1
|
Nurten A, Gören MZ, Tekin N, Kaşkal M, Enginar N. Assessing effects of tamoxifen on tolerance, dependence, and glutamate and glutamine levels in frontal cortex and hippocampus in chronic morphine treatment. Behav Brain Res 2024; 463:114897. [PMID: 38331101 DOI: 10.1016/j.bbr.2024.114897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
Tamoxifen has been shown to reduce glutamate release from presynaptic glutamatergic nerves and reverse tolerance to morphine-induced respiratory depression. Changes in glutamatergic neurotransmission in the central nervous system contribute to morphine tolerance, dependence, and withdrawal. This study, therefore, evaluated effects of tamoxifen on development of analgesic tolerance and dependence, and brain glutamate and glutamine levels in chronic morphine administration. Mice implanted with placebo or morphine pellets were injected with tamoxifen (0.6-2 mg/kg) or vehicle twice daily for 3 days. Nociceptive response was evaluated in the hot plate and tail immersion tests, 4, 48 and 72 h post-implant, and following a challenge dose of morphine (10 mg/kg). Withdrawal signs were determined after naloxone (1 mg/kg) administration. Morphine increased nociceptive threshold which declined over time. At 72 h, acute morphine elicited tolerance to the analgesic effect in the hot plate test in vehicle or tamoxifen administered animals. In the tail immersion test, however, tolerance to morphine analgesia was observed in tamoxifen, but not vehicle, co-administration. Tamoxifen did not reduce withdrawal signs. In contrast to previous reports, glutamate and glutamine levels in the hippocampus and frontal cortex did not change in the morphine-vehicle group. Confirming previous findings, tamoxifen (2 mg/kg) decreased glutamate and glutamine concentrations in the hippocampus in animals with placebo pellets. Both doses of tamoxifen significantly changed glutamate and/or glutamine concentrations in both regions in morphine pellet implanted animals. These results suggest that tamoxifen has no effect on dependence but may facilitate tolerance development to the antinociception, possibly mediated at the spinal level, in chronic morphine administration.
Collapse
Affiliation(s)
- Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - M Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Nurdan Tekin
- Department of Medical Pharmacology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mert Kaşkal
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
2
|
Barbosa J, Faria J, Garcez F, Leal S, Afonso LP, Nascimento AV, Moreira R, Pereira FC, Queirós O, Carvalho F, Dinis-Oliveira RJ. Repeated Administration of Clinically Relevant Doses of the Prescription Opioids Tramadol and Tapentadol Causes Lung, Cardiac, and Brain Toxicity in Wistar Rats. Pharmaceuticals (Basel) 2021; 14:ph14020097. [PMID: 33513867 PMCID: PMC7912343 DOI: 10.3390/ph14020097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022] Open
Abstract
Tramadol and tapentadol, two structurally related synthetic opioid analgesics, are widely prescribed due to the enhanced therapeutic profiles resulting from the synergistic combination between μ-opioid receptor (MOR) activation and monoamine reuptake inhibition. However, the number of adverse reactions has been growing along with their increasing use and misuse. The potential toxicological mechanisms for these drugs are not completely understood, especially for tapentadol, owing to its shorter market history. Therefore, in the present study, we aimed to comparatively assess the putative lung, cardiac, and brain cortex toxicological damage elicited by the repeated exposure to therapeutic doses of both prescription opioids. To this purpose, male Wistar rats were intraperitoneally injected with single daily doses of 10, 25, and 50 mg/kg tramadol or tapentadol, corresponding to a standard analgesic dose, an intermediate dose, and the maximum recommended daily dose, respectively, for 14 consecutive days. Such treatment was found to lead mainly to lipid peroxidation and inflammation in lung and brain cortex tissues, as shown through augmented thiobarbituric acid reactive substances (TBARS), as well as to increased serum inflammation biomarkers, such as C reactive protein (CRP) and tumor necrosis factor-α (TNF-α). Cardiomyocyte integrity was also shown to be affected, since both opioids incremented serum lactate dehydrogenase (LDH) and α-hydroxybutyrate dehydrogenase (α-HBDH) activities, while tapentadol was associated with increased serum creatine kinase muscle brain (CK-MB) isoform activity. In turn, the analysis of metabolic parameters in brain cortex tissue revealed increased lactate concentration upon exposure to both drugs, as well as augmented LDH and creatine kinase (CK) activities following tapentadol treatment. In addition, pneumo- and cardiotoxicity biomarkers were quantified at the gene level, while neurotoxicity biomarkers were quantified both at the gene and protein levels; changes in their expression correlate with the oxidative stress, inflammatory, metabolic, and histopathological changes that were detected. Hematoxylin and eosin (H & E) staining revealed several histopathological alterations, including alveolar collapse and destruction in lung sections, inflammatory infiltrates, altered cardiomyocytes and loss of striation in heart sections, degenerated neurons, and accumulation of glial and microglial cells in brain cortex sections. In turn, Masson's trichrome staining confirmed fibrous tissue deposition in cardiac tissue. Taken as a whole, these results show that the repeated administration of both prescription opioids extends the dose range for which toxicological injury is observed to lower therapeutic doses. They also reinforce previous assumptions that tramadol and tapentadol are not devoid of toxicological risk even at clinical doses.
Collapse
Affiliation(s)
- Joana Barbosa
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| | - Juliana Faria
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Fernanda Garcez
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Sandra Leal
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- CINTESIS—Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Luís Pedro Afonso
- Department of Pathology, Portuguese Institute of Oncology of Porto, 4200-072 Porto, Portugal;
| | - Ana Vanessa Nascimento
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Roxana Moreira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Frederico C. Pereira
- Institute of Pharmacology and Experimental Therapeutics/iCBR, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal;
| | - Odília Queirós
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
| | - Félix Carvalho
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
| | - Ricardo Jorge Dinis-Oliveira
- IINFACTS—Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; (J.F.); (F.G.); (S.L.); (A.V.N.); (R.M.); (O.Q.)
- UCIBIO, REQUIMTE—Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Correspondence: (J.B.); (R.J.D.-O.); Tel.: +351-224-157-216 (J.B.); +351-224-157-216 (R.J.D.-O.)
| |
Collapse
|
3
|
Van Boxem K, Rijsdijk M, Hans G, de Jong J, Kallewaard JW, Vissers K, van Kleef M, Rathmell JP, Van Zundert J. Safe Use of Epidural Corticosteroid Injections: Recommendations of the WIP Benelux Work Group. Pain Pract 2018; 19:61-92. [PMID: 29756333 PMCID: PMC7379698 DOI: 10.1111/papr.12709] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epidural corticosteroid injections are used frequently worldwide in the treatment of radicular pain. Concerns have arisen involving rare major neurologic injuries after this treatment. Recommendations to prevent these complications have been published, but local implementation is not always feasible due to local circumstances, necessitating local recommendations based on literature review. METHODS A work group of 4 stakeholder pain societies in Belgium, The Netherlands, and Luxembourg (Benelux) has reviewed the literature involving neurological complications after epidural corticosteroid injections and possible safety measures to prevent these major neurologic injuries. RESULTS Twenty-six considerations and recommendations were selected by the work group. These involve the use of imaging, injection equipment particulate and nonparticulate corticosteroids, epidural approach, and maximal volume to be injected. CONCLUSION Raising awareness about possible neurological complications and adoption of safety measures recommended by the work group aim at reducing the risks for these devastating events.
Collapse
Affiliation(s)
- Koen Van Boxem
- Department of Anesthesiology, Critical Care and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk/Lanaken, Belgium
| | - Mienke Rijsdijk
- Pain Clinic, Department of Anesthesiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Guy Hans
- Multidisciplinary Pain Center, Antwerp University Hospital, Edegem, Belgium.,Laboratory for Pain Research, University of Antwerp, Wilrijk, Belgium
| | - Jasper de Jong
- Department of Pain Management, Westfriesgasthuis, Hoorn, The Netherlands
| | - Jan Willem Kallewaard
- Department of Anesthesiology and Pain Management, Rijnstate Ziekenhuis, Arnhem, The Netherlands
| | - Kris Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Maarten van Kleef
- Department of Anesthesiology and Pain Management, University Medical Centre Maastricht, Maastricht, The Netherlands
| | - James P Rathmell
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Boston, Massachusetts, U.S.A.,Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, U.S.A
| | - Jan Van Zundert
- Department of Anesthesiology, Critical Care and Multidisciplinary Pain Center, Ziekenhuis Oost-Limburg, Genk/Lanaken, Belgium.,Department of Anesthesiology and Pain Management, University Medical Centre Maastricht, Maastricht, The Netherlands
| |
Collapse
|
4
|
Bodzon-Kulakowska A, Suder P, Drabik A, Kotlinska JH, Silberring J. Constant activity of glutamine synthetase after morphine administration versus proteomic results. Anal Bioanal Chem 2010; 398:2939-42. [PMID: 20936267 PMCID: PMC2990007 DOI: 10.1007/s00216-010-4244-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/18/2010] [Accepted: 09/21/2010] [Indexed: 11/28/2022]
Abstract
Glutamine synthetase is a key enzyme which has a regulatory role in the brain glutamate pool. According to previously published proteomic analysis, it was shown that the expression level of this enzyme is affected by morphine administration. In our study, we examined the activity of glutamine synthetase in various structures of rat brain (cortex, striatum, hippocampus and spinal cord) that are biochemically and functionally involved in drug addiction and antinociception caused by morphine. We were not able to observe any significant changes in the enzyme activity between morphine-treated and control samples despite previously reported changes in the expression levels of this enzyme. These findings stressed the fact that changes observed in the expression of particular proteins during proteomic studies may not be correlated with its activity.
Collapse
Affiliation(s)
- Anna Bodzon-Kulakowska
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, University of Science and Technology, Mickiewicza 30 st, Krakow 30-059, Poland
| | | | | | | | | |
Collapse
|
5
|
Abstract
This paper is the thirtieth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2007 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, 65-30 Kissena Blvd.,Flushing, NY 11367, United States.
| |
Collapse
|