1
|
Yang H, Zhou H, Miao J. Uncrossed corticospinal tracts in a patient with ichthyosis and hemiparesis: a case report. BMC Neurol 2020; 20:120. [PMID: 32252685 PMCID: PMC7132884 DOI: 10.1186/s12883-020-01698-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 03/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Anomalies of pyramidal tract decussation are rare phenomena that can be caused by ectodermal dysplasia. Herein, we describe a patient with ichthyosis who exhibited ipsilateral hemiparesis after stroke and whose neuroimaging results showed evidence of motor control being provided by the ipsilateral motor cortex. Case presentation A 24-year-old right-handed man presented with skin abnormalities, sudden-onset left hemiparesis, and dysarthria. He exhibited a mild-to-moderate left-sided weakness (grade 4 on the Medical Research Council scale). Magnetic resonance imaging revealed an acute infarct in the left corona radiata. Diffusion tensor imaging revealed uncrossed corticospinal tracts. Next-generation sequencing identified heterozygous FLG mutations. The patient was diagnosed with cerebral infarction and ichthyosis vulgaris and was treated with aspirin (100 mg/d). His symptoms gradually dissipated. Conclusions This case suggests that pyramidal decussation anomalies can be associated with ichthyosis. Patients with ichthyosis should therefore be evaluated for nerve involvement.
Collapse
Affiliation(s)
- Huijia Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hongwei Zhou
- Department of Radiology, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Miao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Zhu YL, Zhang B, Li F. A Potential New Indication for Botulinum Toxin Injection: A Case Study of Spasticity with Mirror Movements. Chin Med J (Engl) 2016; 129:2514-2515. [PMID: 27748351 PMCID: PMC5072271 DOI: 10.4103/0366-6999.191833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Yu-Lan Zhu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Bei Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Fang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040; Department of Rehabilitation Medicine, Renhe Hospital, Baoshan District, Shanghai 200431, China
| |
Collapse
|
3
|
Kim Y, Kim WS, Shim JK, Suh DW, Kim T, Yoon B. Difference of motor overflow depending on the impaired or unimpaired hand in stroke patients. Hum Mov Sci 2014; 39:154-62. [PMID: 25482454 DOI: 10.1016/j.humov.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 10/28/2014] [Accepted: 11/15/2014] [Indexed: 11/16/2022]
Abstract
The aim of this study was to investigate the patterns of contralateral motor overflow (i.e. mirror movement) between the homologous body parts on the right and left side, in stroke patients during single-finger and multi-finger maximum force production tasks. Forty subjects, including stroke (n=20) and normal subjects (n=20), participated in this study. The stroke subjects maximally pressed force sensors with their fingers in a flexed position using a single (index, middle, ring, or little) or all fingers (all 4 fingers) using the impaired (IH) or unimpaired (UIH) hand, while the non-patient subjects used their right hands for the same tasks. The maximal voluntary forces in the ipsilateral and unintended pressing forces of each contralateral finger were recorded during the tasks. The magnitude of motor overflow to the contralateral side was calculated using the index of contralateral independence (CI). During the single finger tasks, the finger CI was significantly decreased in the UIH (91%) compared with that in the IH (99%) or normal hands (99%). Likewise, the multiple finger tasks showed that the CI was significantly lower in the UIH (84%) compared with that in the IH (96%) or normal hands (99%). However, the maximal forces were significantly lower in the IH relative to those in the UIH and normal hands. These data demonstrate that stroke patients have greater motor overflow from the UIH to the IH.
Collapse
Affiliation(s)
- Yushin Kim
- Department of Physical Therapy, Korea University, South Korea
| | - Woo-Sub Kim
- Department of Rehabilitation Medicine, VHS Medical Center, South Korea
| | - Jae Kun Shim
- Department of Kinesiology, University of Maryland, United States; Department of Mechanical Engineering, Kyung Hee University, South Korea
| | - Dong Won Suh
- Department of Rehabilitation Medicine, Barunsesang Hospital, South Korea
| | - TaeYeong Kim
- Department of Physical Therapy, Korea University, South Korea
| | - BumChul Yoon
- Department of Physical Therapy, Korea University, South Korea.
| |
Collapse
|
4
|
Diffusion tensor imaging of pyramidal tract reorganization after pediatric stroke. Childs Nerv Syst 2014; 30:1135-9. [PMID: 24420673 DOI: 10.1007/s00381-013-2351-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/26/2013] [Indexed: 10/25/2022]
Abstract
BACKGROUND Plasticity of the developing motor tracts is a contributor to recovery of motor function after pediatric stroke. The mechanism of these plastic changes may be functional and/or structural in nature. The corticospinal tract (CST) represents the major pathway responsible for voluntary movement. Stroke-induced damage to the CST as well as to other motor tracts leads to motor deficits which may show favorable functional recovery particularly in the pediatric population. METHODS We report the case of a 3-year-old girl demonstrating reorganization of the pyramidal tracts after an extensive left MCA territory stroke secondary to head trauma. Reorganization is characterized using serial diffusion tensor imaging (DTI) of the pyramidal tracts which contain the CST. RESULTS Imaging shows decreased ipsi-lesional fractional anisotropy (FA) suggestive of Wallerian degeneration and increased contralesional FA. CONCLUSIONS These results point to plastic reorganization of the pyramidal tract post-stroke and the utility of DTI in recognizing these changes.
Collapse
|
5
|
Interhemispheric control of unilateral movement. Neural Plast 2012; 2012:627816. [PMID: 23304559 PMCID: PMC3523159 DOI: 10.1155/2012/627816] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/04/2012] [Indexed: 11/25/2022] Open
Abstract
To perform strictly unilateral movements, the brain relies on a large cortical and subcortical network. This network enables healthy adults to perform complex unimanual motor tasks without the activation of contralateral muscles. However, mirror movements (involuntary movements in ipsilateral muscles that can accompany intended movement) can be seen in healthy individuals if a task is complex or fatiguing, in childhood, and with increasing age. Lateralization of movement depends on complex interhemispheric communication between cortical (i.e., dorsal premotor cortex, supplementary motor area) and subcortical (i.e., basal ganglia) areas, probably coursing through the corpus callosum (CC). Here, we will focus on transcallosal interhemispheric inhibition (IHI), which facilitates complex unilateral movements and appears to play an important role in handedness, pathological conditions such as Parkinson's disease, and stroke recovery.
Collapse
|
6
|
Addamo PK, Farrow M, Bradshaw JL, Georgiou-Karistianis N. Relative or absolute? Implications and consequences of the measures adopted to investigate motor overflow. J Mot Behav 2011; 43:203-12. [PMID: 21480026 DOI: 10.1080/00222895.2011.561376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Motor overflow is involuntary overt movement or covert muscle activity that cooccurs with voluntary movement. Overflow is present in several pathological conditions, as well as in neurologically healthy children and older adults, and can be induced in healthy young adults under effortful conditions. This motor phenomenon may provide insight into the underlying mechanisms and kinetic characteristics of voluntary and involuntary motor control in various populations. Although often measured behaviorally using force transduction techniques, different methods of calculating and presenting such overflow data have resulted in seemingly contradictory findings, with limited discussion of the advantages and limitations of different approaches. In this article, the authors examined the relevant literature to highlight significant methodological considerations for authors and readers conducting or appraising this type of research. Issues regarding the interpretation and reporting of findings are also discussed. Researchers are encouraged to continue using behavioral measures to create well-defined variables that enable the study of the kinematic characteristics of overflow, as these may offer promising new ways forward in better characterizing and understanding this intriguing movement phenomenon.
Collapse
Affiliation(s)
- Patricia K Addamo
- Experimental Neuropsychology Research Unit, School of Psychology and Psychiatry, Monash University, Clayton, Victoria 3800, Australia.
| | | | | | | |
Collapse
|
7
|
Papadopoulou M, Chairopoulos K, Anagnostou E, Kokotis P, Zambelis T, Karandreas N. Concurrent bilateral projection and activation of motor cortices in a patient with congenital mirror movements: A TMS study. Clin Neurol Neurosurg 2010; 112:824-8. [DOI: 10.1016/j.clineuro.2010.06.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 06/22/2010] [Accepted: 06/24/2010] [Indexed: 12/13/2022]
|
8
|
Etoh S, Noma T, Matsumoto S, Kamishita T, Shimodozono M, Ogata A, Kawahira K. Stroke patient with mirror movement of the affected hand due to an ipsilateral motor pathway confirmed by transcranial magnetic stimulation: a case report. Int J Neurosci 2010; 120:231-5. [PMID: 20374093 DOI: 10.3109/00207450903404229] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A stroke patient with right hemiplegia and mirror movement underwent transcranial magnetic stimulation (TMS) and somatosensory-evoked potential (SEP) testing. The motor-evoked potentials (MEPs) of both abductor pollicis brevis muscles after stimulating the unaffected right hemisphere showed similar latencies, and were potentially produced by corticospinal tracts from the same motor cortex. N(20) responses of SEPs were recorded at C(4)' after contralateral stimulation of the unaffected left median nerve, but not stimulation of the affected right median nerve. The mirror movements and motor recovery might have utilized an ipsilateral motor pathway between the unaffected hemisphere and the affected hand.
Collapse
Affiliation(s)
- Seiji Etoh
- Department of Rehabilitation and Physical Medicine, Faculty of Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | | | | | | | | | |
Collapse
|
9
|
Cincotta M, Ziemann U. Neurophysiology of unimanual motor control and mirror movements. Clin Neurophysiol 2008; 119:744-62. [DOI: 10.1016/j.clinph.2007.11.047] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 11/17/2007] [Accepted: 11/23/2007] [Indexed: 10/22/2022]
|
10
|
Li JY, Espay AJ, Gunraj CA, Pal PK, Cunic DI, Lang AE, Chen R. Interhemispheric and ipsilateral connections in Parkinson's disease: relation to mirror movements. Mov Disord 2007; 22:813-21. [PMID: 17290459 DOI: 10.1002/mds.21386] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mirror movements (MM) occur in early, asymmetric Parkinson's disease (PD). To examine the pathophysiology of MM in PD, we studied 13 PD patients with MM (PD-MM), 7 PD patients without MM (PD-NM), and 14 normal subjects. Cross-correlogram did not detect common synaptic input to motoneuron pools innervating homologous hand muscles in PD-MM patients. Transcranial magnetic stimulation studies showed no significant difference in ipsilateral motor-evoked potentials between PD-MM patients and normal subjects. The MM side of PD-MM patients showed a slower increase in ipsilateral silent period area with higher level of muscle contraction than the non-MM side and normal subjects. There was less interhemispheric inhibition (IHI) at long interstimulus intervals of 20 to 50 ms in PD-MM than PD-NM. IHI reduced short interval intracortical inhibition in normal subjects and PD-NM, but not in PD-MM. IHI significantly increased intracortical facilitation in PD-MM and PD-NM patients, but not in normal subjects. Our results suggest that MM in PD is due to activation of the contralateral motor cortex. PD-MM patients had reduced transcallosal inhibitory effects on cortical output neurons and on intracortical inhibitory circuits compared to PD-NM patients and controls. These deficits in transcallosal inhibition may contribute to MM in PD patients.
Collapse
Affiliation(s)
- Jie-Yuan Li
- Division of Neurology, Department of Medicine, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Papapetropoulos S, Singer C. Bilateral mirror writing movements (mirror dystonia) in a patient with writer's cramp: Functional correlates. Mov Disord 2007; 22:149. [PMID: 17080466 DOI: 10.1002/mds.21175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Cincotta M, Borgheresi A, Balestrieri F, Giovannelli F, Ragazzoni A, Vanni P, Benvenuti F, Zaccara G, Ziemann U. Mechanisms underlying mirror movements in Parkinson's disease: A transcranial magnetic stimulation study. Mov Disord 2006; 21:1019-25. [PMID: 16547917 DOI: 10.1002/mds.20850] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The neural mechanisms underlying unintended mirror movements (MMs) of one hand during unimanual movements of the other hand in patients with Parkinson's disease (PD) are largely unexplored. Here we used surface electromyographic (EMG) analysis and focal transcranial magnetic stimulation (TMS) to investigate the pathophysiological substrate of MMs in four PD patients. Surface EMG was recorded from both abductor pollicis brevis (APB) and first dorsal interosseous (FDI) muscles. Cross-correlation EMG analysis revealed no common motor drive to the two APBs during intended unimanual tasks. Focal TMS of either primary motor cortex (M1) elicited normal motor-evoked potentials (MEPs) in the contralateral APB, whereas MEPs were not seen in the ipsilateral hand. During either mirror or voluntary APB contraction, focal TMS of the contralateral M1 produced a long-lasting silent period (SP), whereas stimulation of the ipsilateral M1 produced a short-lasting SP. During either mirror or voluntary finger tapping, 5 Hz repetitive TMS (rTMS) of the contralateral M1 disrupted EMG activity in the target FDI, whereas the effects of rTMS of the ipsilateral M1 were by far slighter. During either mirror or voluntary APB contraction, paired-pulse TMS showed a reduction of short-interval intracortical inhibition in the contralateral M1. These findings provide converging evidence that, in PD, MMs do not depend on unmasking of ipsilateral projections but are explained by motor output along the crossed corticospinal projection from the mirror M1.
Collapse
|
13
|
Carson RG. Neural pathways mediating bilateral interactions between the upper limbs. ACTA ACUST UNITED AC 2005; 49:641-62. [PMID: 15904971 DOI: 10.1016/j.brainresrev.2005.03.005] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Revised: 03/09/2005] [Accepted: 03/15/2005] [Indexed: 11/17/2022]
Abstract
The ease with which we perform tasks such as opening the lid of a jar, in which the two hands execute quite different actions, belies the fact that there is a strong tendency for the movements of the upper limbs to be drawn systematically towards one another. Mirror movements, involuntary contractions during intended unilateral engagement of the opposite limb, are considered pathological, as they occur in association with specific disorders of the CNS. Yet they are also observed frequently in normally developing children, and motor irradiation, an increase in the excitability of the (opposite) homologous motor pathways when unimanual movements are performed, is a robust feature of the mature motor system. The systematic nature of the interactions that occur between the upper limbs has also given rise to the expectation that functional improvements in the control of a paretic limb may occur when movements are performed in a bimanual context. In spite of the ubiquitous nature of these phenomena, there is remarkably little consensus concerning the neural basis of their mediation. In the present review, consideration is given to the putative roles of uncrossed corticofugal fibers, branched bilateral corticomotoroneuronal projections, and segmental networks. The potential for bilateral interactions to occur in various brain regions including the primary motor cortex, the supplementary motor area, non-primary motor areas, the basal ganglia, and the cerebellum is also explored. This information may provide principled bases upon which to evaluate and develop task and deficit-specific programs of movement rehabilitation and therapy.
Collapse
Affiliation(s)
- R G Carson
- Perception and Motor Systems Laboratory, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
14
|
Hoy KE, Fitzgerald PB, Bradshaw JL, Armatas CA, Georgiou-Karistianis N. Investigating the cortical origins of motor overflow. ACTA ACUST UNITED AC 2004; 46:315-27. [PMID: 15571773 DOI: 10.1016/j.brainresrev.2004.07.013] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/22/2022]
Abstract
Motor overflow refers to the involuntary movements which may accompany the production of voluntary movements. While overflow is not usually seen in the normal population, it does present in children and the elderly, as well as those suffering certain neurological dysfunctions. Advancements in methodology over the last decade have allowed for more convincing conclusions regarding the cortical origins of motor overflow. However, despite significant research, the exact mechanism underlying the production of motor overflow is still unclear. This review presents a more comprehensive conceptualization of the theories of motor overflow, which have often been only vaguely defined. Further, the major findings are explored in an attempt to differentiate the competing theories of motor overflow production. This exploration is done in the context of a range of neurological and psychiatric disorders, in order to elucidate the possible underlying mechanisms of overflow.
Collapse
Affiliation(s)
- Kate E Hoy
- Experimental Neuropsychology Research Unit, Psychology Department, Monash University, Clayton 3800, Victoria, Australia.
| | | | | | | | | |
Collapse
|
15
|
Cincotta M, Borgheresi A, Balzini L, Vannucchi L, Zeloni G, Ragazzoni A, Benvenuti F, Zaccara G, Arnetoli G, Ziemann U. Separate ipsilateral and contralateral corticospinal projections in congenital mirror movements: Neurophysiological evidence and significance for motor rehabilitation. Mov Disord 2003; 18:1294-300. [PMID: 14639670 DOI: 10.1002/mds.10545] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The neurophysiological hallmark of congenital mirror movements (MM) are fast-conducting corticospinal projections from the hand area of one primary motor cortex to both sides of the spinal cord. It is still unclear whether the abnormal ipsilateral projection originates through branching fibres from the normal contralateral projection or constitutes a separate ipsilateral projection. To clarify this question, we used focal paired-pulse transcranial magnetic stimulation to test task-related modulation of short-interval intracortical inhibition (SICI) in the abductor pollicis brevis (APB) muscles of a 15-year-old girl (Patient 1) and a 40-year-old woman (Patient 2) with congenital MM. In both patients, during intended unilateral APB contraction, SICI decreased markedly in the "task" APB but remained unchanged in the "mirror" APB when compared to muscle rest. In contrast, spinal excitability as tested with H reflexes increased similarly in the task and mirror flexor carpi radialis muscles. This dissociation of task-related SICI modulation strongly supports the existence of a separate ipsilateral fast-conducting corticospinal projection. In Patient 1, we tested the functional significance of this separate ipsilateral projection during 7 months of motor rehabilitation training, which was designed to facilitate unilateral finger movements. A marked reduction of MM was observed after training, suggesting that unwanted mirror activity in the ipsilateral pathway can be suppressed by learning.
Collapse
|
16
|
Vandermeeren Y, Bastings E, Fadiga L, Olivier E. Long-latency motor evoked potentials in congenital hemiplegia. Clin Neurophysiol 2003; 114:1808-18. [PMID: 14499742 DOI: 10.1016/s1388-2457(03)00161-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate long-latency motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation in congenital hemiplegia (CH) and to seek for correlation with paretic hand movement deficits. METHODS MEPs were recorded from the first dorsal interosseous of both hands in 12 CH patients and 12 age-matched controls; dexterity and upper limb function were quantitatively assessed in both groups. RESULTS In CH patients, long-latency MEPs, occurring much later than the commonly reported MEPs, were frequently observed in the paretic and non-paretic hands. Four distinct groups of long-latency MEPs were found, each cluster being identified by its mean latency, namely 35, 85, 160 and 225 ms. The residual dexterity of the paretic hand was correlated with the presence of contralateral MEPs with a 20 and 225 ms latency and was negatively correlated with ipsilateral MEPs, irrespective of their latency. In controls, only few MEPs with a latency of 225 ms were found in 4 out of 12 subjects. CONCLUSIONS The pattern of MEPs found in CH patients differs dramatically from that reported in adult stroke patients, suggesting that long-latency MEPs are a rather distinctive consequence of early corticospinal lesions. The hypothesis that a given cluster of long-latency MEPs is mediated by a particular pathway appears very unlikely. Rather, we suggest that an exacerbation of cortical and/or spinal excitability is at the origin of these long-latency MEPs.
Collapse
Affiliation(s)
- Y Vandermeeren
- Laboratory of Neurophysiology, Université catholique de Louvain, 54, Avenue Hippocrate, B-1200, Brussels, Belgium
| | | | | | | |
Collapse
|
17
|
Abstract
Recovery of function after a stroke is attributable to several factors, including events in the first few days (eg, reabsorption of perilesional oedema, tissue reperfusion). However, consistent reorganisation and recovery after a stroke takes weeks or months. In the early stages, recovery from stroke can vary greatly among patients with identical clinical symptoms. Neuroimaging techniques that enable us to assess baseline and task-related functions, and neurophysiological techniques that measure brain function in "real time", can be used to study the recovery of brain lesions after a stroke. In this review, we discuss important neuroimaging and neurophysiological studies of post-stroke brain reorganisation.
Collapse
|
18
|
Fujimura K, Koga E, Baba S. Neonatal frontal lesion in unilateral hemisphere enhances the development of the intact higher motor cortex in the rat. Brain Res 2003; 965:51-6. [PMID: 12591119 DOI: 10.1016/s0006-8993(02)04116-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The influence of the neonatal frontal lesion in unilateral cerebral hemisphere for the organization of intact forelimb motor cortex in the rat was investigated by intracortical microstimulation (ICMS). The relative size of the rostral forelimb area (RFL) compared to the caudal forelimb area (CFL) in the ipsilateral motor field of lesioned rat was significantly greater than those of contralateral in normal and lesioned rats. The optimal sites of the stimulation for ipsilateral responses in lesioned rats were located in the RFL, while the optimal sites for contralateral were located caudolaterally, as for those of normal rats. At the ipsilateral optimal sites within the RFL in the lesioned animals, the threshold for the ipsilateral responses was lower than that for the contralateral responses. That is, the intact hemisphere of the animal preferentially developed the RFL rather than the CFL, for the ipsilateral forelimb. This may suggest a critical role for the RFL in individual forelimb motor control within the normal hemisphere.
Collapse
Affiliation(s)
- Koichi Fujimura
- Department of Physiology, Nagasaki University School of Medicine, Sakamoto-1-Chome 12-4, Nagasaki 852-8523, Japan.
| | | | | |
Collapse
|
19
|
Chapter 8 Transcranial magnetic stimulation. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s1567-4231(09)70156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Cincotta M, Borgheresi A, Ragazzoni A, Vanni P, Balestrieri F, Benvenuti F, Zaccara G, Ziemann U. Chapter 16 Motor control in mirror movements: studies with transcranial magnetic stimulation. ACTA ACUST UNITED AC 2003; 56:175-80. [PMID: 14677392 DOI: 10.1016/s1567-424x(09)70219-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Affiliation(s)
- M Cincotta
- U.O. di Neurologia, Azienda Sanitaria di Firenze, Ospedale S. Maria Nuova, Piazza S. Maria Nuova 1, 50122 Florence, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ragazzoni A, Cincotta M, Borgheresi A, Zaccara G, Ziemann U. Congenital hemiparesis: different functional reorganization of somatosensory and motor pathways. Clin Neurophysiol 2002; 113:1273-8. [PMID: 12140007 DOI: 10.1016/s1388-2457(02)00150-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
OBJECTIVES To investigate the reorganization of somatosensory and motor cortex in congenital brain injury. METHODS We recorded motor evoked potentials (MEPs) following transcranial magnetic stimulation (TMS) and somatosensory evoked potentials (SEPs) in a 41 year old man with severe congenital right hemiparesis but only mild proprioceptive impairment. Brain magnetic resonance imaging showed a large porencephalic cavitation in the left hemisphere mainly involving the frontal and parietal lobes. RESULTS TMS showed fast-conducting projections from the undamaged primary motor cortex to both hands, whereas MEPs were not elicited from the damaged hemisphere. Left median nerve stimulation evoked normal short-latency SEPs in the contralateral undamaged somatosensory cortex. Right median nerve stimulation did not evoke any SEP in the contralateral damaged hemisphere, but a middle-latency SEP (positive-negative-positive, 39-44-48 ms) in the ipsilateral undamaged hemisphere, with a fronto-central scalp distribution. CONCLUSIONS Our data show that somatosensory function of the affected arm is preserved, most likely through slow-conducting non-lemniscal connections between the affected arm and ipsilateral non-primary somatosensory cortex. In contrast, motor function was poor despite fast-conducting ipsilateral cortico-motoneuronal output from the primary motor cortex of the undamaged hemisphere to the affected arm. This suggests that different forms of reorganization operate in congenital brain injury and that fast-conducting connections between primary cortex areas and ipsilateral spinal cord are not sufficient for preservation or recovery of function.
Collapse
Affiliation(s)
- A Ragazzoni
- Unit of Neurology, Santa Maria Nuova Hospital, Piazza S. Maria Nuova, 1, Florence, Italy.
| | | | | | | | | |
Collapse
|