewska J. Migraine: Calcium Channels and Glia. Int J Mol Sci 2021; 22:2688. [PMID: 33799975 PMCID: PMC7962070 DOI: 10.3390/ijms22052688] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
Migraine is a common neurological disease that affects about 11% of the adult population. The disease is divided into two main clinical subtypes: migraine with aura and migraine without aura. According to the neurovascular theory of migraine, the activation of the trigeminovascular system (TGVS) and the release of numerous neuropeptides, including calcitonin gene-related peptide (CGRP) are involved in headache pathogenesis. TGVS can be activated by cortical spreading depression (CSD), a phenomenon responsible for the aura. The mechanism of CSD, stemming in part from aberrant interactions between neurons and glia have been studied in models of familial hemiplegic migraine (FHM), a rare monogenic form of migraine with aura. The present review focuses on those interactions, especially as seen in FHM type 1, a variant of the disease caused by a mutation in CACNA1A, which encodes the α1A subunit of the P/Q-type voltage-gated calcium channel.
Collapse
Affiliation(s)
- Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland;
| | - Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland; (M.K.); (M.P.); (T.P.)
| |
Collapse
|
14
|
Di Stefano V, Rispoli MG, Pellegrino N, Graziosi A, Rotondo E, Napoli C, Pietrobon D, Brighina F, Parisi P. Diagnostic and therapeutic aspects of hemiplegic migraine. J Neurol Neurosurg Psychiatry 2020; 91:764-771. [PMID: 32430436 PMCID: PMC7361005 DOI: 10.1136/jnnp-2020-322850] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 01/25/2023]
Abstract
Hemiplegic migraine (HM) is a clinically and genetically heterogeneous condition with attacks of headache and motor weakness which may be associated with impaired consciousness, cerebellar ataxia and intellectual disability. Motor symptoms usually last <72 hours and are associated with visual or sensory manifestations, speech impairment or brainstem aura. HM can occur as a sporadic HM or familiar HM with an autosomal dominant mode of inheritance. Mutations in CACNA1A, ATP1A2 and SCN1A encoding proteins involved in ion transport are implicated. The pathophysiology of HM is close to the process of typical migraine with aura, but appearing with a lower threshold and more severity. We reviewed epidemiology, clinical presentation, diagnostic assessment, differential diagnosis and treatment of HM to offer the best evidence of this rare condition. The differential diagnosis of HM is broad, including other types of migraine and any condition that can cause transitory neurological signs and symptoms. Neuroimaging, cerebrospinal fluid analysis and electroencephalography are useful, but the diagnosis is clinical with a genetic confirmation. The management relies on the control of triggering factors and even hospitalisation in case of long-lasting auras. As HM is a rare condition, there are no randomised controlled trials, but the evidence for the treatment comes from small studies.
Collapse
Affiliation(s)
- Vincenzo Di Stefano
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicilia, Italy
| | - Marianna Gabriella Rispoli
- Department of Neuroscience Imaging and Clinical Sciences, 'G. d'Annunzio' University, Universita degli Studi Gabriele d'Annunzio Chieti e Pescara, Chieti Scalo, Chieti, Italy
| | - Noemi Pellegrino
- Pediatrics, University Gabriele d'Annunzio of Chieti Pescara Department of Medicine and Aging Science, Chieti, Abruzzo, Italy
| | - Alessandro Graziosi
- Pediatrics, University Gabriele d'Annunzio of Chieti Pescara Department of Medicine and Aging Science, Chieti, Abruzzo, Italy
| | - Eleonora Rotondo
- Pediatrics, University Gabriele d'Annunzio of Chieti Pescara Department of Medicine and Aging Science, Chieti, Abruzzo, Italy
| | - Christian Napoli
- Department of Medical Surgical Sciences and Translational Medicine, Sapienza University of Rome, Roma, Lazio, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences & Padova Neuroscience Center, University of Padova, Padova, Italy.,CNR Neuroscience Institute, Padova, Italy
| | - Filippo Brighina
- Department of Biomedicine, Neuroscience and Advanced Diagnostic (BIND), University of Palermo, Palermo, Sicilia, Italy
| | - Pasquale Parisi
- Dipartimento di Neuroscienze Salute Mentale e Organi di Senso (NESMOS), University of Rome La Sapienza Faculty of Medicine and Psychology, Roma, Lazio, Italy
| |
Collapse
|
15
|
Paroxysmal tonic upgaze: A heterogeneous clinical condition responsive to carbonic anhydrase inhibition. Eur J Paediatr Neurol 2020; 25:181-186. [PMID: 31810576 DOI: 10.1016/j.ejpn.2019.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/15/2019] [Accepted: 11/09/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Paroxysmal tonic upgaze (PTU), defined as an involuntary upward movement of the eyes, has been considered as a benign phenomenon but may also be associated with ataxia and developmental delay. METHODS We report eight children with PTU; six of them also exhibiting symptoms of ataxia and/or developmental delay. Treatment with carbonic anhydrase inhibition was offered to children with persisting and/or severe forms. RESULTS Whole-exome sequencing and genome-wide array analysis (n = 7) did not reveal mutations in the three known genes associated with PTU (CACNA1A, GRID2, SEPSECS), whereas by MLPA a heterozygous deletion of exon 31 of the CACNA1A gene could be detected in one patient, her mother and two further family members. Further exome and array analysis showed no recurrent variants in potentially novel PTU-related genes in more than one patient. A de novo variant at a highly conserved position in the SIM1 gene was detected in one patient, for which a pathogenic effect could be speculated. Carbonic anhydrase inhibition was started in five children and proved at least partially effective in all of them. CONCLUSION Irrespective of the clinical background and the molecular basic mechanism of PTU, therapeutic carbonic anhydrase inhibition was effective in all five children (acetazolamide, n = 3; sultiame, n = 2) who received this treatment.
Collapse
|
16
|
Tyagi S, Ribera AB, Bannister RA. Zebrafish as a Model System for the Study of Severe Ca V2.1 (α 1A) Channelopathies. Front Mol Neurosci 2020; 12:329. [PMID: 32116539 PMCID: PMC7018710 DOI: 10.3389/fnmol.2019.00329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
The P/Q-type CaV2.1 channel regulates neurotransmitter release at neuromuscular junctions (NMJ) and many central synapses. CACNA1A encodes the pore-containing α1A subunit of CaV2.1 channels. In humans, de novo CACNA1A mutations result in a wide spectrum of neurological, neuromuscular, and movement disorders, such as familial hemiplegic migraine type 1 (FHM1), episodic ataxia type 2 (EA2), as well as a more recently discovered class of more severe disorders, which are characterized by ataxia, hypotonia, cerebellar atrophy, and cognitive/developmental delay. Heterologous expression of CaV2.1 channels has allowed for an understanding of the consequences of CACNA1A missense mutations on channel function. In contrast, a mechanistic understanding of how specific CACNA1A mutations lead in vivo to the resultant phenotypes is lacking. In this review, we present the zebrafish as a model to both study in vivo mechanisms of CACNA1A mutations that result in synaptic and behavioral defects and to screen for effective drug therapies to combat these and other CaV2.1 channelopathies.
Collapse
Affiliation(s)
- Sidharth Tyagi
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, United States
| | - Angeles B Ribera
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Roger A Bannister
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, United States.,Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
17
|
Galosi S, Nardecchia F, Leuzzi V. Treatable Inherited Movement Disorders in Children: Spotlight on Clinical and Biochemical Features. Mov Disord Clin Pract 2020; 7:154-166. [PMID: 32071932 DOI: 10.1002/mdc3.12897] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 12/15/2019] [Accepted: 01/01/2020] [Indexed: 12/26/2022] Open
Abstract
Background About 80% of monogenic metabolic diseases causing movement disorders (MDs) emerges during the first 2 decades of life, and a number of these conditions offers the opportunity of a disease-modifying treatment. The implementation of enlarged neonatal screening programs and the impressive rapid increase of the identification of new conditions are enhancing our potential to recognize and treat several diseases causing MDs, changing their outcome and phenotypic spectrum. Methods and Findings A literature review of monogenic disorders causing MDs amenable to treatment was conducted focusing on early clinical signs and diagnostic biomarkers. A classification in 3 broad categories based on the therapeutic approach has been proposed. Some disorders result in irreversible neurotoxic lesions that can only be prevented if treated in a presymptomatic stage, and others present with a progressive neurological impairment that a timely diagnosis and treatment may reverse or improve. Some MDs are the result of the failure of intracellular energy supply or altered glucose transport. The treatment in these conditions includes vitamins or a metabolic shift from a carbohydrate to a fatty acid catabolism, respectively. Finally, a group of highly treatable MDs are the result of defects of neurotransmitter metabolism. In these disorders, the supplementation of precursors or mimetics of neurotransmitters can deeply change the disease natural history. Conclusions To prevent serious and irreversible neurological impairment, the diagnostic work-up of MDs in children should consider a number of clinical red flags and biomarkers denoting specifically treatable diseases.
Collapse
Affiliation(s)
- Serena Galosi
- Department of Human Neuroscience Sapienza University Rome Italy
| | | | - Vincenzo Leuzzi
- Department of Human Neuroscience Sapienza University Rome Italy
| |
Collapse
|
18
|
Calcium signalling in mammalian cell lines expressing wild type and mutant human α1-Antitrypsin. Sci Rep 2019; 9:17293. [PMID: 31754242 PMCID: PMC6872872 DOI: 10.1038/s41598-019-53535-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/28/2019] [Indexed: 11/08/2022] Open
Abstract
A possible role for calcium signalling in the autosomal dominant form of dementia, familial encephalopathy with neuroserpin inclusion bodies (FENIB), has been proposed, which may point towards a mechanism by which cells could sense and respond to the accumulation of mutant serpin polymers in the endoplasmic reticulum (ER). We therefore explored possible defects in Ca2+-signalling, which may contribute to the pathology associated with another serpinopathy, α1-antitrypsin (AAT) deficiency. Using CHO K1 cell lines stably expressing a wild type human AAT (MAAT) and a disease-causing polymer-forming variant (ZAAT) and the truncated variant (NHK AAT), we measured basal intracellular free Ca2+, its responses to thapsigargin (TG), an ER Ca2+-ATPase blocker, and store-operated Ca2+-entry (SOCE). Our fura2 based Ca2+ measurements detected no differences between these 3 parameters in cell lines expressing MAAT and cell lines expressing ZAAT and NHK AAT mutants. Thus, in our cell-based models of α1-antitrypsin (AAT) deficiency, unlike the case for FENIB, we were unable to detect defects in calcium signalling.
Collapse
|
19
|
Chen Z, Wang P, Wang C, Peng Y, Hou X, Zhou X, Li T, Peng H, Qiu R, Xia K, Sequeiros J, Tang B, Jiang H. Updated frequency analysis of spinocerebellar ataxia in China. Brain 2019; 141:e22. [PMID: 29444203 DOI: 10.1093/brain/awy016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhao Chen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Puzhi Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Chunrong Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Yun Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xiaocan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Xin Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Tianjiao Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Huirong Peng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
| | - Rong Qiu
- School of Information Science and Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, P. R. China
| | - Jorge Sequeiros
- IBMC - Institute for Molecular and Cell Biology, i3S - Instituto de Investigação e Inovação na Saúde; and ICBAS; Univ. Porto, Portugal
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, P. R. China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P. R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R. China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing 100069, P. R. China.,Collaborative Innovation Center for Brain Science, Shanghai 200032, P. R. China.,Collaborative Innovation Center for Genetics and Development, Shanghai 200433, P. R. China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China.,Laboratory of Medical Genetics, Central South University, Changsha, Hunan, 410078, P. R. China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, 410008, P. R. China.,Xinjiang Medical University, Xinjiang, 830011, P. R. China
| |
Collapse
|
20
|
Kang C, Liang C, Ahmad KE, Gu Y, Siow SF, Colebatch JG, Whyte S, Ng K, Cremer PD, Corbett AJ, Davis RL, Roscioli T, Cowley MJ, Park JS, Sue CM, Kumar KR. High Degree of Genetic Heterogeneity for Hereditary Cerebellar Ataxias in Australia. THE CEREBELLUM 2019; 18:137-146. [PMID: 30078120 DOI: 10.1007/s12311-018-0969-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic testing strategies such as next-generation sequencing (NGS) panels and whole genome sequencing (WGS) can be applied to the hereditary cerebellar ataxias (HCAs), but their exact role in the diagnostic pathway is unclear. We aim to determine the yield from genetic testing strategies and the genetic and phenotypic spectrum of HCA in Australia by analysing real-world data. We performed a retrospective review on 87 HCA cases referred to the Neurogenetics Clinic at the Royal North Shore Hospital, Sydney, Australia. Probands underwent triplet repeat expansion testing; those that tested negative had NGS-targeted panels and WGS testing when available. In our sample, 58.6% were male (51/87), with an average age at onset of 37.1 years. Individuals with sequencing variants had a prolonged duration of illness compared to those with a triplet repeat expansion. The detection rate in probands for routine repeat expansion panels was 13.8% (11/80). NGS-targeted panels yielded a further 11 individuals (11/32, 34.4%), with WGS yielding 1 more diagnosis (1/3, 33.3%). NGS panels and WGS improved the overall diagnostic rate to 28.8% (23/80) in 14 known HCA loci. The genetic findings included novel variants in ANO10, CACNA1A, PRKCG and SPG7. Our findings highlight the genetic heterogeneity of HCAs and support the use of NGS approaches for individuals who were negative on repeat expansion testing. In comparison to repeat disorders, individuals with sequencing variants may have a prolonged duration of illness, consistent with slower progression of disease.
Collapse
Affiliation(s)
- Ce Kang
- Faculty of Medicine and Health, Kolling Institute of Medical Research, University of Sydney Northern Clinical School, St Leonards, Australia
| | - Christina Liang
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Kate E Ahmad
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Yufan Gu
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Sue-Faye Siow
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - James G Colebatch
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Randwick, Australia.,Institute of Neurological Sciences, Prince of Wales Hospital, Randwick, Australia
| | - Scott Whyte
- Department of Neurology, Gosford Hospital, Gosford, Australia
| | - Karl Ng
- Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Philip D Cremer
- Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Alastair J Corbett
- Department of Neurology, Concord Repatriation General Hospital, Concord, Australia
| | - Ryan L Davis
- Faculty of Medicine and Health, Kolling Institute of Medical Research, University of Sydney Northern Clinical School, St Leonards, Australia.,Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia
| | - Tony Roscioli
- Prince of Wales Clinical School and Neuroscience Research Australia, University of New South Wales, Randwick, Australia.,Department of Clinical Genetics, Sydney Children's Hospital, Randwick, Australia
| | - Mark J Cowley
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Australia
| | - Jin-Sung Park
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Experimental Animal Research, Seoul National University Hospital, Biomedical Research Institute, Seoul, Republic of Korea
| | - Carolyn M Sue
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia.,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia
| | - Kishore R Kumar
- Department of Neurogenetics, Kolling Institute, University of Sydney and Northern Sydney Local Health District, St Leonards, Australia. .,Department of Neurology, Royal North Shore Hospital, St Leonards, Australia. .,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia.
| |
Collapse
|
21
|
Cozzolino O, Marchese M, Trovato F, Pracucci E, Ratto GM, Buzzi MG, Sicca F, Santorelli FM. Understanding Spreading Depression from Headache to Sudden Unexpected Death. Front Neurol 2018; 9:19. [PMID: 29449828 PMCID: PMC5799941 DOI: 10.3389/fneur.2018.00019] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/11/2018] [Indexed: 01/03/2023] Open
Abstract
Spreading depression (SD) is a neurophysiological phenomenon characterized by abrupt changes in intracellular ion gradients and sustained depolarization of neurons. It leads to loss of electrical activity, changes in the synaptic architecture, and an altered vascular response. Although SD is often described as a unique phenomenon with homogeneous characteristics, it may be strongly affected by the particular triggering event and by genetic background. Furthermore, SD may contribute differently to the pathogenesis of widely heterogeneous clinical conditions. Indeed, clinical disorders related to SD vary in their presentation and severity, ranging from benign headache conditions (migraine syndromes) to severely disabling events, such as cerebral ischemia, or even death in people with epilepsy. Although the characteristics and mechanisms of SD have been dissected using a variety of approaches, ranging from cells to human models, this phenomenon remains only partially understood because of its complexity and the difficulty of obtaining direct experimental data. Currently, clinical monitoring of SD is limited to patients who require neurosurgical interventions and the placement of subdural electrode strips. Significantly, SD events recorded in humans display electrophysiological features that are essentially the same as those observed in animal models. Further research using existing and new experimental models of SD may allow a better understanding of its core mechanisms, and of their differences in different clinical conditions, fostering opportunities to identify and develop targeted therapies for SD-related disorders and their worst consequences.
Collapse
Affiliation(s)
- Olga Cozzolino
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | - Maria Marchese
- Molecular Medicine and Clinical Neurophysiology Laboratories, Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Francesco Trovato
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | - Gian Michele Ratto
- NEST, Istituto Nanoscienze CNR and Scuola Normale Superiore, Pisa, Italy
| | | | - Federico Sicca
- Molecular Medicine and Clinical Neurophysiology Laboratories, Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| | - Filippo M Santorelli
- Molecular Medicine and Clinical Neurophysiology Laboratories, Department of Developmental Neuroscience, IRCCS Fondazione Stella Maris, Pisa, Italy
| |
Collapse
|
22
|
Monteleone S, Lieb A, Pinggera A, Negro G, Fuchs JE, Hofer F, Striessnig J, Tuluc P, Liedl KR. Mechanisms Responsible for ω-Pore Currents in Ca v Calcium Channel Voltage-Sensing Domains. Biophys J 2017; 113:1485-1495. [PMID: 28978442 PMCID: PMC5627182 DOI: 10.1016/j.bpj.2017.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/28/2017] [Accepted: 08/07/2017] [Indexed: 12/27/2022] Open
Abstract
Mutations of positively charged amino acids in the S4 transmembrane segment of a voltage-gated ion channel form ion-conducting pathways through the voltage-sensing domain, named ω-current. Here, we used structure modeling and MD simulations to predict pathogenic ω-currents in CaV1.1 and CaV1.3 Ca2+ channels bearing several S4 charge mutations. Our modeling predicts that mutations of CaV1.1-R1 (R528H/G, R897S) or CaV1.1-R2 (R900S, R1239H) linked to hypokalemic periodic paralysis type 1 and of CaV1.3-R3 (R990H) identified in aldosterone-producing adenomas conducts ω-currents in resting state, but not during voltage-sensing domain activation. The mechanism responsible for the ω-current and its amplitude depend on the number of charges in S4, the position of the mutated S4 charge and countercharges, and the nature of the replacing amino acid. Functional characterization validates the modeling prediction showing that CaV1.3-R990H channels conduct ω-currents at hyperpolarizing potentials, but not upon membrane depolarization compared with wild-type channels.
Collapse
Affiliation(s)
- Stefania Monteleone
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Andreas Lieb
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria; Institute of Neurology, University College London, London, United Kingdom
| | - Alexandra Pinggera
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria; Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Giulia Negro
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Julian E Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Florian Hofer
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Petronel Tuluc
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria.
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
23
|
Viana M, Afridi S. Migraine with prolonged aura: phenotype and treatment. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:1-7. [PMID: 29143861 DOI: 10.1007/s00210-017-1438-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 11/03/2017] [Indexed: 01/03/2023]
Abstract
We review the published literature on migraine with prolonged aura (PA), specifically with regards to the phenotype and treatment options. PA is not uncommon. A recent study found that about 17% of migraine auras are prolonged and that 26% of patients with migraine with aura have experienced at least one PA. The characteristics of PA are similar to most typical auras with the exception of a higher number of aura symptoms (in particular sensory and/or dysphasic). There are no well-established treatments at present which target the aura component of migraine. Other than case reports, there have been open-label studies of lamotrigine and greater occipital nerve blocks. The only randomised, blinded, controlled trial to date has been of nasal ketamine showing some reduction in aura severity but not duration. A small open-labelled pilot study of amiloride was also promising. Larger randomised, controlled trials are needed to establish whether any of the existing or novel compounds mentioned are significantly effective and safe.
Collapse
Affiliation(s)
- Michele Viana
- Headache Science Center, C. Mondino National Neurological Institute, Via Mondino 2, 27100, Pavia, Italy.
| | - Shazia Afridi
- Department of Neurology, Guy's and St Thomas' NHS Trust, London, UK
| |
Collapse
|
24
|
Indelicato E, Nachbauer W, Eigentler A, Donnemiller E, Wagner M, Unterberger I, Boesch S. Ten years of follow-up in a large family with familial hemiplegic migraine type 1: Clinical course and implications for treatment. Cephalalgia 2017; 38:1167-1176. [PMID: 28856914 DOI: 10.1177/0333102417715229] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Familial hemiplegic migraine (FHM) is a rare, genetic form of migraine with aura. The severity of the aura imposes an effective prophylaxis that is currently based on standard anti-migraine drugs. To this concern, only short-term reports are currently available. Methods Eight patients from a multigenerational FHM type 1 family harbouring a T666M mutation in the CACNA1A gene were referred to our ataxia outpatient clinic. Medical history, general and neurological examination as well as therapeutic approaches were recorded regularly on a routine basis for an average period of 13 years (range 9-15 years). Brain imaging studies and EEG data were also collected. Results Our long-term follow-up revealed that ictal manifestations, which usually improve after the adolescence, may reoccur later in the adulthood. Permanent neurological signs as assessed by means of clinical evaluation as well as follow-up MRIs, EEGs and neuropsychological testing remained stable. Interval therapy with non-selective calcium antagonists reduced the burden of migraine attacks and was well tolerated in the long term.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- 1 Department of Neurology, Medical University Innsbruck, Anichstrasse, Innsbruck, Austria
| | - Wolfgang Nachbauer
- 1 Department of Neurology, Medical University Innsbruck, Anichstrasse, Innsbruck, Austria
| | - Andreas Eigentler
- 1 Department of Neurology, Medical University Innsbruck, Anichstrasse, Innsbruck, Austria
| | - Evelin Donnemiller
- 2 Department of Nuclear Medicine, 27280 Medical University Innsbruck , Anichstrasse, Innsbruck, Austria
| | - Michaela Wagner
- 3 Department of Neuroradiology, 27280 Medical University Innsbruck , Anichstrasse, Innsbruck, Austria
| | - Iris Unterberger
- 1 Department of Neurology, Medical University Innsbruck, Anichstrasse, Innsbruck, Austria
| | - Sylvia Boesch
- 1 Department of Neurology, Medical University Innsbruck, Anichstrasse, Innsbruck, Austria
| |
Collapse
|
25
|
Sutherland HG, Griffiths LR. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders. Headache 2017; 57:537-569. [PMID: 28271496 DOI: 10.1111/head.13053] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 01/09/2017] [Indexed: 12/20/2022]
Abstract
Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common migraine. Further studies are required to fully understand these findings and translate them into treatment options for migraine patients.
Collapse
Affiliation(s)
- Heidi G Sutherland
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| | - Lyn R Griffiths
- Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, QUT, Musk Ave, Kelvin Grove, QLD, 4059, Australia
| |
Collapse
|
26
|
Suzuki M, Fujiwara K, Tsubuku T, Yabe I, Sasaki H, Fukuda S. Time course of downbeat positioning nystagmus in familial hemiplegic migraine type 1 treated with acetazolamide. J Neurol Sci 2016; 368:206-8. [PMID: 27538634 DOI: 10.1016/j.jns.2016.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Masanobu Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Hokkaido University, Japan
| | - Keishi Fujiwara
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Hokkaido University, Japan.
| | - Takashi Tsubuku
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Hokkaido University, Japan
| | - Ichiro Yabe
- Department of Neurology, Graduate School of Medicine, Hokkaido University, Japan
| | - Hidenao Sasaki
- Department of Neurology, Graduate School of Medicine, Hokkaido University, Japan
| | - Satoshi Fukuda
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Hokkaido University, Japan
| |
Collapse
|
27
|
Abstract
Sporadic hemiplegic migraine (SHM) is defined as migraine attacks associated with some degree of motor weakness/hemiparesis during the aura phase and where no first degree relative (parent, sibling or child) has identical attacks. The present review deals with recent scientific studies according to which: The SHM prevalence is estimated to be 0.005%; SHM patients have clinical symptoms identical to patients with familial hemiplegic migraine (FHM) and significantly different from patients with migraine with typical aura (typical MA); SHM affected had no increased risk of migraine without aura (MO), but a highly increased risk of typical MA compared to the general population; SHM patients only rarely have mutations in the FHM gene CACNA1A; SHM attacks in some cases can be treated with Verapamil. The reviewed data underlie the change in the International Classification of Headache Disorders 2nd edition where SHM became separated from migraine with typical aura or migraine with prolonged aura. All cases with motor weakness should be classified as either FHM or SHM.
Collapse
Affiliation(s)
- L L Thomsen
- Danish Headache Centre, University of Copenhagen and Department of Neurology, Glostrup University Hospital, Glostrup, Copenhagen, 2600 Denmark.
| | | |
Collapse
|
28
|
Oberndorfer S, Wöber C, Nasel C, Asenbaum S, Lahrmann H, Fueger B, Grisold W. Familial Hemiplegic Migraine: Follow-up Findings of Diffusion-Weighted Magnetic Resonance Imaging (MRI), Perfusion-MRI and [99mTc] HMPAO-SPECT in a Patient with Prolonged Hemiplegic Aura. Cephalalgia 2016; 24:533-9. [PMID: 15196295 DOI: 10.1111/j.1468-2982.2003.00706.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Familial hemiplegic migraine (FHM) is a rare inherited autosomal dominant disorder. Migraine aura may last up to several weeks and then resolve without sequel. We report a 21-year-old male with FHM since the age of 3 years. Diffusion-weighted magnetic resonance imaging (DWI), perfusion-MR imaging (P-MRI) and [99mTc] hexamethyl-propyleneamine-oxime-single photon emission tomography (HMPAO-SPECT) were performed on day 2, when he was somnolent with right-sided hemiplegia, on day 9 when a mild hemiparesis was still present and on day 24 after recovery. The right central region showed normal findings in DWI, whereas P-MRI and SPECT revealed hyperperfusion on day 2, less marked on day 9, and normal findings on day 24. In conclusion, this case report indicates for the first time, by means of SPECT, P-MRI and DWI studies, that even extremely long-lasting migraine aura is not associated with cerebral ischaemia. Therefore, it supports the revised International Headache Society criteria where the term ‘persistent’ aura is proposed.
Collapse
Affiliation(s)
- S Oberndorfer
- Neurological Department, Kaiser-Franz-Josef-Spital, University of Vienna, Austria.
| | | | | | | | | | | | | |
Collapse
|
29
|
Domitrz I, Kostera-Pruszczyk A, Kwieciñski H. A single-fibre EMG Study of Neuromuscular Transmission in Migraine Patients. Cephalalgia 2016; 25:817-21. [PMID: 16162259 DOI: 10.1111/j.1468-2982.2005.00961.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is known that mutations of CACNA1A, which encodes a neuronal P/Q Ca2+ channel, are present in patients with familial hemiplegic migraine, and possibly in other types of migraine as well. This calcium channel is also involved in neuromuscular transmission. To assess if the single-fibre EMG (SFEMG) method can demonstrate a neuromuscular transmission deficit in migraine, a group of 26 patients with different types of migraine and 20 healthy control subjects were studied. The migraine patients were divided into three groups: 8 patients with migraine without aura (MoA), 12 with migraine with aura excluding visual aura (MA) and 6 with visual aura (VA). A SFEMG of the voluntarily activated extensor digitorum communis muscle was performed. The SFEMG results were normal in the healthy controls and the MoA group (migraine without aura). Slight neuromuscular transmission disturbances were present in 6/12 (50%) of patients with MA and in 1/6 (17%) of patients with VA. We suggest that abnormal neuromuscular transmission detectable by SFEMG may reflect a genetically determined dysfunction of the P/Q Ca2+ channels in a subgroup of migraineurs with aura.
Collapse
Affiliation(s)
- I Domitrz
- Department of Neurology, Medical University, 1a Banacha Street, 02-097 Warsaw, Poland.
| | | | | |
Collapse
|
30
|
Fumal A, Vandenheede M, Coppola G, Di Clemente L, Jacquart J, Gérard P, de Noordhout AM, Schoenen J. The Syndrome of Transient Headache with Neurological Deficits and CSF Lymphocytosis (HaNDL): Electrophysiological Findings Suggesting a Migrainous Pathophysiology. Cephalalgia 2016; 25:754-8. [PMID: 16109060 DOI: 10.1111/j.1468-2982.2004.00945.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- A Fumal
- Department of Neurology, University of Liege, Liege, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Baslo MB, Coban A, Baykan B, Tutkavul K, Karli N, Saip S, Orhan EK, Ertas M. Investigation of Neuromuscular Transmission in Some Rare Types of Migraine. Cephalalgia 2016; 27:1201-5. [DOI: 10.1111/j.1468-2982.2007.01417.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to delineate any dysfunction of neuromuscular transmission (NMT) by single-fibre electromyography (SFEMG) in some rare types of migraine. Recent studies have shown subclinical dysfunction of NMT in migraine with aura and cluster headache by using SFEMG, whereas another recent study has shown NMT to be normal in familial hemiplegic migraine (FHM) with CACNA1A mutations. Thirty patients with rare primary headache syndromes [18 with sporadic hemiplegic migraine (SHM), six with FHM and six with basilar-type migraine (BM)] and 15 healthy control subjects without any headache complaints underwent nerve conduction studies, EMG and SFEMG during voluntary contraction of the extensor digitorum communis muscle. Ten to 20 different potential pairs were recorded and individual jitter values calculated. The results obtained from patient groups were compared with those from the normal subjects. Of 600 individual jitter values of the patients, 27 (4.5%) were abnormally high, whereas only 3/205 (1.5%) jitter values from normal subjects were abnormal. Abnormal NMT was found in 4/30 (13.3%) patients (three SHM and one BM), but in none of the control subjects. Only in SHM patients was the number of individual abnormal jitter values slightly but significantly different from normal controls. The present study demonstrates that subclinical NMT abnormality is slightly present in only SHM and BM patients, but not in FHM patients.
Collapse
Affiliation(s)
- MB Baslo
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine
| | - A Coban
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine
| | - B Baykan
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine
| | - K Tutkavul
- Clinic of Neurology, Haydarpasa Numune Education and Research Hospital, Istanbul
| | - N Karli
- Department of Neurology, Uludag University, Faculty of Medicine, Bursa
| | - S Saip
- Department of Neurology, Istanbul University, Cerrahpasa Faculty of Medicine, Istanbul, Turkey
| | - EK Orhan
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine
| | - M Ertas
- Department of Neurology, Istanbul University, Istanbul Faculty of Medicine
| |
Collapse
|
32
|
Tantsis EM, Gill D, Griffiths L, Gupta S, Lawson J, Maksemous N, Ouvrier R, Riant F, Smith R, Troedson C, Webster R, Menezes MP. Eye movement disorders are an early manifestation of CACNA1A mutations in children. Dev Med Child Neurol 2016; 58:639-44. [PMID: 26814174 DOI: 10.1111/dmcn.13033] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2015] [Indexed: 11/29/2022]
Abstract
AIM The alpha-1 isoform of the calcium channel gene is expressed abundantly in neuronal tissue, especially within the cerebellum. Mutations in this gene may manifest with hemiplegic migraine, spinocerebellar ataxia type 6 (SCA6) and episodic ataxia type 2 (EA2) in adults. There are reports of children with CACAN1A mutations presenting with paroxysmal tonic upgaze, abnormal saccades and congenital nystagmus as well as severe forms of hemiplegic migraine. The aim of this study was to review the clinical presentation and subsequent course of all children with a CACNA1A mutation who presented to a tertiary children's hospital. METHOD We reviewed retrospectively nine children with a proven CACNA1A mutation who presented to the Children's Hospital at Westmead between 2005-2015. The initial and subsequent clinical presentation, radiological features and molecular genetic profile of each child was reviewed. RESULTS Nine children presented to out institute over a 10 year period; six were female and three male. The median age of presentation was 1.2 years. Eye movement disorders were the presenting feature in eight children. Three of these children later presented with severe hemiplegic migraine episodes often requiring ICU care. Affected children also had developmental delay and developed classical hemiplegic migraine, episodic ataxia and seizures. Calcium channel blockers were used with some efficacy in preventing severe HM episodes. INTERPRETATION Eye movement disorders are an early manifestation of CACNA1A mutations in children. Improved recognition of the CACNA1A phenotype in childhood is important for early diagnosis, counselling and appropriate emergency management. There is some early evidence that calcium channel blockers may be an effective prophylactic agent for the severe hemiplegic migraine episodes.
Collapse
Affiliation(s)
- Esther M Tantsis
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Deepak Gill
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Lyn Griffiths
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Sachin Gupta
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - John Lawson
- Department of Neurology, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Neven Maksemous
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Robert Ouvrier
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Florence Riant
- Ap-HP, Groupe Gospitalier Lariboisiere-Fernand Widal, Laboratoire de Genetique, Paris, France
| | - Robert Smith
- Institute for Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Qld, Australia
| | - Christopher Troedson
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Richard Webster
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - Manoj P Menezes
- TY Nelson Department of Neurology and Neurosurgery, The Children's Hospital at Westmead, Westmead, NSW, Australia
| |
Collapse
|
33
|
Tomlinson SE, Tan SV, Burke D, Labrum RW, Haworth A, Gibbons VS, Sweeney MG, Griggs RC, Kullmann DM, Bostock H, Hanna MG. In vivo impact of presynaptic calcium channel dysfunction on motor axons in episodic ataxia type 2. Brain 2016; 139:380-91. [PMID: 26912519 PMCID: PMC4795516 DOI: 10.1093/brain/awv380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 10/22/2015] [Accepted: 10/26/2015] [Indexed: 11/13/2022] Open
Abstract
Ion channel dysfunction causes a range of neurological disorders by altering transmembrane ion fluxes, neuronal or muscle excitability, and neurotransmitter release. Genetic neuronal channelopathies affecting peripheral axons provide a unique opportunity to examine the impact of dysfunction of a single channel subtype in detail in vivo. Episodic ataxia type 2 is caused by mutations in CACNA1A, which encodes the pore-forming subunit of the neuronal voltage-gated calcium channel Cav2.1. In peripheral motor axons, this channel is highly expressed at the presynaptic neuromuscular junction where it contributes to action potential-evoked neurotransmitter release, but it is not expressed mid-axon or thought to contribute to action potential generation. Eight patients from five families with genetically confirmed episodic ataxia type 2 underwent neurophysiological assessment to determine whether axonal excitability was normal and, if not, whether changes could be explained by Cav2.1 dysfunction. New mutations in the CACNA1A gene were identified in two families. Nerve conduction studies were normal, but increased jitter in single-fibre EMG studies indicated unstable neuromuscular transmission in two patients. Excitability properties of median motor axons were compared with those in 30 age-matched healthy control subjects. All patients had similar excitability abnormalities, including a high electrical threshold and increased responses to hyperpolarizing (P < 0.00007) and depolarizing currents (P < 0.001) in threshold electrotonus. In the recovery cycle, refractoriness (P < 0.0002) and superexcitability (P < 0.006) were increased. Cav2.1 dysfunction in episodic ataxia type 2 thus has unexpected effects on axon excitability, which may reflect an indirect effect of abnormal calcium current fluxes during development.
Collapse
Affiliation(s)
- Susan E Tomlinson
- 1 Sydney Medical School, University of Sydney, Australia 2 Department of Neurology, St Vincent's Hospital, Sydney, Australia
| | - S Veronica Tan
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK
| | - David Burke
- 1 Sydney Medical School, University of Sydney, Australia 4 Department of Neurology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Robyn W Labrum
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | - Andrea Haworth
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | | | - Mary G Sweeney
- 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | | | - Dimitri M Kullmann
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| | - Hugh Bostock
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK
| | - Michael G Hanna
- 3 Institute of Neurology, University College London and MRC Centre for Neuromuscular Disease, Queen Square, UK 5 Neurogenetics Unit, National Hospital for Neurology, Queen Square, UK
| |
Collapse
|
34
|
Maksemous N, Roy B, Smith RA, Griffiths LR. Next-generation sequencing identifies novel CACNA1A gene mutations in episodic ataxia type 2. Mol Genet Genomic Med 2016; 4:211-22. [PMID: 27066515 PMCID: PMC4799871 DOI: 10.1002/mgg3.196] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 12/04/2015] [Accepted: 12/06/2015] [Indexed: 11/11/2022] Open
Abstract
Episodic Ataxia type 2 (EA2) is a rare autosomal dominantly inherited neurological disorder characterized by recurrent disabling imbalance, vertigo, and episodes of ataxia lasting minutes to hours. EA2 is caused most often by loss of function mutations of the calcium channel gene CACNA1A. In addition to EA2, mutations in CACNA1A are responsible for two other allelic disorders: familial hemiplegic migraine type 1 (FHM1) and spinocerebellar ataxia type 6 (SCA6). Herein, we have utilized next-generation sequencing (NGS) to screen the coding sequence, exon-intron boundaries, and Untranslated Regions (UTRs) of five genes where mutation is known to produce symptoms related to EA2, including CACNA1A. We performed this screening in a group of 31 unrelated patients with EA2 symptoms. Both novel and known mutations were detected through NGS technology, and confirmed through Sanger sequencing. Genetic testing showed in total 15 mutation bearing patients (48%), of which nine were novel mutations (6 missense and 3 small frameshift deletion mutations) and six known mutations (4 missense and 2 nonsense).These results demonstrate the efficiency of our NGS-panel for detecting known and novel mutations for EA2 in the CACNA1A gene, also identifying a novel missense mutation in ATP1A2 which is not a normal target for EA2 screening.
Collapse
Affiliation(s)
- Neven Maksemous
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| | - Bishakha Roy
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| | - Robert A Smith
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| | - Lyn R Griffiths
- Genomics Research Centre Institute of Health and Biomedical Innovation (IHBI) Queensland University of Technology (QUT) Q Block 60 Musk Ave Kelvin Grove Campus Brisbane Queensland Australia
| |
Collapse
|
35
|
|
36
|
Meta-Analysis of Public Microarray Datasets Reveals Voltage-Gated Calcium Gene Signatures in Clinical Cancer Patients. PLoS One 2015; 10:e0125766. [PMID: 26147197 PMCID: PMC4493072 DOI: 10.1371/journal.pone.0125766] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/26/2015] [Indexed: 12/25/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) are well documented to play roles in cell proliferation, migration, and apoptosis; however, whether VGCCs regulate the onset and progression of cancer is still under investigation. The VGCC family consists of five members, which are L-type, N-type, T-type, R-type and P/Q type. To date, no holistic approach has been used to screen VGCC family genes in different types of cancer. We analyzed the transcript expression of VGCCs in clinical cancer tissue samples by accessing ONCOMINE (www.oncomine.org), a web-based microarray database, to perform a systematic analysis. Every member of the VGCCs was examined across 21 different types of cancer by comparing mRNA expression in cancer to that in normal tissue. A previous study showed that altered expression of mRNA in cancer tissue may play an oncogenic role and promote tumor development; therefore, in the present findings, we focus only on the overexpression of VGCCs in different types of cancer. This bioinformatics analysis revealed that different subtypes of VGCCs (CACNA1C, CACNA1D, CACNA1B, CACNA1G, and CACNA1I) are implicated in the development and progression of diverse types of cancer and show dramatic up-regulation in breast cancer. CACNA1F only showed high expression in testis cancer, whereas CACNA1A, CACNA1C, and CACNA1D were highly expressed in most types of cancer. The current analysis revealed that specific VGCCs likely play essential roles in specific types of cancer. Collectively, we identified several VGCC targets and classified them according to different cancer subtypes for prospective studies on the underlying carcinogenic mechanisms. The present findings suggest that VGCCs are possible targets for prospective investigation in cancer treatment.
Collapse
|
37
|
Haider S, Alam MS, Hamid H. 1,3,4-Thiadiazoles: A potent multi targeted pharmacological scaffold. Eur J Med Chem 2015; 92:156-77. [DOI: 10.1016/j.ejmech.2014.12.035] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/15/2014] [Accepted: 12/20/2014] [Indexed: 11/30/2022]
|
38
|
|
39
|
García Segarra N, Gautschi I, Mittaz-Crettol L, Kallay Zetchi C, Al-Qusairi L, Van Bemmelen MX, Maeder P, Bonafé L, Schild L, Roulet-Perez E. Congenital ataxia and hemiplegic migraine with cerebral edema associated with a novel gain of function mutation in the calcium channel CACNA1A. J Neurol Sci 2014; 342:69-78. [PMID: 24836863 DOI: 10.1016/j.jns.2014.04.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/27/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
Mutations in the CACNA1A gene, encoding the α1 subunit of the voltage-gated calcium channel Ca(V)2.1 (P/Q-type), have been associated with three neurological phenotypes: familial and sporadic hemiplegic migraine type 1 (FHM1, SHM1), episodic ataxia type 2 (EA2), and spinocerebellar ataxia type 6 (SCA6). We report a child with congenital ataxia, abnormal eye movements and developmental delay who presented severe attacks of hemiplegic migraine triggered by minor head traumas and associated with hemispheric swelling and seizures. Progressive cerebellar atrophy was also observed. Remission of the attacks was obtained with acetazolamide. A de novo 3 bp deletion was found in heterozygosity causing loss of a phenylalanine residue at position 1502, in one of the critical transmembrane domains of the protein contributing to the inner part of the pore. We characterized the electrophysiology of this mutant in a Xenopus oocyte in vitro system and showed that it causes gain of function of the channel. The mutant Ca(V)2.1 activates at lower voltage threshold than the wild type. These findings provide further evidence of this molecular mechanism as causative of FHM1 and expand the phenotypic spectrum of CACNA1A mutations with a child exhibiting severe SHM1 and non-episodic ataxia of congenital onset.
Collapse
Affiliation(s)
- Nuria García Segarra
- Division of Molecular Pediatrics, Lausanne University Hospital, Lausanne, Switzerland.
| | - Ivan Gautschi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | - Christine Kallay Zetchi
- Neuropediatric Unit, Department of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Lama Al-Qusairi
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | | | - Philippe Maeder
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Luisa Bonafé
- Division of Molecular Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| | - Laurent Schild
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland
| | - Eliane Roulet-Perez
- Neuropediatric Unit, Department of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
40
|
Russell MB. Management of sporadic and familial hemiplegic migraine. Expert Rev Neurother 2014; 10:381-7. [DOI: 10.1586/ern.09.127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
41
|
Abstract
Individuals with epilepsy experience a number of sex-specific problems. In women, pregnancy and delivery are obvious issues, fertility problems are more often encountered and they also seem to have a higher frequency of sexual problems. A large number of women with epilepsy experience seizure exacerbation in relation to the menstrual cycle and have higher frequencies of menstrual disturbances and polycystic ovaries. Cosmetic problems affecting skin, hair or weight may also be drug induced. The use of antiepileptic drugs may influence the effect of contraceptives leading to unplanned pregnancies and contraceptives may affect the serum levels of antiepileptic drugs. The care of pregnant women with epilepsy requires attention to a number of guidelines and close cooperation between neurologist and gynecologist is recommended. Although the majority of the women with epilepsy experience normal pregnancies and deliveries, their children have a higher risk of birth defects. At menopause, their seizure pattern may change and some antiepileptic drugs may increase the risk of osteoporosis. The optimal treatment of women with epilepsy should take into account these gender-specific issues in the different stages of life.
Collapse
Affiliation(s)
- Line Sveberg Røste
- Rikshospitalet-Radiumhospitalet Medical Center, Department of Neurology, Division for Clinical Neuroscience, 0027 Oslo, Norway.
| | | |
Collapse
|
42
|
Eikermann-Haerter K, Negro A, Ayata C. Spreading depression and the clinical correlates of migraine. Rev Neurosci 2013; 24:353-63. [PMID: 23907418 DOI: 10.1515/revneuro-2013-0005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/27/2013] [Indexed: 12/14/2022]
Abstract
Migraine is the most common neurologic condition. One-third of migraineurs experience transient neurologic symptoms, the so-called aura. There is strong evidence that spreading depression (SD) is the electrophysiologic substrate of migraine aura. SD is an intense pan-depolarization wave that slowly propagates in gray matter by way of contiguity and transiently disrupts neuronal function. When induced subcortically, striatal SD causes hemiparesis, hippocampal SD can trigger seizures and impact cognition, and bilateral thalamic SD can diminish consciousness. Recent data show that transgenic mice expressing familial hemiplegic migraine (FHM) type 1 mutations in voltage-gated Ca2+ channels (Cav2.1) develop mutation-specific aura-like signs after a cortical SD similar to patients with the respective mutation. These signs are associated with facilitated subcortical SD propagation. As in FHM, mice with the R192Q mutation develop pure hemiplegia associated with cortical SDs propagating into caudoputamen. S218L mice display additional signs such as seizures and coma when SD propagates into hippocampus and thalamus. In hyperexcitable FHM brains, SD may propagate between cortex and subcortical structures via permissive gray matter bridges, or originate de novo in subcortical structures, to explain unusual and severe aura signs and symptoms. Reciprocal spread and reverberating waves can explain protracted attacks.
Collapse
|
43
|
Sánchez-Albisua I, Schöning M, Jurkat-Rott K, Lerche H. Possible effect of corticoids on hemiplegic attacks in severe hemiplegic migraine. Pediatr Neurol 2013; 49:286-8. [PMID: 23831250 DOI: 10.1016/j.pediatrneurol.2013.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/25/2013] [Accepted: 04/11/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sporadic and familial hemiplegic migraines are rare paroxysmal disorders characterized by transient hemiparesis and headache. The distinction is based on whether other family members are affected. In 50% of cases, these migraines are caused by CACNA1 A missense mutations. PATIENTS We describe a boy with a particularly severe phenotype and a de novo R1349Q mutation of the CACNA1 A gene. RESULTS The patient suffered from early-onset profound mental retardation, epileptic seizures, cerebellar ataxia, and progressive cerebellar atrophy. He experienced prolonged attacks of migraine with hemiparesis, seizures, altered consciousness, and fever resulting from minor head traumas. A prolonged hemiplegic attack improved following a 5-day treatment of 100 mg/d methylprednisolone. CONCLUSION R1349Q mutation of the CACN1 A gene may be associated with a severe phenotype. Corticoids might be beneficial in prolonged hemiplegic attacks.
Collapse
Affiliation(s)
- Iciar Sánchez-Albisua
- Department of Child Neurology, Children's Hospital, University of Tübingen, Germany.
| | | | | | | |
Collapse
|
44
|
Scholl UI, Goh G, Stölting G, de Oliveira RC, Choi M, Overton JD, Fonseca AL, Korah R, Starker LF, Kunstman JW, Prasad ML, Hartung EA, Mauras N, Benson MR, Brady T, Shapiro JR, Loring E, Nelson-Williams C, Libutti SK, Mane S, Hellman P, Westin G, Åkerström G, Björklund P, Carling T, Fahlke C, Hidalgo P, Lifton RP. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nat Genet 2013; 45:1050-4. [PMID: 23913001 PMCID: PMC3876926 DOI: 10.1038/ng.2695] [Citation(s) in RCA: 447] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 06/10/2013] [Indexed: 11/24/2022]
Abstract
Adrenal aldosterone-producing adenomas (APAs) constitutively produce the salt-retaining hormone aldosterone and are a common cause of severe hypertension. Recurrent mutations in the potassium channel KCNJ5 that result in cell depolarization and Ca2+ influx cause ~40% of these tumors1. We found five somatic mutations (four altering glycine 403, one altering isoleucine 770) in CACNA1D, encoding a voltage-gated calcium channel, among 43 non-KCNJ5-mutant APAs. These mutations lie in S6 segments that line the channel pore. Both result in channel activation at less depolarized potentials, and glycine 403 mutations also impair channel inactivation. These effects are inferred to cause increased Ca2+ influx, the sufficient stimulus for aldosterone production and cell proliferation in adrenal glomerulosa2. Remarkably, we identified de novo mutations at the identical positions in two children with a previously undescribed syndrome featuring primary aldosteronism and neuromuscular abnormalities. These findings implicate gain of function Ca2+ channel mutations in aldosterone-producing adenomas and primary aldosteronism.
Collapse
Affiliation(s)
- Ute I Scholl
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Carreño O, Corominas R, Serra SA, Sintas C, Fernández-Castillo N, Vila-Pueyo M, Toma C, Gené GG, Pons R, Llaneza M, Sobrido MJ, Grinberg D, Valverde MÁ, Fernández-Fernández JM, Macaya A, Cormand B. Screening of CACNA1A and ATP1A2 genes in hemiplegic migraine: clinical, genetic, and functional studies. Mol Genet Genomic Med 2013; 1:206-22. [PMID: 24498617 PMCID: PMC3865589 DOI: 10.1002/mgg3.24] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/24/2013] [Accepted: 05/24/2013] [Indexed: 12/14/2022] Open
Abstract
Hemiplegic migraine (HM) is a rare and severe subtype of autosomal dominant migraine, characterized by a complex aura including some degree of motor weakness. Mutations in four genes (CACNA1A, ATP1A2, SCN1A and PRRT2) have been detected in familial and in sporadic cases. This genetically and clinically heterogeneous disorder is often accompanied by permanent ataxia, epileptic seizures, mental retardation, and chronic progressive cerebellar atrophy. Here we report a mutation screening in the CACNA1A and ATP1A2 genes in 18 patients with HM. Furthermore, intragenic copy number variant (CNV) analysis was performed in CACNA1A using quantitative approaches. We identified four previously described missense CACNA1A mutations (p.Ser218Leu, p.Thr501Met, p.Arg583Gln, and p.Thr666Met) and two missense changes in the ATP1A2 gene, the previously described p.Ala606Thr and the novel variant p.Glu825Lys. No structural variants were found. This genetic screening allowed the identification of more than 30% of the disease alleles, all present in a heterozygous state. Functional consequences of the CACNA1A-p.Thr501Met mutation, previously described only in association with episodic ataxia, and ATP1A2-p.Glu825Lys, were investigated by means of electrophysiological studies, cell viability assays or Western blot analysis. Our data suggest that both these variants are disease-causing.
Collapse
Affiliation(s)
- Oriel Carreño
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona, Spain ; Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain
| | - Roser Corominas
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain ; Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Selma Angèlica Serra
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Cèlia Sintas
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona, Spain ; Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain
| | - Noèlia Fernández-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona, Spain ; Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain
| | - Marta Vila-Pueyo
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Claudio Toma
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona, Spain ; Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain
| | - Gemma G Gené
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Roser Pons
- First Department of Pediatrics, Agia Sofia Hospital, University of Athens Athens, Greece
| | - Miguel Llaneza
- Sección de Neurología, Complejo Hospitalario Arquitecto Marcide-Novoa Santos Ferrol, Spain
| | - María-Jesús Sobrido
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain ; Fundación Pública Galega de Medicina Xenómica Santiago de Compostela, Spain
| | - Daniel Grinberg
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona, Spain ; Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain
| | - Miguel Ángel Valverde
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - José Manuel Fernández-Fernández
- Laboratory of Molecular Physiology and Channelopathies, Department of Experimental and Health Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Alfons Macaya
- Pediatric Neurology Research Group, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona Barcelona, Spain ; Institut de Biomedicina de la Universitat de Barcelona (IBUB) Barcelona, Spain ; Center for Biomedical Network Research on Rare Diseases (CIBERER), Institute of Health Carlos III Spain
| |
Collapse
|
46
|
Pelzer N, Stam AH, Haan J, Ferrari MD, Terwindt GM. Familial and sporadic hemiplegic migraine: diagnosis and treatment. Curr Treat Options Neurol 2013. [PMID: 23203776 DOI: 10.1007/s11940-012-0208-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT Hemiplegic migraine (HM) is a rare subtype of migraine with aura, characterized by transient hemiparesis during attacks. Diagnosis is based on the International Classification of Headache Disorders criteria (ICHD-II). Two types of HM are recognized: familial (FHM) and sporadic hemiplegic migraine (SHM). HM is genetically heterogeneous. Three genes have been identified (CACNA1A, ATP1A2, and SCN1A) but more, so far unknown genes, are involved. Clinically, attacks of the 3 subtypes cannot be distinguished. The diagnosis can be confirmed but not ruled out by genetic testing, because in some HM patients other, not yet identified, genes are involved. The presence of additional symptoms (such as chronic ataxia or epilepsy) may increase the likelihood of identifying a mutation. Additional diagnostics like imaging, CSF analysis, or an EEG are mainly performed to exclude other causes of focal neurological symptoms associated with headache. Conventional cerebral angiography is contraindicated in HM because this may provoke an attack. Because HM is a rare condition, no clinical treatment trials are available in this specific subgroup of migraine patients. Thus, the treatment of HM is based on empirical data, personal experience of the treating neurologist, and involves a trial-and-error strategy. Acetaminophen and NSAIDs often are the first choice in acute treatment. Although controversial in HM, triptans can be prescribed when headaches are not relieved sufficiently with common analgesics. An effective treatment for the severe and often prolonged aura symptoms is more warranted, but currently no such acute treatment is available. Prophylactic treatment can be considered when attack frequency exceeds 2 attacks per month, or when severe attacks pose a great burden that requires reduction of severity and frequency. In no strictly preferred order, flunarizine, sodium valproate, lamotrigine, verapamil, and acetazolamide can be tried. While less evidence is available for prophylactic treatment with topiramate, candesartan, and pizotifen, these drugs can also be considered. The use of propranolol in HM is more controversial, but evidence of adverse effects is insufficient to contraindicate beta-blockers.
Collapse
Affiliation(s)
- Nadine Pelzer
- Department of Neurology, Leiden University Medical Center, P.O. Box 9600, 2300, RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
47
|
Schipper S, Riederer F, Sándor PS, Gantenbein AR. Acute confusional migraine: our knowledge to date. Expert Rev Neurother 2012; 12:307-14. [PMID: 22364329 DOI: 10.1586/ern.12.4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Acute confusional migraine (ACM) is a rare migraine variant, affecting children and adolescents, as well as adults. Between 0.45 and 7.8% of children with migraine present with ACM, but the disorder may well be underdiagnosed. ACM is an exclusion diagnosis and some dangerous causes of confusion (e.g., epilepsy, ischemia, hemorrhagia, neoplasm, intoxication and encephalitis) should be ruled out. The confusional state often manifests with a wide diversity of cortical dysfunctions, such as speech difficulties, increased alertness, agitation and amnesia. Exact history taking, clinical examination, and laboratory, radiological and electroencephalographical findings lead the practitioner towards the diagnosis. Approximately half of the cases may be triggered by mild head trauma. Transient global amnesia is an important differential diagnosis, possibly caused by similar pathophysiological mechanisms. The exact pathomechanism remains unclear, with the common hypothesis comprising of the confusional state as a complex aura phenomenon, in which the cortical spreading depression wave reaches not only the occipital, but also the temporal, parietal and frontal cortex, as well as the brainstem and the hippocampi, leading to transient hypoperfusion and dysfunction of these brain areas.
Collapse
Affiliation(s)
- Sivan Schipper
- Headache & Pain Unit, Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, CH-8091, Zurich, Switzerland
| | | | | | | |
Collapse
|
48
|
Jurkat-Rott K, Groome J, Lehmann-Horn F. Pathophysiological role of omega pore current in channelopathies. Front Pharmacol 2012; 3:112. [PMID: 22701429 PMCID: PMC3372090 DOI: 10.3389/fphar.2012.00112] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 05/23/2012] [Indexed: 12/12/2022] Open
Abstract
In voltage-gated cation channels, a recurrent pattern for mutations is the neutralization of positively charged residues in the voltage-sensing S4 transmembrane segments. These mutations cause dominant ion channelopathies affecting many tissues such as brain, heart, and skeletal muscle. Recent studies suggest that the pathogenesis of associated phenotypes is not limited to alterations in the gating of the ion-conducting alpha pore. Instead, aberrant so-called omega currents, facilitated by the movement of mutated S4 segments, also appear to contribute to symptoms. Surprisingly, these omega currents conduct cations with varying ion selectivity and are activated in either a hyperpolarized or depolarized voltage range. This review gives an overview of voltage sensor channelopathies in general and focuses on pathogenesis of skeletal muscle S4 disorders for which current knowledge is most advanced.
Collapse
|
49
|
R583Q CACNA1A variant in SHM1 and ataxia: case report and literature update. J Headache Pain 2012; 13:419-23. [PMID: 22527033 PMCID: PMC3381060 DOI: 10.1007/s10194-012-0444-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/19/2012] [Indexed: 12/01/2022] Open
Abstract
Familial hemiplegic migraine (FHM) type 1 is a rare monogenic dominant autosomal disease due to CACNA1A gene mutations. Besides the classical phenotype, mutations on CACNA1A gene are associated with a broader spectrum of clinical features including cerebellar ataxia, making FHM1 a complex channelopathy. We report the case of a patient carrying the p.Arg583Gln mutation affected by hemiplegic migraine and late onset ataxia and we performed a literature review about the clinical features of p.Arg583Gln. Although p.Arg583Gln mutations are associated with a heterogeneous phenotype, carriers present cerebellar signs which consisted generally in ataxia and dysmetria, with intention tremor appearing mostly in advanced age, often progressive and permanent. The heterogeneous spectrum of CACNA1A gene mutations probably causes sporadic hemiplegic migraine (SHM) to be misdiagnosed. Given the therapeutic opportunities, SHM/FHM1 should be considered in differential diagnosis of patients with cerebellar ataxia and migraine with aura.
Collapse
|
50
|
Can migraine prophylaxis prevent acute mountain sickness at high altitude? Med Hypotheses 2012; 77:818-23. [PMID: 21856088 DOI: 10.1016/j.mehy.2011.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/25/2011] [Accepted: 07/19/2011] [Indexed: 11/22/2022]
Abstract
Acute mountain sickness (AMS) develops in people trekking at high altitude. The underlying mechanism is vasodilation due to low pressure of oxygen. However, individual susceptibility for AMS is unknown, thus, one cannot predict when or to whom it happens. Because AMS usually begins with headache, and because migraineurs are more vulnerable to AMS, we studied by the literatures review on the mechanism and clinical features in common, and assessed the treatment modalities for both disorders. This led to us the following hypothesis that, migraine prophylaxis may prevent or delay the onset of AMS at high altitude. Clinical features of AMS include nausea or vomiting when it progresses. Hypobaric hypoxia, dehydration or increased physical exertion trigger or aggravate both disorders. In migraine, cerebral vasodilation can happen following alteration of neuronal activity, whereas the AMS is associated with peripheral vessel dilation. Medications that dilate the vessels worsen both conditions. Acute treatment strategies for migraine overlap with to those of AMS, including drugs such as vasoconstrictors, or other analgesics. To prevent AMS, adaptation to high altitude or pharmacological prophylaxis, i.e., acetazolamide has been recommended. This carbonic anhydrase inhibitor lowers serum potassium level, and thus stabilizes membrane excitability. Acetazolamide is also effective on specific forms of migraine. Taken together, these evidences implicate that migraine prophylaxis may prevent or delay the onset of AMS by elevating the threshold for high altitude.
Collapse
|