1
|
Prolonged duration of isoflurane anesthesia impairs spatial recognition memory through the activation of JNK1/2 in the hippocampus of mice. Neuroreport 2018; 28:386-390. [PMID: 28240723 DOI: 10.1097/wnr.0000000000000760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Postoperative cognitive dysfunction is a frequent complication with surgery and anesthesia, and the underlying mechanism is unclear. Our aim was to investigate the effect of different durations of isoflurane anesthesia on spatial recognition memory and activation of JNK1/2 in the hippocampus of mice. In the present study, adult male mice were anesthetized with isoflurane for different durations (1.5% isoflurane for 1, 2, and 4 h). Spatial recognition memory was determined using spontaneous alternation and two-trial recognition memory in Y-maze at 24 h after anesthesia. The activation of JNK1/2 in the hippocampus was tested using western blot. Mice treated with isoflurane for 4 h showed significantly decreased spontaneous alternations and decreased exploration parameters compared with the no anesthesia group, but this was not observed in mice treated with isoflurane for 1 or 2 h. The protein levels of p-JNK1/2 in the hippocampus were significantly increased at 10 min after isoflurane anesthesia for 1, 2, and 4 h compared with no anesthesia. However, only isoflurane anesthesia for 4 h still increased JNK1/2 and p-JNK1/2 levels at 24 h after anesthesia. We concluded that prolonged duration of isoflurane anesthesia maintained the activation of JNK1/2, which led to memory impairment at 24 h after anesthesia.
Collapse
|
2
|
Abstract
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity to Alzheimer's. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity/surrounding environment. In addition, neuroimmune activation can diminish physical activity, precipitate feelings of depression and anxiety, and impair cognitive and executive function. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on pre-experimental conditions that can confound or prevent successful immunobehavioral experimentation.
Collapse
|
3
|
Nurmasitoh T, Sari DCR, Partadiredja G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem Toxicol 2017; 41:324-329. [DOI: 10.1080/01480545.2017.1414833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Titis Nurmasitoh
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Percie du Sert N, Alfieri A, Allan SM, Carswell HV, Deuchar GA, Farr TD, Flecknell P, Gallagher L, Gibson CL, Haley MJ, Macleod MR, McColl BW, McCabe C, Morancho A, Moon LD, O'Neill MJ, Pérez de Puig I, Planas A, Ragan CI, Rosell A, Roy LA, Ryder KO, Simats A, Sena ES, Sutherland BA, Tricklebank MD, Trueman RC, Whitfield L, Wong R, Macrae IM. The IMPROVE Guidelines (Ischaemia Models: Procedural Refinements Of in Vivo Experiments). J Cereb Blood Flow Metab 2017; 37:3488-3517. [PMID: 28797196 PMCID: PMC5669349 DOI: 10.1177/0271678x17709185] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most in vivo models of ischaemic stroke target the middle cerebral artery and a spectrum of stroke severities, from mild to substantial, can be achieved. This review describes opportunities to improve the in vivo modelling of ischaemic stroke and animal welfare. It provides a number of recommendations to minimise the level of severity in the most common rodent models of middle cerebral artery occlusion, while sustaining or improving the scientific outcomes. The recommendations cover basic requirements pre-surgery, selecting the most appropriate anaesthetic and analgesic regimen, as well as intraoperative and post-operative care. The aim is to provide support for researchers and animal care staff to refine their procedures and practices, and implement small incremental changes to improve the welfare of the animals used and to answer the scientific question under investigation. All recommendations are recapitulated in a summary poster (see supplementary information).
Collapse
Affiliation(s)
- Nathalie Percie du Sert
- 1 National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Alessio Alfieri
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Stuart M Allan
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hilary Vo Carswell
- 4 Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), University of Strathclyde, Glasgow, UK
| | - Graeme A Deuchar
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Tracy D Farr
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Lindsay Gallagher
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Claire L Gibson
- 8 Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Michael J Haley
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Malcolm R Macleod
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Barry W McColl
- 2 The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Christopher McCabe
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | - Anna Morancho
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lawrence Df Moon
- 11 Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | | | - Isabel Pérez de Puig
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | - Anna Planas
- 13 Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), IDIBAPS, Barcelona, Spain
| | | | - Anna Rosell
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Lisa A Roy
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| | | | - Alba Simats
- 10 Neurovascular Research Laboratory. Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona; Barcelona, Spain
| | - Emily S Sena
- 9 Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Brad A Sutherland
- 16 Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.,17 School of Medicine, Faculty of Health, University of Tasmania, Hobart, Australia
| | - Mark D Tricklebank
- 18 Centre for Neuroimaging Sciences, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Rebecca C Trueman
- 6 School of Life Sciences, University of Nottingham Medical School, Nottingham, UK
| | | | - Raymond Wong
- 3 Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - I Mhairi Macrae
- 5 Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow/Arum Biosciences, Glasgow, UK
| |
Collapse
|
5
|
Luo T, Wang Y, Qin J, Liu ZG, Liu M. Histamine H3 Receptor Antagonist Prevents Memory Deficits and Synaptic Plasticity Disruption Following Isoflurane Exposure. CNS Neurosci Ther 2017; 23:301-309. [PMID: 28168839 DOI: 10.1111/cns.12675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Exposure to pharmacological concentration of inhaled anesthetics such as isoflurane can cause short- or long-term cognitive impairments in preclinical studies. The selective antagonists of the histamine H3 receptors are considered as a promising group of novel therapeutic agents for the treatment of cognitive disorders. In this study, we investigated whether ciproxifan, a nonimidazole antagonist of H3 histamine receptors, could overcome the functional and electrophysiological sequela associated with isoflurane anesthesia. METHODS Adult male Sprague Dawley rats were exposed to 1.4% isoflurane or vehicle gas for 2 h. The memory tests (novel object recognition and passive avoidance) as well as in vivo hippocampal excitatory synaptic potentials were recorded 24 h postanesthesia. Locomotor activity, anxiety, and nociception 24 h after isoflurane were also examined. The drugs (ciproxifan 3 mg/kg or saline) were intraperitoneally injected 30 min prior to the behavioral tests or long-term potentiation induction. RESULTS Animals that were previously (24 h) exposed to 1.4% isoflurane for 2 h displayed no preference for novel objects and had impaired retention of a passive avoidance response at 1 h after sample phase. Treating isoflurane-exposed rats with ciproxifan significantly improved the memory performance, as evidenced by an increased discrimination ratio in objects recognition and prolonged retention time in passive avoidance test. Accordingly, hippocampus long-term potentiation was reduced in animals that received isoflurane, while administration of ciproxifan completely abolished the effect of isoflurane exposure on synaptic plasticity. Neither isoflurane nor ciproxifan altered motor performance, anxiety, and nociceptive responses. CONCLUSION These results suggest that H3R in the CNS, probably in the hippocampus, may serve as therapeutic target for improvement of anesthesia-associated cognitive deficits.
Collapse
Affiliation(s)
- Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ying Wang
- Materials Characterization and Preparation Center, Southern University of Science and Technology, Shenzhen, China
| | - Jian Qin
- Central Laboratory, Wuhan University Renmin Hospital, Wuhan, China
| | - Zhi-Gang Liu
- Department of Anesthesiology, Wuhan University Renmin Hospital, Wuhan, China
| | - Min Liu
- Central Laboratory, Wuhan University Renmin Hospital, Wuhan, China
| |
Collapse
|
6
|
Cao J, Wang Z, Mi W, Zuo Z. Isoflurane unveils a critical role of glutamate transporter type 3 in regulating hippocampal GluR1 trafficking and context-related learning and memory in mice. Neuroscience 2014; 272:58-64. [PMID: 24797327 PMCID: PMC4077290 DOI: 10.1016/j.neuroscience.2014.04.049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 04/04/2014] [Accepted: 04/21/2014] [Indexed: 12/31/2022]
Abstract
Glutamate transporter type 3 (EAAT3) may play a role in cognition. Isoflurane enhances EAAT3 trafficking to the plasma membrane. Thus, we used isoflurane to determine how EAAT3 might regulate learning and memory and the trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors, such as GluR1, to the plasma membrane, a fundamental biochemical process for learning and memory. Here, isoflurane increased EAAT3 but did not change GluR1 levels in the plasma membrane of wild-type mouse hippocampus. Isoflurane increased protein phosphatase activity in the wild-type and EAAT3(-/-) mouse hippocampus. Also, isoflurane reduced GluR1 in the plasma membrane and decreased phospho-GluR1 in EAAT3(-/-) mice. The phosphatase inhibitor okadaic acid attenuated these effects. Finally, isoflurane inhibited context-related fear conditioning in EAAT3(-/-) mice but not in wild-type mice. Thus, isoflurane may increase GluR1 trafficking to the plasma membrane via EAAT3 and inhibit GluR1 trafficking via protein phosphatase. Lack of EAAT3 effects leads to decreased GluR1 trafficking and impaired cognition after isoflurane exposure in EAAT3(-/-) mice.
Collapse
Affiliation(s)
- J Cao
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, United States; Department of Anesthesiology and Operation Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Z Wang
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, United States; Department of Anesthesiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - W Mi
- Department of Anesthesiology and Operation Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Z Zuo
- Department of Anesthesiology, University of Virginia, Charlottesville, VA 22908, United States.
| |
Collapse
|
7
|
Kennard JA, Harrison FE. Intravenous ascorbate improves spatial memory in middle-aged APP/PSEN1 and wild type mice. Behav Brain Res 2014; 264:34-42. [PMID: 24508240 PMCID: PMC3980584 DOI: 10.1016/j.bbr.2014.01.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 01/23/2014] [Accepted: 01/28/2014] [Indexed: 02/08/2023]
Abstract
The present study investigated the effects of a single intravenous (i.v.) dose of Vitamin C (ascorbate, ASC) on spatial memory in APP/PSEN1 mice, an Alzheimer's disease model. First, we confirmed the uptake time course in ASC-depleted gulo (-/-) mice, which cannot synthesize ASC. Differential tissue uptake was seen based on ASC transporter distribution. Liver (SVCT1 and SVCT2) ASC was elevated at 30, 60 and 120 min post-treatment (125 mg/kg, i.v.), whereas spleen (SVCT2) ASC increased at 60 and 120 min. There was no detectable change in cortical (SVCT2 at choroid plexus, and neurons) ASC within the 2-h interval, although the cortex preferentially retained ASC. APP/PSEN1 and wild type (WT) mice at three ages (3, 9, or 20 months) were treated with ASC (125 mg/kg, i.v.) or saline 45 min before testing on the Modified Y-maze, a two-trial task of spatial memory. Memory declined with age and ASC treatment improved performance in 9-month-old APP/PSEN1 and WT mice. APP/PSEN1 mice displayed no behavioral impairment relative to WT controls. Although dopamine and metabolite DOPAC decreased in the nucleus accumbens with age, and improved spatial memory was correlated with increased dopamine in saline treated mice, acute ASC treatment did not alter monoamine levels in the nucleus accumbens. These data show that the Modified Y-maze is sensitive to age-related deficits, but not additional memory deficits due to amyloid pathology in APP/PSEN1 mice. They also suggest improvements in short-term spatial memory were not due to changes in the neuropathological features of AD or monoamine signaling.
Collapse
Affiliation(s)
- John A Kennard
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| | - Fiona E Harrison
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| |
Collapse
|
8
|
Deguil J, Ravasi L, Auffret A, Babiloni C, Bartres Faz D, Bragulat V, Cassé-Perrot C, Colavito V, Herrero Ezquerro MT, Lamberty Y, Lanteaume L, Pemberton D, Pifferi F, Richardson JC, Schenker E, Blin O, Tarragon E, Bordet R. Evaluation of symptomatic drug effects in Alzheimer's disease: strategies for prediction of efficacy in humans. DRUG DISCOVERY TODAY. TECHNOLOGIES 2014; 10:e329-42. [PMID: 24179995 DOI: 10.1016/j.ddtec.2013.03.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In chronic diseases such as Alzheimer's disease (AD), the arsenal of biomarkers available to determine the effectiveness of symptomatic treatment is very limited. Interpretation of the results provided in literature is cumbersome and it becomes difficult to predict their standardization to a larger patient population. Indeed, cognitive assessment alone does not appear to have sufficient predictive value of drug efficacy in early clinical development of AD treatment. In recent years, research has contributed to the emergence of new tools to assess brain activity relying on innovative technologies of imaging and electrophysiology. However, the relevance of the use of these newer markers in treatment response assessment is waiting for validation. This review shows how the early clinical assessment of symptomatic drugs could benefit from the inclusion of suitable pharmacodynamic markers. This review also emphasizes the importance of re-evaluating a step-by-step strategy in drug development.
Collapse
|
9
|
Hu N, Guo D, Wang H, Xie K, Wang C, Li Y, Wang C, Wang C, Yu Y, Wang G. Involvement of the blood-brain barrier opening in cognitive decline in aged rats following orthopedic surgery and high concentration of sevoflurane inhalation. Brain Res 2014; 1551:13-24. [PMID: 24440777 DOI: 10.1016/j.brainres.2014.01.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/09/2014] [Accepted: 01/14/2014] [Indexed: 11/17/2022]
Abstract
The underlying causes of postoperative cognitive decline (POCD) in old patients remained unelucidated, and there are little descriptions on mechanisms associated with the blood-brain barrier (BBB) disruption during POCD. We therefore tested the effects of orthopedic surgery with different concentrations of sevoflurane for 2 h on the behavior test and the BBB permeability in aged rats. 18-month rats were divided into control group and surgical group with propofol anesthesia (0.7 mgkg(-1) min(-1)) and 1.0 MAC, 1.3 MAC, and 1.5 MAC sevoflurane inhalation for 2 h. We assessed their cognitive function via Y-maze and fear conditioning test on day 1, 3, and 7 after experiments. Animals were then assigned to control group, propofol (2 h, 0.7 mgkg(-1) min(-1)) group, surgery plus propofol group and surgery plus 1.5 MAC sevoflurane inhalation for 2h. Their hippocampal BBB permeability was detected with Evans blue quantification. Alterations of tight junctions in hippocampus were measured with occludin and claudin-5 western blot. Then we assessed matrix metalloproteinase-2,9 (MMP-2,9) via western blot and immunohistochemistry staining at day 1, 3, 7, and 14 after experiments. Surgery impaired cognitive function and increased Evans blue leakage into the hippocampus in aged rats while 2 h of 1.5 MAC sevoflurane inhalation potentiated these effects. Surgery induced occludin protein expression decreases and MMP-2,9 proteins increase and these influences can be enhanced by high concentration of sevoflurane inhalation. In conclusion, 1.5 MAC sevoflurane for 2 h exacerbated cognitive impairment induced by orthopedic surgery in aged rats and the breach in BBB may be involved in this process.
Collapse
Affiliation(s)
- Nan Hu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Dongyong Guo
- Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, China.
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Chao Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Yize Li
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Chunyan Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Chenxu Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Yonghao Yu
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| | - Guolin Wang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China; Tianjin Research Institute of Anesthesiology, China.
| |
Collapse
|
10
|
Zhang HP, Sun YY, Chen XM, Yuan LB, Su BX, Ma R, Zhao RN, Dong HL, Xiong L. The neuroprotective effects of isoflurane preconditioning in a murine transient global cerebral ischemia-reperfusion model: the role of the Notch signaling pathway. Neuromolecular Med 2013; 16:191-204. [PMID: 24197755 DOI: 10.1007/s12017-013-8273-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
Inhalational anesthetic preconditioning can induce neuroprotective effects, and the notch signaling pathway plays an important role in neural progenitor cell differentiation and the inflammatory response after central nervous system injury. This study evaluated whether the neuroprotective effect of isoflurane preconditioning is mediated by the activation of the notch signaling pathway. Mice were divided into two groups consisting of those that did or did not receive preconditioning with isoflurane. The expression levels of notch-1, notch intracellular domain (NICD), and hairy and enhancer of split (HES-1) were measured in mice subjected to transient global cerebral ischemia-reperfusion injury. The notch signaling inhibitor DAPT and conditional notch-RBP-J knockout mice were used to investigate the mechanisms of isoflurane preconditioning-induced neuroprotection. Immunohistochemical staining, real-time polymerase chain reaction assays, and Western blotting were performed. Isoflurane preconditioning induced neuroprotection against global cerebral ischemia. Preconditioning up-regulated the expression of notch-1, HES-1, and NICD after ischemic-reperfusion. However, these molecules were down-regulated at 72 h after ischemic-reperfusion. The inhibition of notch signaling activity by DAPT significantly attenuated the isoflurane preconditioning-induced neuroprotection, and similar results were obtained using notch knockout mice. Our results demonstrate that the neuroprotective effects of isoflurane preconditioning are mediated by the pre-activation of the notch signaling pathway.
Collapse
Affiliation(s)
- Hao-peng Zhang
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Spatial memory impairments in a prediabetic rat model. Neuroscience 2013; 250:565-77. [PMID: 23912035 DOI: 10.1016/j.neuroscience.2013.07.055] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022]
Abstract
Diabetes is associated with an increased risk for brain disorders, namely cognitive impairments associated with hippocampal dysfunction underlying diabetic encephalopathy. However, the impact of a prediabetic state on cognitive function is unknown. Therefore, we now investigated whether spatial learning and memory deficits and the underlying hippocampal dysfunction were already present in a prediabetic animal model. Adult Wistar rats drinking high-sucrose (HSu) diet (35% sucrose solution during 9 weeks) were compared to controls' drinking water. HSu rats exhibited fasting normoglycemia accompanied by hyperinsulinemia and hypertriglyceridemia in the fed state, and insulin resistance with impaired glucose tolerance confirming them as a prediabetic rodent model. HSu rats displayed a poorer performance in hippocampal-dependent short- and long-term spatial memory performance, assessed with the modified Y-maze and Morris water maze tasks, respectively; this was accompanied by a reduction of insulin receptor-β density with normal levels of insulin receptor substrate-1 pSer636/639, and decreased hippocampal glucocorticoid receptor levels without changes of the plasma corticosterone levels. Importantly, HSu animals exhibited increased hippocampal levels of AMPA and NMDA receptor subunits GluA1 and GLUN1, respectively, whereas the levels of protein markers related to nerve terminals (synaptophysin) and oxidative stress/inflammation (HNE, RAGE, TNF-α) remained unaltered. These findings indicate that 9 weeks of sucrose consumption resulted in a metabolic condition suggestive of a prediabetic state, which translated into short- and long-term spatial memory deficits accompanied by alterations in hippocampal glutamatergic neurotransmission and abnormal glucocorticoid signaling.
Collapse
|
12
|
Isoflurane delays the development of early brain injury after subarachnoid hemorrhage through sphingosine-related pathway activation in mice. Crit Care Med 2012; 40:1908-13. [PMID: 22488000 DOI: 10.1097/ccm.0b013e3182474bc1] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Isoflurane, a volatile anesthetic agent, has been recognized for its potential neuroprotective properties and has antiapoptotic effects. We examined whether isoflurane posttreatment is protective against early brain injury after subarachnoid hemorrhage and determined whether this effect needs sphingosine-related pathway activation. DESIGN Controlled in vivo laboratory study. SETTING Animal research laboratory. SUBJECTS One hundred seventy-nine 8-wk-old male CD-1 mice weighing 30-38 g. INTERVENTIONS Subarachnoid hemorrhage was induced in mice by endovascular perforation. Animals were randomly assigned to sham-operated, subarachnoid hemorrhage-vehicle, and subarachnoid hemorrhage+2% isoflurane. Neurobehavioral function and brain edema were evaluated at 24 and 72 hrs. The expression of sphingosine kinase, phosphorylated Akt, and cleaved caspase-3 was determined by Western blotting and immunofluorescence. Neuronal cell death was examined by terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick end-labeling staining. Effects of a sphingosine kinase inhibitor N, N-dimethylsphingosine or a sphingosine 1 phosphate receptor inhibitor VPC23019 on isoflurane's protective action against postsubarachnoid hemorrhage early brain injury were also examined. MEASUREMENTS AND MAIN RESULTS Isoflurane significantly improved neurobehavioral function and brain edema at 24 hrs but not 72 hrs after subarachnoid hemorrhage. At 24 hrs, isoflurane attenuated neuronal cell death in the cortex, associated with an increase in sphingosine kinase 1 and phosphorylated Akt, and a decrease in cleaved caspase-3. The beneficial effects of isoflurane were abolished by N, N-dimethylsphingosine and VPC23019. CONCLUSIONS Isoflurane posttreatment delays the development of postsubarachnoid hemorrhage early brain injury through antiapoptotic mechanisms including sphingosine-related pathway activation, implying its use for anesthesia during acute aneurysm surgery or intervention.
Collapse
|
13
|
York JM, Blevins NA, Baynard T, Freund GG. Mouse testing methods in psychoneuroimmunology: an overview of how to measure sickness, depressive/anxietal, cognitive, and physical activity behaviors. Methods Mol Biol 2012; 934:243-276. [PMID: 22933150 DOI: 10.1007/978-1-62703-071-7_13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The field of psychoneuroimmunology (PNI) aims to uncover the processes and consequences of nervous, immune, and endocrine system relationships. Behavior is a consequence of such interactions and manifests from a complex interweave of factors including immune-to-neural and neural-to-immune communication. Often the signaling molecules involved during a particular episode of neuroimmune activation are not known but behavioral response provides evidence that bioactives such as neurotransmitters and cytokines are perturbed. Immunobehavioral phenotyping is a first-line approach when examining the neuroimmune system and its reaction to immune stimulation or suppression. Behavioral response is significantly more sensitive than direct measurement of a single specific bioactive and can quickly and efficiently rule in or out relevance of a particular immune challenge or therapeutic to neuroimmunity. Classically, immunobehavioral research was focused on sickness symptoms related to bacterial infection but neuroimmune activation is now a recognized complication of diseases and disorders ranging from cancer to diabesity. Immunobehaviors include lethargy, loss of appetite, and disinterest in social activity and the surrounding environment. In addition, neuroimmune activation can precipitate feelings of depression and anxiety while negatively impacting cognitive function and physical activity. Provided is a detailed overview of behavioral tests frequently used to examine neuroimmune activation in mice with a special emphasis on preexperimental conditions that can confound or prevent successful immunobehavioral experimentation.
Collapse
Affiliation(s)
- Jason M York
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | | | | | | |
Collapse
|
14
|
Lee S, Park SH, Zuo Z. Effects of isoflurane on learning and memory functions of wild-type and glutamate transporter type 3 knockout mice. ACTA ACUST UNITED AC 2011; 64:302-7. [PMID: 22221107 DOI: 10.1111/j.2042-7158.2011.01404.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVES General anesthetics may contribute to the post-operative cognitive dysfunction. This study was designed to determine the effects of isoflurane on the learning and memory of healthy animals or animals with a decreased brain antioxidative capacity. METHODS Seven- to nine-week-old female CD-1 wild-type mice or glutamate transporter type 3 (EAAT3) knockout mice whose brains have a decreased glutathione level were exposed to or were not exposed to 1.3% isoflurane for 2 h. They were subjected to fear conditioning or Barnes maze tests 1 week later. KEY FINDINGS The EAAT3 knockout mice had less freezing behaviour than the wild-type mice in tone-related fear. Isoflurane did not affect the freezing behaviour of the wild-type and EAAT3 knockout mice. The time for the wild-type and EAAT3 knockout mice to identify the target hole in the training sessions and memory test with the Barnes maze was not affected by isoflurane. However, the EAAT3 knockout mice took longer to identify the target hole than the wild-type mice in these tests. CONCLUSIONS These results suggest that EAAT3 knockout mice have significant cognitive impairment. Isoflurane may not significantly affect the cognition of wild-type and EAAT3 knockout mice in a delayed phase after isoflurane exposure.
Collapse
Affiliation(s)
- Sunam Lee
- Department of Anesthesiology, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
15
|
André D, Dartigues JF, Sztark F. Maladie d’Alzheimer et anesthésie : relations potentielles et implications cliniques. ACTA ACUST UNITED AC 2011; 30:37-46. [DOI: 10.1016/j.annfar.2010.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Accepted: 10/19/2010] [Indexed: 01/01/2023]
|
16
|
Bekker A, Haile M, Gingrich K, Wenning L, Gorny A, Quartermain D, Blanck T. Physostigmine Reverses Cognitive Dysfunction Caused by Moderate Hypoxia in Adult Mice. Anesth Analg 2007; 105:739-43. [PMID: 17717233 DOI: 10.1213/01.ane.0000265555.57472.49] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Cognitive changes associated with moderate hypoxia in rodents may result from the diminished functioning of central cholinergic neurotransmission. We designed this study to examine whether treatment with physostigmine (PHY), an acetylcholinesterase inhibitor, could improve the impairment of working memory after hypoxic hypoxia. METHODS We randomized 90 Swiss Webster, 30-35 g mice (6-8 wks) to three hypoxia groups at fraction of inspired oxygen, FiO2 = 0.10 (1. no treatment; 2. PHY 0.1 mg/kg intraperitoneally administered immediately before; or 3. after hypoxia), or to two room air groups (given either no treatment or PHY after an insult). An object recognition test was used to assess short-term memory function. The object recognition test exploits the tendency of mice to prefer exploring novel objects in an environment when a familiar object is also present. During the 15 min training trial, two identical objects were placed in two defined sites of the box. During the test trial performed 1 h later, one of the objects was replaced by a new object with a different shape. The time spent exploring the two objects was automatically recorded by a video camera and associated software. The performance was analyzed with ANOVA, followed by post hoc comparisons using the Newman-Keuls test when appropriate. P values <0.05 were considered significant. RESULTS Untreated mice subjected to hypoxia at Fio2 = 0.1 spent significantly less time exploring a novel object on testing day 1 than did untreated mice breathing room air. Performance of the mice subjected to hypoxia, who received physostigmine after, but not before, the insult did not differ from the control group. CONCLUSION Moderate hypoxia impairs rodents' performance in a working memory task. It appears that changes are transient, because the cognitive functioning of the mice returned to the baseline level 7 days after treatment. Postinsult administration of PHY prevented deterioration of cognitive function. An increased level of acetylcholine in the central nervous system may be responsible for the improved performance of the hypoxia-treated mice.
Collapse
Affiliation(s)
- Alex Bekker
- Department of Anesthesiology, New York University Medical Center, New York, NY 10016, USA.
| | | | | | | | | | | | | |
Collapse
|