1
|
Park YJ, Heo JB, Choi YJ, Cho S, Lee T, Song GY, Bae JS. Antiseptic Functions of CGK012 against HMGB1-Mediated Septic Responses. Int J Mol Sci 2024; 25:2976. [PMID: 38474222 PMCID: PMC10931621 DOI: 10.3390/ijms25052976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
High mobility group box 1 (HMGB1), a protein with important functions, has been recognized as a potential therapeutic target for the treatment of sepsis. One possible mechanism for this is that inhibiting HMGB1 secretion can exert antiseptic effects, which can restore the integrity of the vascular barrier. (7S)-(+)-cyclopentyl carbamic acid 8,8-dimethyl-2-oxo-6,7-dihydro-2H,8H-pyrano[3,2-g]chromen-7-yl-ester (CGK012) is a newly synthesized pyranocoumarin compound that could function as a novel small-molecule inhibitor of the Wnt/β-catenin signaling pathway. However, no studies have yet determined the effects of CGK012 on sepsis. We investigated the potential of CGK012 to attenuate the excessive permeability induced by HMGB1 and enhance survival rates in a mouse model of sepsis with reduced HMGB1 levels following lipopolysaccharide (LPS) treatment. In both LPS-stimulated human endothelial cells and a mouse model exhibiting septic symptoms due to cecal ligation and puncture (CLP), we assessed proinflammatory protein levels and tissue damage biomarkers as indicators of reduced vascular permeability. CGK012 was applied after induction in human endothelial cells exposed to LPS and the CLP-induced mouse model of sepsis. CGK012 effectively mitigated excessive permeability and suppressed HMGB1 release, resulting in improved vascular stability, decreased mortality, and enhanced histological conditions in the mouse model of CLP-induced sepsis. In conclusion, our findings indicate that CGK012 treatment in mice with CLP-induced sepsis diminished HMGB1 release and increased the survival rate, suggesting its potential as a pharmaceutical intervention for sepsis.
Collapse
Affiliation(s)
- Yun Jin Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Jong Beom Heo
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
| | - Yoon-Jung Choi
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
| | - Sanghee Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Taeho Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| | - Gyu Yong Song
- College of Pharmacy, Chungnam National University, Daejon 34134, Republic of Korea; (J.B.H.); (Y.-J.C.)
- AREZ Co., Ltd., Daejeon 34036, Republic of Korea
| | - Jong-Sup Bae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea; (Y.J.P.); (S.C.); (T.L.)
| |
Collapse
|
2
|
Yuan D, Zou Z, Li X, Cheng N, Guo N, Sun G, Liu D. A new side-effect of sufentanil: increased monocyte-endothelial adhesion. BMC Anesthesiol 2021; 21:267. [PMID: 34732147 PMCID: PMC8565079 DOI: 10.1186/s12871-021-01487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 10/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Opioids have been identified by the World Health Organization to be 'indispensable for the relief of pain and suffering'. Side-effects, such as nausea, vomiting, postoperative delirium, and effects on breathing, of opioids have been well investigated; however, the influence of opioids on monocyte-endothelial adherence has never been reported. Therefore, we explored the effects of representative opioids, fentanyl, sufentanil, and remifentanil, on monocyte-endothelial adherence and the underlying mechanisms. METHODS We built a cell adhesion model with U937 monocytes and human umbilical vein endothelial cells (HUVECs). Two kinds of connexin43 (Cx43) channel inhibitors, 18-α-GA and Gap 27, were used to alter Cx43 channel function in U937 monocytes and HUVECs, respectively, to determine the effects of Cx43 channels on U937-HUVEC adhesion. Subsequently, the effects of fentanyl, sufentanil and remifentanil on Cx43 channel function and U937-HUVEC adhesion were explored. RESULTS When fentanyl, sufentanil and remifentanil acted on monocytes or endothelial cells, their effects on monocyte-endothelial adherence differed. When acting on U937 monocytes, sufentanil significantly increased U937-HUVEC adhesion which was associated with reduced release of ATP from Cx43 channels, while fentanyl and remifentanil did not have these influences. Although sufentanil could also inhibit Cx43 channel function in HUVECs, it had no effect on ATP release from HUVECs or U937-HUVECs adhesion. CONCLUSIONS We demonstrated that sufentanil application increases monocyte-endothelial adherence which was associated with reduced release of ATP from Cx43 channels in monocytes. This side-effect of sufentanil should be considered seriously by clinicians.
Collapse
Affiliation(s)
- Dongdong Yuan
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China.
| | - Zhaowei Zou
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xianlong Li
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China
| | - Nan Cheng
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China
| | - Na Guo
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China
| | - Guoliang Sun
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China.
| | - Dezhao Liu
- Department of Anesthesiology, The third affiliated hospital of Sun Yat-sen university, Tianhe Road, Guangzhou, Guangdong, P. R. China.
| |
Collapse
|
3
|
Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence. J Transl Med 2018; 16:8. [PMID: 29347949 PMCID: PMC5774104 DOI: 10.1186/s12967-018-1389-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 01/15/2018] [Indexed: 12/22/2022] Open
Abstract
Background The relationship between surgery and anesthetic-induced immunosuppression and cancer recurrence remains unresolved. Surgery and anesthesia stimulate the hypothalamic–pituitary–adrenal (HPA) axis and sympathetic nervous system (SNS) to cause immunosuppression through several tumor-derived soluble factors. The potential impact of surgery and anesthesia on cancer recurrence was reviewed to provide guidance for cancer surgical treatment. Methods PubMed was searched up to December 31, 2016 using search terms such as, “anesthetic technique and cancer recurrence,” “regional anesthesia and cancer recurrence,” “local anesthesia and cancer recurrence,” “anesthetic technique and immunosuppression,” and “anesthetic technique and oncologic surgery.” Results Surgery-induced stress responses and surgical manipulation enhance tumor metastasis via release of angiogenic factors and suppression of natural killer (NK) cells and cell-mediated immunity. Intravenous agents such as ketamine and thiopental suppress NK cell activity, whereas propofol does not. Ketamine induces T-lymphocyte apoptosis but midazolam does not affect cytotoxic T-lymphocytes. Volatile anesthetics suppress NK cell activity, induce T-lymphocyte apoptosis, and enhance angiogenesis through hypoxia inducible factor-1α (HIF-1α) activity. Opioids suppress NK cell activity and increase regulatory T cells. Conclusion Local anesthetics such as lidocaine increase NK cell activity. Anesthetics such as propofol and locoregional anesthesia, which decrease surgery-induced neuroendocrine responses through HPA-axis and SNS suppression, may cause less immunosuppression and recurrence of certain types of cancer compared to volatile anesthetics and opioids.
Collapse
|
4
|
Lee IC, Bae JS. Antiseptic effects of dabrafenib on TGFBIp-induced septic responses. Chem Biol Interact 2017; 278:92-100. [PMID: 29042256 DOI: 10.1016/j.cbi.2017.10.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 09/18/2017] [Accepted: 10/13/2017] [Indexed: 12/27/2022]
Abstract
Transforming growth factor-β-induced protein (TGFBIp), an extracellular protein, is expressed on several cell types in response to TGF-β stimulation. Human umbilical vein endothelial cell (HUVEC)-derived TGFBIp functions as a mediator of sepsis. Screening of bioactive compound libraries is an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases (drug repositioning). Dabrafenib (DAB), a B-Raf inhibitor, was initially used for treating metastatic melanoma. The present study determined whether DAB modulated TGFBIp-mediated septic responses in HUVECs and in mice. Antiseptic functions of DAB were examined by measuring permeability, leukocyte adhesion and migration, and proinflammatory protein activation in TGFBIp-stimulated HUVECs and mice. In addition, beneficial effects of DAB on survival rate were examined using a mouse model of sepsis. We found that DAB inhibited TGFBIp-induced vascular barrier disruption, cell adhesion molecule (CAM) expression, and neutrophil adhesion/transendothelial migration toward human endothelial cells. DAB also suppressed TGFBIp-induced hyperpermeability and leukocyte migration in vivo. These results suggest that DAB exerts anti-inflammatory effects by inhibiting hyperpermeability, CAM expression, and leukocyte adhesion and migration, indicating its utility for treating vascular inflammatory diseases.
Collapse
Affiliation(s)
- In-Chul Lee
- Department of Cosmetic Science and Technology, Seowon University, Cheongju 28674, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
5
|
Han MS, Lee YM, Kim SW, Kim KM, Lee T, Lee W, Kwon OK, Lee S, Bae JS. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb Haemost 2017; 114:350-63. [DOI: 10.1160/th14-11-0969] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/25/2015] [Indexed: 11/05/2022]
Abstract
SummarySepsis is a life-threatening condition that arises when the body’s response to infection causes systemic inflammation. High-mobility group box 1 (HMGB1), as a late mediator of sepsis, enhances hyper-permeability, and it is therefore a therapeutic target. Despite extensive research into the underlying mechanisms of sepsis, the target molecules controlling vascular leakage remain largely unknown. Moesin is a cytoskeletal protein involved in cytoskeletal changes and para-cellular gap formation. The objectives of this study were to determine the roles of moesin in HMGB1-mediated vascular hyperpermeability and inflammatory responses and to investigate the mechanisms of action underlying these responses. Using siRNA knockdown of moesin expression in primary human umbilical vein endothelial cells (HUVECs), moesin was found to be required in HMGB1-induced F-actin rearrangement, hyperpermeability, and inflammatory responses. The mechanisms involved in moesin phosphorylation were analysed by blocking the binding of the HMGB1 receptor (RAGE) and inhibiting the Rho and MAPK pathways. HMGB1-treated HUVECs exhibited an increase in Thr558 phosphorylation of moesin. Circulating levels of moesin were measured in patients admitted to the intensive care unit with sepsis, severe sepsis, and septic shock; these patients showed significantly higher levels of moesin than healthy controls, which was strongly correlated with disease severity. High blood moesin levels were also observed in cecal ligation and puncture (CLP)-induced sepsis in mice. Administration of blocking moesin antibodies attenuated CLP-induced septic death. Collectively, our findings demonstrate that the HMGB1-RAGE-moesin axis can elicit severe inflammatory responses, suggesting it to be a potential target for the development of diagnostics and therapeutics for sepsis.
Collapse
|
6
|
Kang H, Ku SK, Kim J, Chung J, Kim SC, Zhou W, Na M, Bae JS. Anti-vascular inflammatory effects of pentacyclic triterpenoids from Astilbe rivularis in vitro and in vivo. Chem Biol Interact 2017; 261:127-138. [DOI: 10.1016/j.cbi.2016.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/25/2016] [Accepted: 11/16/2016] [Indexed: 12/12/2022]
|
7
|
Suppressive effects of pelargonidin on PolyPhosphate-mediated vascular inflammatory responses. Arch Pharm Res 2016; 40:258-267. [PMID: 27826751 DOI: 10.1007/s12272-016-0856-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 11/02/2016] [Indexed: 12/20/2022]
Abstract
Previous reports suggest that human endothelial cells-derived PolyPhosphate (PolyP) is one of the pro-inflammatory mediators. As a well-known red pigment and found in plants, Pelargonidin (PEL) has been known to have several biological activates which are beneficial for human health. This study was undertaken to investigate whether PEL can modulate PolyP-mediated inflammatory responses in human umbilical vein endothelial cells (HUVECs) and in mice. The anti-inflammatory activities of PEL were determined by measuring permeability, leukocytes adhesion and migration, and activation of pro-inflammatory proteins in PolyP-activated HUVECs and mice. In addition, the beneficial effects of PEL on survival rate in PolyP-injected mice. We found that PEL inhibits PolyP-mediated barrier disruption, the expressions of cell adhesion molecules, and leukocyte to HUVEC adhesion/migration. Interestingly, PolyP-induced NF-κB activation and the productions of TNF-α and IL-6 were inhibited by PEL in HUVECs. These anti-inflammatory functions of PEL were confirmed in PolyP injected mice. These results suggest that PEL have therapeutic potential for various systemic inflammatory diseases.
Collapse
|
8
|
Anti-septic effects of pelargonidin on HMGB1-induced responses in vitro and in vivo. Arch Pharm Res 2016; 39:1726-1738. [DOI: 10.1007/s12272-016-0834-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/07/2016] [Indexed: 10/20/2022]
|
9
|
Lee W, Ku SK, Park S, Kim KM, Choi H, Bae JS. Inhibitory Effect of Three Diketopiperazines from Marine-Derived Bacteria on HMGB1-Induced Septic Responsesin Vitroandin Vivo. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1145-1166. [DOI: 10.1142/s0192415x16500646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleosomal protein high-mobility group box-1 (HMGB1), which has recently been established as a late mediator of lethal systemic inflammation, has a relatively wide therapeutic window for pharmacological interventions. Compounds produced by marine-derived microbes have been widely investigated for their potential use as bioactive natural products. Cyclic dipeptides, which are also known as diketopiperazines, are molecules that are frequently found in marine-derived microorganisms. While their pharmacological potential has been well established, their biological activities against septic responses have not yet been reported. Here, three diketopiperazines (1–3) isolated from two strains of marine-derived bacteria were investigated for their potential activities against HMGB1-mediated septic responses. The data showed that 1–3 effectively inhibited the lipopolysaccharide (LPS)-induced release of HMGB1 and suppressed the HMGB1-mediated septic responses, including hyperpermeability, leukocyte adhesion and migration, and cell adhesion molecule expression. In addition, 1–3 inhibited the HMGB1-mediated production of tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text] and interleukin (IL)-6 and the activation of nuclear factor-[Formula: see text]B (NF-[Formula: see text]B) and extracellular signal-regulated kinase (ERK) 1 and ERK2. Collectively, these results indicated that 1–3 might act as potential therapeutic agents for various severe vascular inflammatory diseases through the inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Daegu 41566, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Songhee Park
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied BioSciences, College of Agriculture and Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyukjae Choi
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Daegu 41566, Republic of Korea
| |
Collapse
|
10
|
Jeong S, Ku SK, Min G, Choi H, Park DH, Bae JS. Suppressive effects of three diketopiperazines from marine-derived bacteria on polyphosphate-mediated septic responses. Chem Biol Interact 2016; 257:61-70. [DOI: 10.1016/j.cbi.2016.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/14/2016] [Accepted: 07/27/2016] [Indexed: 01/04/2023]
|
11
|
Abstract
Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by the human umbilical vein endothelial cells (HUVECs) and functions as a mediator of experimental sepsis. Cyclopia subternata is a medicinal plant commonly used in traditional medicine to relieve pain in biological processes. In this study, we investigated the antiseptic effects and underlying mechanisms of vicenin-2 and scolymoside, two active compounds in C. subternata against TGFBIp-mediated septic responses in HUVECs and mice. The anti-inflammatory activities of vicenin-2 or scolymoside were determined by measuring permeability, human neutrophils adhesion and migration, and activation of pro-inflammatory proteins in TGFBIp-activated HUVECs and mice. According to the results, vicenin-2 or scolymoside effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses, such as hyperpermeability, adhesion and migration of leukocytes, and expression of cell adhesion molecules. In addition, vicenin-2 or scolymoside suppressed the production of tumor necrosis factor-α and interleukin 6 and activation of nuclear factor-κB and extracellular regulated kinases 1/2 by TGFBIp. Vicenin-2 or scolymoside reduced cecal ligation and puncture (CLP)-induced septic mortality and pulmonary injury. Collectively, these results indicate that vicenin-2 and scolymoside could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.
Collapse
|
12
|
Lee S, Ku SK, Bae JS. Anti-inflammatory effects of dabrafenib on polyphosphate-mediated vascular disruption. Chem Biol Interact 2016; 256:266-73. [DOI: 10.1016/j.cbi.2016.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/09/2016] [Accepted: 07/21/2016] [Indexed: 12/14/2022]
|
13
|
Jung B, Chung J, Zhou W, Lee T, Na M, Bae JS. Inhibitory effects of pentacyclic triterpenoids from Astilbe rivularis on TGFBIp-induced inflammatory responses in vitro and in vivo. Chem Biol Interact 2016; 254:179-90. [DOI: 10.1016/j.cbi.2016.06.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/29/2016] [Accepted: 06/06/2016] [Indexed: 01/13/2023]
|
14
|
Yang EJ, Lee W, Song KS, Bae JS. Ameliorative effect of a rarely occurring C-methylrotenoid on HMGB1-induced septic responses in vitro and in vivo. Biochem Pharmacol 2016; 110-111:58-70. [DOI: 10.1016/j.bcp.2016.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/12/2016] [Indexed: 10/21/2022]
|
15
|
Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses. Biochem Biophys Res Commun 2016; 474:715-721. [DOI: 10.1016/j.bbrc.2016.05.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/04/2016] [Indexed: 01/12/2023]
|
16
|
Jung B, Ku SK, Gao M, Kim KM, Han MS, Choi H, Bae JS. Suppressive effects of three diketopiperazines from marine-derived bacteria on TGFBIp-mediated septic responses in human endothelial cells and mice. Arch Pharm Res 2016; 39:843-54. [DOI: 10.1007/s12272-016-0743-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/15/2016] [Indexed: 11/25/2022]
|
17
|
Lee W, Kwak S, Yun E, Lee JH, Na M, Song GY, Bae JS. Antiseptic Effects of New 3'-N-Substituted Carbazole Derivatives In Vitro and In Vivo. Inflammation 2016; 38:1649-61. [PMID: 25743565 DOI: 10.1007/s10753-015-0141-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Inhibition of high-mobility group box 1 (HMGB1) protein and restoration of endothelial integrity are emerging as attractive therapeutic strategies in the management of sepsis. Here, new five structurally related 3'-N-substituted carbazole derivatives were examined for their effects on lipopolysaccharide (LPS)-mediated or cecal ligation and puncture (CLP)-mediated release of HMGB1 and on modulation of HMGB1-mediated inflammatory responses. We accessed this question by monitoring the effects of posttreatment carbazole derivatives on LPS- and CLP-mediated release of HMGB1 and HMGB1-mediated regulation of proinflammatory responses in human umbilical vein endothelial cells (HUVECs) and septic mice. The new 3'-N-substituted carbazole derivatives 1-5 inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses in human endothelial cells. New compounds also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with each compound reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in mice. These results indicate that the new 3'-N-substituted carbazole derivatives could be candidate therapeutic agents for various severe vascular inflammatory diseases owing to their inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
18
|
Jung B, Yang EJ, Bae JS. Suppressive effects of polyozellin on TGFBIp-mediated septic responses in human endothelial cells and mice. Nutr Res 2015; 36:380-389. [PMID: 27001283 DOI: 10.1016/j.nutres.2015.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 12/08/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
Polyozellus multiplex (Thelephoraceae) is a wild mushroom in Korea and Japan and is usually harvested in early autumn for food. Polyozellin, a major constituent of the edible mushroom P multiplex, has been known to exhibit biological activities such as antioxidative and anti-inflammatory effects. Transforming growth factor β-induced protein (TGFBIp) is an extracellular matrix protein whose expression in several cell types is greatly increased by TGF-β. TGFBIp is released by human umbilical vein endothelial cells and functions as a mediator of experimental sepsis. We hypothesized that polyozellin could reduce TGFBIp-mediated severe inflammatory responses in human endothelial cells and mice. Here, we investigated the antiseptic effects and underlying mechanisms of polyozellin against TGFBIp-mediated septic responses. Polyozellin effectively inhibited lipopolysaccharide-induced release of TGFBIp and suppressed TGFBIp-mediated septic responses. In addition, polyozellin suppressed cecal ligation and puncture-induced sepsis lethality and pulmonary injury. In conclusion, polyozellin suppressed TGFBIp-mediated and cecal ligation and puncture-induced septic responses. Therefore, polyozellin could be a potential therapeutic agent for treatment of various severe vascular inflammatory diseases via inhibition of the TGFBIp signaling pathway.
Collapse
Affiliation(s)
- Byeongjin Jung
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
19
|
Lee IC, Bae JS. Anti-inflammatory effects of vicenin-2 and scolymoside on polyphosphate-mediated vascular inflammatory responses. Inflamm Res 2015; 65:203-12. [DOI: 10.1007/s00011-015-0906-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 10/31/2015] [Accepted: 11/12/2015] [Indexed: 12/13/2022] Open
|
20
|
Anti-inflammatory effects of methylthiouracil in vitro and in vivo. Toxicol Appl Pharmacol 2015; 288:374-86. [DOI: 10.1016/j.taap.2015.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/25/2015] [Accepted: 08/14/2015] [Indexed: 01/11/2023]
|
21
|
Anti-inflammatory effects of vicenin-2 and scolymoside in vitro and in vivo. Inflamm Res 2015; 64:1005-21. [DOI: 10.1007/s00011-015-0886-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022] Open
|
22
|
Ku SK, Lee JH, O Y, Lee W, Song GY, Bae JS. Vascular barrier protective effects of 3-N- or 3-O-cinnamoyl carbazole derivatives. Bioorg Med Chem Lett 2015; 25:4304-7. [DOI: 10.1016/j.bmcl.2015.07.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 07/04/2015] [Accepted: 07/23/2015] [Indexed: 11/30/2022]
|
23
|
Jung B, Ku SK, Bae JS. Ameliorative effect of methylthiouracil on TGFBIp-induced septic responses. Biochem Biophys Res Commun 2015; 463:661-6. [PMID: 26043683 DOI: 10.1016/j.bbrc.2015.05.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 05/30/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Byeongjin Jung
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, South Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701 Republic of Korea.
| |
Collapse
|
24
|
Kwak S, Ku SK, Kang H, Baek MC, Bae JS. Methylthiouracil, a new treatment option for sepsis. Vascul Pharmacol 2015; 88:1-10. [PMID: 26239884 DOI: 10.1016/j.vph.2015.07.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 06/17/2015] [Accepted: 07/07/2015] [Indexed: 11/28/2022]
Abstract
The screening of bioactive compound libraries can be an effective approach for repositioning FDA-approved drugs or discovering new treatments for human diseases. Inhibition of high mobility group box 1 (HMGB1) and restoration of endothelial integrity are emerging as an attractive therapeutic strategies in the management of severe sepsis or septic shock. Here, we examined the effects of methylthiouracil (MTU), used as antithyroid drug, by monitoring the effects on lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-mediated release of HMGB1, and on the modulation of HMGB1-mediated inflammatory responses. The anti-inflammatory activities of MTU were determined by measuring permeability, leukocyte adhesion and migration, and the activation of pro-inflammatory proteins in HMGB1-activated HUVECs and mice. MTU inhibited the release of HMGB1 and downregulated HMGB1-dependent inflammatory responses in human endothelial cells. MTU also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. In addition, treatment with MTU reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury. Our results indicate that MTUs could be candidate therapeutic agents for various severe vascular inflammatory diseases via the inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Soyoung Kwak
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Sae-Kwang Ku
- Department of Anatomy and Histology, College of Korean Medicine, Daegu Haany University, Gyeongsan 712-715, Republic of Korea
| | - Hyejin Kang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Moon-Chang Baek
- Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University, Daegu 700-422, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
25
|
Yang EJ, Ku SK, Lee W, Song KS, Bae JS. Inhibitory effects of polyozellin from Polyozellus multiplex on HMGB1-mediated septic responses. Inflamm Res 2015. [PMID: 26206236 DOI: 10.1007/s00011-015-0856-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
AIM AND OBJECTIVE The ubiquitous nuclear protein, high-mobility group box 1 (HMGB1), is released by activated macrophages and human umbilical vein endothelial cells (HUVECs) and functions as a late mediator of experimental sepsis. Polyozellin, which has been reported to have a variety of biological activities including antioxidant and anticancer activity, is the major active compound found in edible mushroom (Polyozellus multiplex). In this study, we investigated the antiseptic effects and underlying mechanisms of polyozellin against HMGB1-mediated septic responses in HUVECs and mice. METHODS The anti-inflammatory activities of polyozellin were determined by measuring permeability, human neutrophil adhesion and migration, and activation of proinflammatory proteins in HMGB1-activated HUVECs and mice. RESULTS According to the results, polyozellin effectively inhibited lipopolysaccharide (LPS)-induced release of HMGB1, and suppressed HMGB1-mediated septic responses, such as hyperpermeability, adhesion and migration of leukocytes, and expression of cell adhesion molecules. In addition, polyozellin suppressed the production of tumor necrosis factor-α and interleukin (IL)-6, and the activation of nuclear factor-κB and extracellular signal-regulated kinases 1/2 by HMGB1. CONCLUSION Collectively, these results indicate that P. multiplex containing polyozellin could be commercialized as functional food for preventing and treatment of various severe vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Eun-Ju Yang
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu, 702-701, Republic of Korea
| | | | | | | | | |
Collapse
|
26
|
Lee W, Ku SK, Na DH, Bae JS. Anti-Inflammatory Effects of Lysozyme Against HMGB1 in Human Endothelial Cells and in Mice. Inflammation 2015; 38:1911-24. [DOI: 10.1007/s10753-015-0171-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
27
|
Lee W, Park EJ, Kwak S, Kim Y, Na DH, Bae JS. PEGylated lysozymes with anti-septic effects in human endothelial cells and in mice. Biochem Biophys Res Commun 2015; 459:662-7. [PMID: 25769950 DOI: 10.1016/j.bbrc.2015.02.167] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 02/28/2015] [Indexed: 11/19/2022]
Abstract
High mobility group box 1 (HMGB1) was recently shown to be an important extracellular mediator of severe vascular inflammatory disease, sepsis. Lysozyme (LYZ) has been shown to bind to bacterial lipopolysaccharide (LPS) and have a potential for playing a role in the therapy of inflammatory diseases. However, the effect of LYZ on HMGB1-induced septic response has not been investigated. Moreover, PEGylation effects on the antiseptic activity of LYZ are not known. Here, we show, for the first time, the anti-septic effects of PEGylated LYZ (PEG-LYZ) in HMGB1-mediated inflammatory responses in vitro and in vivo. Among four mono-PEGylated LYZs with different PEGylation sites (N-terminus, Lys(13), Lys(33), and Lys(97)), N-terminally PEGylated LYZ showed the highest activity. Subsequently, among three N-terminally PEGylated LYZs prepared with aldehyde-activated PEGs of 5, 10, and 20 kDa, 5 kDa-PEG-conjugated LYZ (P5-K(1)-LYZ) showed the highest antiseptic activity. The data showed that P5-K(1)-LYZ post-treatment effectively suppressed LPS-mediated release of HMGB1. P5-K(1)-LYZ also inhibited HMGB1-mediated hyperpermeability in human endothelial cells. Furthermore, P5-K(1)-LYZ reduced the cecal ligation and puncture (CLP)-induced release of HMGB1 and septic mortality. Collectively, these results suggest P5-K(1)-LYZ as a candidate therapeutic agent for the treatment of vascular inflammatory diseases via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Eun Ji Park
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Soyoung Kwak
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Yejin Kim
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Dong Hee Na
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Jong-Sup Bae
- College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea.
| |
Collapse
|
28
|
Lee W, Bae JS. Anti-inflammatory Effects of Aspalathin and Nothofagin from Rooibos (Aspalathus linearis) In Vitro and In Vivo. Inflammation 2015; 38:1502-16. [DOI: 10.1007/s10753-015-0125-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
29
|
Endocan Elicits Severe Vascular Inflammatory Responses In Vitro and In Vivo. J Cell Physiol 2014; 229:620-30. [DOI: 10.1002/jcp.24485] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/02/2013] [Indexed: 12/16/2022]
|
30
|
Kim TH, Ku SK, Bae JS. Anti-inflammatory activities of isorhamnetin-3-O-galactoside against HMGB1-induced inflammatory responses in both HUVECs and CLP-induced septic mice. J Cell Biochem 2013; 114:336-45. [PMID: 22930571 DOI: 10.1002/jcb.24361] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/15/2012] [Indexed: 11/08/2022]
Abstract
High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that elicits severe vascular inflammatory diseases. Oenanthe javanica (water dropwort) extract has anti-arrhythmic, neuroprotective and anti-diabetic activity. However, isorhamnetin-3-O-galactoside (I3G), an active compound from O. javanica, is not researched well for its biological activity. Here, we investigated the anti-inflammatory activities of I3G by monitoring the effects of I3G on the lipopolysaccharide (LPS) or cecal ligation and puncture (CLP)-mediated release of HMGB1 and HMGB1 or CLP-mediated modulation of inflammatory responses. I3G potently inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells. I3G also inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. Further studies revealed that I3G suppressed the production of tumor necrosis factor-α and activation of nuclear factor-κB by HMGB1. In addition, I3G reduced CLP-induced HMGB1 release and sepsis-related mortality. Given these results, I3G should be viewed as a candidate therapeutic agent for the treatment of severe vascular inflammatory diseases such as sepsis or septic shock via inhibition of the HMGB1 signaling pathway.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Herbal Medicinal Pharmacology, Daegu Haany University, Gyeongsan 712-715, Korea
| | | | | |
Collapse
|
31
|
Kim TH, Ku SK, Bae JS. Persicarin is anti-inflammatory mediator against HMGB1-induced inflammatory responses in HUVECs and in CLP-induced sepsis mice. J Cell Physiol 2013; 228:696-703. [PMID: 22911316 DOI: 10.1002/jcp.24214] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 08/08/2012] [Indexed: 12/22/2022]
Abstract
High mobility group box 1 (HMGB1) protein is a crucial nuclear cytokine that mediates inflammatory responses, whereas persicarin is an active compound from Oenanthe javanica that has been widely researched for its neuroprotective and antioxidant activities. However, little is known of the effects of persicarin on HMGB1-mediated inflammatory response. Here, we investigated this issue by monitoring the effects of persicarin on the lipopolysaccharide (LPS) and on the cecal ligation and puncture (CLP)-mediated releases of HMGB1 and the effects of persicarin on the HMGB1-mediated modulation of inflammatory response. Persicarin potently inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells, and inhibited HMGB1-mediated hyperpermeability and leukocyte migration in mice. Furthermore, persicarin reduced CLP-induced HMGB1 release and sepsis-related mortality. Given these results, persicarin should be viewed as a candidate therapeutic for the treatment of severe vascular inflammatory diseases, such as, sepsis or septic shock.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Herbal Medicinal Pharmacology, Daegu Haany University, Gyeongsan, Republic of Korea
| | | | | |
Collapse
|
32
|
Lee W, Ku SK, Kim TH, Bae JS. Emodin-6-O-β-D-glucoside inhibits HMGB1-induced inflammatory responses in vitro and in vivo. Food Chem Toxicol 2012; 52:97-104. [PMID: 23146691 DOI: 10.1016/j.fct.2012.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Revised: 10/27/2012] [Accepted: 10/28/2012] [Indexed: 11/18/2022]
Abstract
High mobility group box 1 (HMGB1) protein acts as a potent proinflammatory cytokine and is involved in the pathogenesis of several vascular diseases, such as, systemic vasculitis and sepsis. Emodin-6-O-β-D-glucoside (EG) is a new active compound from Reynoutria japonica, and its biologic activities have not been previously investigated. In this study, we first investigated the antiinflammatory activities of EG on HMGB1-mediated proinflammatory responses in human umbilical vein endothelial cells (HUVECs) and in a murine cecal ligation and puncture (CLP)-model of sepsis in mice. EG was found to suppress the release of HMGB1, the production of tumor necrosis factor (TNF)-α, and the activation of nuclear factor-κB (NF-κB) by HMGB1 in HUVECs, and to inhibit HMGB1-mediated hyperpermeability and leukocyte migration in mice. In the CLP model, HMGB1 was highly released, but this release was prevented by EG. Furthermore, EG also increased the survival times of CLP administered mice. Collectively, this study shows EG can protect barrier integrity and inhibit HMGB1-mediated inflammatory responses, which suggests a potential use as a therapy for sepsis or septic shock.
Collapse
Affiliation(s)
- Wonhwa Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, School of Medicine, Kyungpook National University, Daegu 702-701, Republic of Korea
| | | | | | | |
Collapse
|