1
|
Li C, Liu S, Mei Y, Wang Q, Lu X, Li H, Tao F. Differential Effects of Sevoflurane Exposure on Long-Term Fear Memory in Neonatal and Adult Rats. Mol Neurobiol 2022; 59:2799-2807. [PMID: 35201592 DOI: 10.1007/s12035-021-02629-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/29/2021] [Indexed: 10/19/2022]
Abstract
It remains unclear whether exposure to sevoflurane produces different effects on long-term cognitive function in developing and mature brains. In the present study, Sprague-Dawley neonatal rats at postnatal day (PND) 7 and adult rats (PND 56) were used in all experiments. We performed fear conditioning testing to examine long-term fear memory following 4-h sevoflurane exposure. We assessed hippocampal synapse ultrastructure with a transmission electron microscope. Moreover, we investigated the effect of sevoflurane exposure on the expression of postsynaptic protein 95 (PSD-95) and its binding protein kalirin-7 in the hippocampus. We observed that early exposure to sevoflurane in neonatal rats impairs hippocampus-dependent fear memory, reduces hippocampal synapse density, and dramatically decreases the expressions of PSD-95 and kalirin-7 in the hippocampus of the developing brain. However, sevoflurane exposure in adult rats has no effects on hippocampus-dependent fear memory and hippocampal synapse density, and the expressions of PSD-95 and kalirin-7 in the adult hippocampus are not significantly altered following sevoflurane treatment. Our results indicate that sevoflurane exposure produces differential effects on long-term fear memory in neonatal and adult rats and that PSD-95 signaling may be involved in the molecular mechanism for early sevoflurane exposure-caused long-term fear memory impairment.
Collapse
Affiliation(s)
- Changsheng Li
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Henan International Joint Laboratory of Anesthesiology and Perioperative Cognitive Function, Zhengzhou, Henan, China
| | - Sufang Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA
| | - Yixin Mei
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, China
| | - Xihua Lu
- Department of Anesthesiology and Perioperative Medicine, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongle Li
- Department of Molecular Pathology, Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, Henan, 450008, China.
| | - Feng Tao
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, 3302 Gaston Ave, Dallas, TX, 75023, USA.
| |
Collapse
|
2
|
Zizzi EA, Cavaglià M, Tuszynski JA, Deriu MA. Insights into the interaction dynamics between volatile anesthetics and tubulin through computational molecular modelling. J Biomol Struct Dyn 2021; 40:7324-7338. [PMID: 33715591 DOI: 10.1080/07391102.2021.1897044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
General anesthetics, able to reversibly suppress all conscious brain activity, have baffled medical science for decades, and little is known about their exact molecular mechanism of action. Given the recent scientific interest in the exploration of microtubules as putative functional targets of anesthetics, and the involvement thereof in neurodegenerative disorders, the present work focuses on the investigation of the interaction between human tubulin and four volatile anesthetics: ethylene, desflurane, halothane and methoxyflurane. Interaction sites on different tubulin isotypes are predicted through docking, along with an estimate of the binding affinity ranking. The analysis is expanded by Molecular Dynamics simulations, where the dimers are allowed to freely interact with anesthetics in the surrounding medium. This allowed for the determination of interaction hotspots on tubulin dimers, which could be linked to different functional consequences on the microtubule architecture, and confirmed the weak, Van der Waals-type interaction, occurring within hydrophobic pockets on the dimer. Both docking and MD simulations highlighted significantly weaker interactions of ethylene, consistent with its far lower potency as a general anesthetic. Overall, simulations suggest a transient interaction between anesthetics and microtubules in general anesthesia, and contact probability analysis shows interaction strengths consistent with the potencies of the four compounds.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Eric A Zizzi
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy
| | - Marco Cavaglià
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy
| | - Jack A Tuszynski
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy.,Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Marco A Deriu
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Turin, Italy
| |
Collapse
|
3
|
Yu L, Wen G, Zhu S, Hu X, Huang C, Yang Y. Abnormal phosphorylation of tau protein and neuroinflammation induced by laparotomy in an animal model of postoperative delirium. Exp Brain Res 2021; 239:867-880. [PMID: 33409674 DOI: 10.1007/s00221-020-06007-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Postoperative delirium (POD) is an acute neuropsychological disturbance after surgery, whose prevalence is related with advancing age. Neuroinflammation and abnormal tau phosphorylation that commonly presenting in Alzheimer's disease (AD) may contribute to the progression and duration of POD. To study the acute influence of surgery on cognitive function, wild type male C57BL/6 N mice were randomly divided into three groups: Control (CON), Laparotomy at 4 h and 24 h (LAP-4 h, LAP-24 h), then subjected to laparotomy under sevoflurane anaesthesia. The cognitive performance, peripheral and central inflammatory responses and tau phosphorylation levels were evaluated at 4 h and 24 h postoperatively. When LAP4-hrs displayed anxiety behaviors with high mRNA levels of inflammatory cytokines, such as interleukin-1β (IL-1β), IL-6, IL-8, TNF-α and MCP-1 in the liver, and IL-8 in the hippocampus, results at 24 h were different. In the liver, only IL-10 protein was obviously elevated, but in the hippocampus, both pro- and anti-inflammatory cytokines were significantly decreased whilst the elimination of anxiety. The activity of major related kinases and phosphatases was remarkably changed which may contribute to the dephosphorylated tau protein. With tremendous neuropathological changes and significant numbers of activated microglias and astrocytes observed in the sub-regions of hippocampus, the memory impairment existed at both 4 h and 24 h. Since the association of dephosphorylated tau with POD, these findings may supply novel implications for the understanding of tauopathies and as a theoretical basis for preventions from the postoperative cognitive dysfunction (POCD).
Collapse
Affiliation(s)
- Le Yu
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China.,Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Guanghua Wen
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China
| | - Shoufeng Zhu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Xianwen Hu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China.,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China
| | - Chunxia Huang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230001, People's Republic of China. .,Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Hefei, Anhui, People's Republic of China.
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-Inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, 81 Meishan Road, Hefei, Anhui, 230001, People's Republic of China.
| |
Collapse
|
4
|
Perkins SE, Hankenson FC. Nonexperimental Xenobiotics: Unintended Consequences of Intentionally Administered Substances in Terrestrial Animal Models. ILAR J 2020; 60:216-227. [PMID: 32574354 DOI: 10.1093/ilar/ilaa003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 11/13/2022] Open
Abstract
Review of the use of nonexperimental xenobiotics in terrestrial animal models and the potential unintended consequences of these compounds, including drug-related side effects and adverse reactions.
Collapse
Affiliation(s)
- Scott E Perkins
- Tufts Comparative Medicine Services, Tufts University, Boston, Massachusetts; and Department of Environmental and Population Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts
| | - F Claire Hankenson
- Campus Animal Resources, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| |
Collapse
|
5
|
Craddock TJA, Kurian P, Preto J, Sahu K, Hameroff SR, Klobukowski M, Tuszynski JA. Anesthetic Alterations of Collective Terahertz Oscillations in Tubulin Correlate with Clinical Potency: Implications for Anesthetic Action and Post-Operative Cognitive Dysfunction. Sci Rep 2017; 7:9877. [PMID: 28852014 PMCID: PMC5575257 DOI: 10.1038/s41598-017-09992-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/01/2017] [Indexed: 12/29/2022] Open
Abstract
Anesthesia blocks consciousness and memory while sparing non-conscious brain activities. While the exact mechanisms of anesthetic action are unknown, the Meyer-Overton correlation provides a link between anesthetic potency and solubility in a lipid-like, non-polar medium. Anesthetic action is also related to an anesthetic's hydrophobicity, permanent dipole, and polarizability, and is accepted to occur in lipid-like, non-polar regions within brain proteins. Generally the protein target for anesthetics is assumed to be neuronal membrane receptors and ion channels, however new evidence points to critical effects on intra-neuronal microtubules, a target of interest due to their potential role in post-operative cognitive dysfunction (POCD). Here we use binding site predictions on tubulin, the protein subunit of microtubules, with molecular docking simulations, quantum chemistry calculations, and theoretical modeling of collective dipole interactions in tubulin to investigate the effect of a group of gases including anesthetics, non-anesthetics, and anesthetic/convulsants on tubulin dynamics. We found that these gases alter collective terahertz dipole oscillations in a manner that is correlated with their anesthetic potency. Understanding anesthetic action may help reveal brain mechanisms underlying consciousness, and minimize POCD in the choice and development of anesthetics used during surgeries for patients suffering from neurodegenerative conditions with compromised cytoskeletal microtubules.
Collapse
Affiliation(s)
- Travis J A Craddock
- Departments of Psychology & Neuroscience, Computer Science, and Clinical Immunology, and the Clinical Systems Biology Group, Institute for Neuro-Immune Medicine, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Philip Kurian
- National Human Genome Center and Department of Medicine, Howard University College of Medicine, and Computational Physics Laboratory, Howard University, Washington, DC, USA
| | - Jordane Preto
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Kamlesh Sahu
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada
| | - Stuart R Hameroff
- Departments of Anesthesiology and Psychology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona, USA
| | | | - Jack A Tuszynski
- Department of Experimental Oncology, Cross Cancer Institute, Edmonton, Alberta, Canada
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
6
|
Kohtala S, Theilmann W, Suomi T, Wigren HK, Porkka-Heiskanen T, Elo LL, Rokka A, Rantamäki T. Brief Isoflurane Anesthesia Produces Prominent Phosphoproteomic Changes in the Adult Mouse Hippocampus. ACS Chem Neurosci 2016; 7:749-56. [PMID: 27074656 DOI: 10.1021/acschemneuro.6b00002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anesthetics are widely used in medical practice and experimental research, yet the neurobiological basis governing their effects remains obscure. We have here used quantitative phosphoproteomics to investigate the protein phosphorylation changes produced by a 30 min isoflurane anesthesia in the adult mouse hippocampus. Altogether 318 phosphorylation alterations in total of 237 proteins between sham and isoflurane anesthesia were identified. Many of the hit proteins represent primary pharmacological targets of anesthetics. However, findings also enlighten the role of several other proteins-implicated in various biological processes including neuronal excitability, brain energy homeostasis, synaptic plasticity and transmission, and microtubule function-as putative (secondary) targets of anesthetics. In particular, isoflurane increases glycogen synthase kinase-3β (GSK3β) phosphorylation at the inhibitory Ser(9) residue and regulates the phosphorylation of multiple proteins downstream and upstream of this promiscuous kinase that regulate diverse biological functions. Along with confirmatory Western blot data for GSK3β and p44/42-MAPK (mitogen-activated protein kinase; reduced phosphorylation of the activation loop), we observed increased phosphorylation of microtubule-associated protein 2 (MAP2) on residues (Thr(1620,1623)) that have been shown to render its dissociation from microtubules and alterations in microtubule stability. We further demonstrate that diverse anesthetics (sevoflurane, urethane, ketamine) produce essentially similar phosphorylation changes on GSK3β, p44/p42-MAPK, and MAP2 as observed with isoflurane. Altogether our study demonstrates the potential of quantitative phosphoproteomics to study the mechanisms of anesthetics (and other drugs) in the mammalian brain and reveals how already a relatively brief anesthesia produces pronounced phosphorylation changes in multiple proteins in the central nervous system.
Collapse
Affiliation(s)
| | | | - Tomi Suomi
- Turku
Centre for Biotechnology, University of Turku, FI-20014 Turku, Finland
| | - Henna-Kaisa Wigren
- Institute
of Biomedicine, University of Helsinki, FI-00014 Helsinki, Finland
| | | | - Laura L. Elo
- Turku
Centre for Biotechnology, University of Turku, FI-20014 Turku, Finland
| | - Anne Rokka
- Turku
Centre for Biotechnology, University of Turku, FI-20014 Turku, Finland
| | | |
Collapse
|
7
|
Ye J, Zhang Z, Wang Y, Chen C, Xu X, Yu H, Peng M. Altered hippocampal microRNA expression profiles in neonatal rats caused by sevoflurane anesthesia: MicroRNA profiling and bioinformatics target analysis. Exp Ther Med 2016; 12:1299-1310. [PMID: 27588052 PMCID: PMC4998092 DOI: 10.3892/etm.2016.3452] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/16/2016] [Indexed: 12/11/2022] Open
Abstract
Although accumulating evidence has suggested that microRNAs (miRNAs) have a serious impact on cognitive function and are associated with the etiology of several neuropsychiatric disorders, their expression in sevoflurane-induced neurotoxicity in the developing brain has not been characterized. In the present study, the miRNAs expression pattern in neonatal hippocampus samples (24 h after sevoflurane exposure) was investigated and 9 miRNAs were selected, which were associated with brain development and cognition in order to perform a bioinformatic analysis. Previous microfluidic chip assay had detected 29 upregulated and 24 downregulated miRNAs in the neonatal rat hippocampus, of which 7 selected deregulated miRNAs were identified by the quantitative polymerase chain reaction. A total of 85 targets of selected deregulated miRNAs were analyzed using bioinformatics and the main enriched metabolic pathways, mitogen-activated protein kinase and Wnt pathways may have been involved in molecular mechanisms with regard to neuronal cell body, dendrite and synapse. The observations of the present study provided a novel understanding regarding the regulatory mechanism of miRNAs underlying sevoflurane-induced neurotoxicity, therefore benefitting the improvement of the prevention and treatment strategies of volatile anesthetics related neurotoxicity.
Collapse
Affiliation(s)
- Jishi Ye
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Chang Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xing Xu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hui Yu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
8
|
Boulanger Bertolus J, Nemeth G, Makowska IJ, Weary DM. Rat aversion to sevoflurane and isoflurane. Appl Anim Behav Sci 2015. [DOI: 10.1016/j.applanim.2014.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Spelten O, Wetsch WA, Wrettos G, Kalenka A, Hinkelbein J. Response of rat lung tissue to short-term hyperoxia: a proteomic approach. Mol Cell Biochem 2013; 383:231-42. [DOI: 10.1007/s11010-013-1771-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/02/2013] [Indexed: 11/29/2022]
|
10
|
|
11
|
LI Y, LIU C, ZHAO Y, HU K, ZHANG J, ZENG M, LUO T, JIANG W, WANG H. Sevoflurane induces short-term changes in proteins in the cerebral cortices of developing rats. Acta Anaesthesiol Scand 2013. [PMID: 23186353 DOI: 10.1111/aas.12018] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Exposure to intravenous or inhaled anesthetic agents has potential deleterious effects on the developing brain. However, the mechanisms are not clear. Herein, we investigated protein expression changes in neonatal rat brains after exposure to sevoflurane, an inhalational anesthetic commonly used for pediatric patients. METHODS Seven-day-old rats were treated with 1.8% sevoflurane or 30% oxygen for 4 h. Cerebral cortices were obtained at 3 h and 3 days after sevoflurane exposure for cell apoptosis detection, proteomic analysis and Western blotting. RESULTS There was a significant increase of cleaved caspase 3 at 3 h after sevoflurane exposure. Six proteins had 1.5-fold or higher changes in expression at 3 h after sevoflurane anesthesia as compared with sham-treated pups. No proteins had this degree of change at 3 days after sevoflurane anesthesia. Proteins whose expression was downregulated included collapsin response mediator protein-1 (CRMP-1), truncated CRMP-4, beta-tubulin IIc and neuron-specific class III beta-tubulin. These four proteins are important for neuronal migration and differentiation. Adenosine triphosphate synthase beta subunit, a protein associated with energy metabolism, was also downregulated. Guanine nucleotide-binding protein beta 1, a signaling protein, was upregulated. Sevoflurane also increased phosphorylation of glycogen synthase kinase 3β (GSK-3β) at 3 h after anesthesia and inhibited the normal increase of GSK-3β at 72 h after anesthesia. CONCLUSION These findings suggest that sevoflurane may cause short-term neuronal apoptosis and disturbances of neuronal migration, differentiation and energy metabolism in neonatal rat brains, and that these disturbances may contribute to its neurodegenerative effects.
Collapse
Affiliation(s)
| | - C. LIU
- Department of Anesthesiology; ChanCheng Center Hospital; Guangdong Medical College; Foshan; China
| | - Y. ZHAO
- Department of Anesthesiology; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou; China
| | - K. HU
- Proteomics Center and Department of Pharmacology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou; China
| | - J. ZHANG
- Department of Anesthesiology; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou; China
| | - M. ZENG
- Department of Anesthesiology; Sun Yat-sen Memorial Hospital; Sun Yat-sen University; Guangzhou; China
| | - T. LUO
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou; China
| | - W. JIANG
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou; China
| | - H. WANG
- Department of Anatomy and Neurobiology; Zhongshan School of Medicine; Sun Yat-sen University; Guangzhou; China
| |
Collapse
|
12
|
Edmands SD, Ladow E, Hall AC. Microarray analyses of genes regulated by isoflurane anesthesia in vivo: a novel approach to identifying potential preconditioning mechanisms. Anesth Analg 2013; 116:589-95. [PMID: 23400992 PMCID: PMC3582752 DOI: 10.1213/ane.0b013e31827b27b0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Although general anesthetics are recognized for their potential to render patients unconscious during surgery, exposure can also lead to long-term outcomes of both cellular damage and protection. As regards the latter, delayed anesthetic preconditioning is an evolutionarily conserved physiological response that has the potential for protecting against ischemic injury in a number of tissues. Although it is known that delayed preconditioning requires de novo protein synthesis, knowledge of anesthetic-regulated genes is incomplete. In this study, we used the conserved nature of preconditioning to analyze differentially regulated genes in 3 different rat tissues. We hypothesized that by selecting those genes regulated in multiple tissues, we could develop a focused list of gene candidates potentially involved in delayed anesthetic preconditioning. METHODS Young adult male Sprague-Dawley rats were anesthetized with a 2% isoflurane/98% air mixture for 90 minutes. Immediately after anesthetic exposure, animals were euthanized and liver, kidney, and heart were removed and total RNA was isolated. Differential gene expression was determined using rat oligonucleotide gene arrays. Array data were analyzed to select for genes that were significantly regulated in multiple tissues. RESULTS All 3 tissues showed differentially regulated genes in response to a clinically relevant exposure to isoflurane. Analysis of coordinately regulated genes yielded a focused list of 34 potential gene candidates with a range of ontologies including regulation of inflammation, modulation of apoptosis, regulation of ion gradients, and maintenance of energy pathways. CONCLUSIONS Through using an analysis approach focusing on coordinately regulated genes, we were able to generate a focused list of interesting gene candidates with potential to enable future preconditioning studies.
Collapse
Affiliation(s)
- Scott D Edmands
- Neuroscience Program, Department of Biological Sciences, Smith College, Ford Hall 235a, Northampton, MA 01063, USA.
| | | | | |
Collapse
|
13
|
Callaway JK, Jones NC, Royse CF. Reply to: Isoflurane is not necessarily the only cause of cognitive deficits. Eur J Anaesthesiol 2013; 30:43-44. [PMID: 22907614 DOI: 10.1097/eja.0b013e3283585851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
14
|
Craddock TJA, St. George M, Freedman H, Barakat KH, Damaraju S, Hameroff S, Tuszynski JA. Computational predictions of volatile anesthetic interactions with the microtubule cytoskeleton: implications for side effects of general anesthesia. PLoS One 2012; 7:e37251. [PMID: 22761654 PMCID: PMC3382613 DOI: 10.1371/journal.pone.0037251] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 04/19/2012] [Indexed: 11/19/2022] Open
Abstract
The cytoskeleton is essential to cell morphology, cargo trafficking, and cell division. As the neuronal cytoskeleton is extremely complex, it is no wonder that a startling number of neurodegenerative disorders (including but not limited to Alzheimer's disease, Parkinson's disease and Huntington's disease) share the common feature of a dysfunctional neuronal cytoskeleton. Recently, concern has been raised about a possible link between anesthesia, post-operative cognitive dysfunction, and the exacerbation of neurodegenerative disorders. Experimental investigations suggest that anesthetics bind to and affect cytoskeletal microtubules, and that anesthesia-related cognitive dysfunction involves microtubule instability, hyper-phosphorylation of the microtubule-associated protein tau, and tau separation from microtubules. However, exact mechanisms are yet to be identified. In this paper the interaction of anesthetics with the microtubule subunit protein tubulin is investigated using computer-modeling methods. Homology modeling, molecular dynamics simulations and surface geometry techniques were used to determine putative binding sites for volatile anesthetics on tubulin. This was followed by free energy based docking calculations for halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) on the tubulin body, and C-terminal regions for specific tubulin isotypes. Locations of the putative binding sites, halothane binding energies and the relation to cytoskeleton function are reported in this paper.
Collapse
Affiliation(s)
| | - Marc St. George
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Holly Freedman
- Center of Marine Sciences, Foundation for Science and Technology, University of Algarve, Campus Gambelas, Faro, Portugal
| | - Khaled H. Barakat
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Sambasivarao Damaraju
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Stuart Hameroff
- Departments of Anesthesiology and Psychology, Center for Consciousness Studies, The University of Arizona Health Sciences Center, Tucson, Arizona, United States of America
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Preconditioning with volatile anaesthetic sevoflurane in ischemic retinal lesion in rats. J Mol Histol 2012; 43:565-9. [PMID: 22684245 DOI: 10.1007/s10735-012-9426-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/22/2012] [Indexed: 12/12/2022]
Abstract
Volatile anaesthetic agents have been recognized for their neuroprotective properties since the 1960s. However, little is known regarding the potential retinoprotective effects of preconditioning by anaesthetic drugs. Retinal ischemia can be modeled by permanent bilateral common carotid artery occlusion (BCCAO). Here we studied the degree of ischemic injury with preconditioning by sevoflurane in the rat retina. During the BCCAO operation and preconditioning Wistar rats were anaesthetized with 1 MAC of sevoflurane. The oxygen, carbon dioxide, and anaesthetic vapor concentration in the anaesthetizing box was monitored with a gas analyzer. We examined 4 groups: non- and preconditioning groups in control and BCCAO animals. The duration of preconditioning period was 1 h and it was performed 1 day before BCCAO. The retinas were processed for histological evaluation after 2 weeks survival to determine the cell number in the ganglion cell layer and the thickness of the whole retina and that of all retinal layers. BCCAO-induced retinal ischemic injury was ameliorated by sevoflurane preconditioning. Retinal thickness and the cell number in the ganglion cell layer were more retained in preconditioned animals after BCCAO compared to non-preconditioned group. These results suggest that preconditioning using sevoflurane could provide a new perspective in retinoprotective strategies.
Collapse
|
16
|
Tu S, Wang X, Yang F, Chen B, Wu S, He W, Yuan X, Zhang H, Chen P, Wei G. Propofol induces neuronal apoptosis in infant rat brain under hypoxic conditions. Brain Res Bull 2011; 86:29-35. [DOI: 10.1016/j.brainresbull.2011.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 05/23/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
|
17
|
Tang JX, Mardini F, Caltagarone BM, Garrity ST, Li RQ, Bianchi SL, Gomes O, Laferla FM, Eckenhoff RG, Eckenhoff MF. Anesthesia in presymptomatic Alzheimer's disease: a study using the triple-transgenic mouse model. Alzheimers Dement 2011; 7:521-531.e1. [PMID: 21745760 DOI: 10.1016/j.jalz.2010.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 10/04/2010] [Accepted: 10/25/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Experimental evidence suggests that anesthetics accelerate symptomatic neurodegenerative disorders such as Alzheimer's disease (AD). Because AD pathology precedes symptoms, we asked ourselves whether anesthetic exposure in the presymptomatic interval accelerated neuropathology and appearance of symptoms. METHODS Triple-transgenic AD mice were exposed to general aesthetics, either halothane or isoflurane, at 2, 4, and 6 months of age, they then underwent water maze cognitive testing 2 months later, and subsequently their brains were analyzed using enzyme-linked immunosorbent assay, immunoblots, and immunohistochemistry for amyloid and tau pathology and biomarkers. RESULTS Learning and memory improved after halothane exposure in the 2-month-old group relative to controls, but no changes were noted in the isoflurane group. When gender was examined in all age groups, females exposed to halothane performed better as compared with those exposed to isoflurane or controls. Therefore, improvement in the 2-month exposure group is most likely because of a gender effect. Level of phospho-tau in the hippocampus was significantly increased 2 months after anesthesia, especially in the 6-month exposure group, but changes in amyloid, caspase, microglia, or synaptophysin levels were not detected. CONCLUSIONS These results indicate that exposure to two different inhalation-type anesthetics during the presymptomatic phase of AD does not accelerate cognitive decline, after 2 months, and may cause a stress response, marked by hippocampal phosphorylated tau, resulting in preconditioning against the ongoing neuropathology, primarily in female mice.
Collapse
Affiliation(s)
- Junxia X Tang
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tsuboko Y, Sakamoto A. Propofol anaesthesia alters the cerebral proteome differently from sevoflurane anaesthesia. ACTA ACUST UNITED AC 2011; 32:55-65. [PMID: 21383511 DOI: 10.2220/biomedres.32.55] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous studies suggest that propofol and sevoflurane anaesthesia in rats may have variable effects on the proteome. Brains from untreated rats and rats anaesthetised with intravenous propofol infusion or inhaled sevoflurane were collected at various time points post-anaesthesia and subjected to global protein expression profiling using two-dimensional gel electrophoresis. Significant changes in protein spot intensity (i.e. expression) between the propofol and sevoflurane groups demonstrated clear similarities and differences in proteomic regulation by these anaesthetics. The proteins regulated were broadly classified into groups involved in cytoskeletal/neuronal growth, cellular metabolism, signalling, and cell stress/death responses. Proteins concerned with cell death and stress responses were down-regulated by both agents, but the anaesthetics had variable effects on proteins in the other groups. Importantly, proteins such as Ulip2 and dihydropyrimidinase-like-2 were regulated in opposite directions by propofol and sevoflurane. Moreover, the time-course of regulation of proteins varied depending on the agent used. These data suggest different underlying mechanisms of proteomic regulation. We found that sevoflurane anaesthesia had more pronounced effects, on a wider range of proteins, and over an apparently longer duration than propofol. Thus, sevoflurane could be considered a more disruptive anaesthetic agent. Our findings show that protein expression is regulated differentially according to the anaesthetic agent and the method of delivery support and extend our previous observations of differential genomic regulation by anaesthetics in the brain. This study highlights the power of proteomic studies in assessing the effects of certain anaesthetics on the integrity of neuronal structure and function.
Collapse
Affiliation(s)
- Yoshiaki Tsuboko
- Department of Anaesthesiology and Pain Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.
| | | |
Collapse
|
19
|
Zhang J, Zhou W, Qiao H. Bioenergetic homeostasis decides neuroprotection or neurotoxicity induced by volatile anesthetics: a uniform mechanism of dual effects. Med Hypotheses 2011; 77:223-9. [PMID: 21550179 DOI: 10.1016/j.mehy.2011.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 03/24/2011] [Accepted: 04/06/2011] [Indexed: 01/25/2023]
Abstract
The commonly used volatile anesthetic isoflurane or sevoflurane has been shown to be both neuroprotective and neurotoxic in various cell cultures and animal models. Some possible mechanisms have been raised to elucidate volatile anesthetics-induced neuroprotection or neurotoxicity, respectively. However, none of these can reconcile the linkage between their dual effects. Similar to volatile anesthetics, some drugs and nonpharmacological factors also can produce neuroprotection and neurotoxicity, which is associated with bioenergetic metabolism of neuronal cells. Here we present a uniform mechanism, bioenergetic homeostasis hypothesis, to explain neuroprotection and neurotoxicity induced by volatile anesthetics. The numerous evidences have shown that volatile anesthetics could affect mitochondrial electron transport complexes and glycolysis related pathways in cells, which could alter intracellular calcium homeostasis, ROS production and adenosine triphosphate (ATP) synthesis. Duration and concentration of exposure to volatile anesthetics could play a role on severity of bioenergy inhibition. Mild bioenergetic metabolism inhibition trigger signaling events involving preconditioning on neurons, and further bioenergy impairment could lead to neuronal cellular apoptosis, inhibition of neurogenesis and elevated β-Secretase, which drive pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, No. 12, Urumqi Central Rd., Shanghai 200040, PR China.
| | | | | |
Collapse
|
20
|
Craddock TJA, Tuszynski JA, Priel A, Freedman H. Microtubule ionic conduction and its implications for higher cognitive functions. J Integr Neurosci 2011; 9:103-22. [PMID: 20589950 DOI: 10.1142/s0219635210002421] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 05/21/2010] [Indexed: 11/18/2022] Open
Abstract
The neuronal cytoskeleton has been hypothesized to play a role in higher cognitive functions including learning, memory and consciousness. Experimental evidence suggests that both microtubules and actin filaments act as biological electrical wires that can transmit and amplify electric signals via the flow of condensed ion clouds. The potential transmission of electrical signals via the cytoskeleton is of extreme importance to the electrical activity of neurons in general. In this regard, the unique structure, geometry and electrostatics of microtubules are discussed with the expected impact on their specific functions within the neuron. Electric circuit models of ionic flow along microtubules are discussed in the context of experimental data, and the specific importance of both the tubulin C-terminal tail regions, and the nano-pore openings lining the microtubule wall is elucidated. Overall, these recent results suggest that ions, condensed around the surface of the major filaments of the cytoskeleton, flow along and through microtubules in the presence of potential differences, thus acting as transmission lines propagating intracellular signals in a given cell. The significance of this conductance to the functioning of the electrically active neuron, and to higher cognitive function is also discussed.
Collapse
|
21
|
Tolerance to anesthesia depends on synaptic proteins. Behav Genet 2011; 41:734-45. [PMID: 21318409 DOI: 10.1007/s10519-011-9451-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Accepted: 01/28/2011] [Indexed: 12/17/2022]
Abstract
The hypnotic effects of anesthetics are caused by their interactions with neuronal components vital for proper signaling. An understanding of the adaptive mechanisms that lead to the development of anesthetic tolerance can offer insight into the regulation of neuroexcitability and plasticity that alter behavioral output. Here we use genetic and pharmacological manipulation of Drosophila to investigate the mechanisms of tolerance to benzyl alcohol. The mutants tested were temperature-sensitive paralytics that interfere with neuronal signaling: two mutations in dynamin that affect vesicle recycling, shi (ts1) and shi (ts2), and one that affects the voltage-activated Na(+) channel, para (ts1). We also used N-ethylmaleimide (NEM) to pharmacologically interfere with synaptic function. We found that blocking the generation of action potentials using a temperature-sensitive paralytic mutation does not induce nor prevent the development of functional tolerance to benzyl alcohol, but that disruption of synaptic signaling using mutations in the dynamin gene or by NEM treatment inhibits the induction of tolerance.
Collapse
|
22
|
Huitink JM, Heimerikxs M, Nieuwland M, Loer SA, Brugman W, Velds A, Sie D, Kerkhoven RM. Volatile anesthetics modulate gene expression in breast and brain tumor cells. Anesth Analg 2010; 111:1411-5. [PMID: 20889943 DOI: 10.1213/ane.0b013e3181fa3533] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Gene expression is increasingly used for diagnostic, prognostic, and therapeutic purposes in clinical practice. We tested the hypothesis that volatile anesthetics (VA) affect gene expression of tumor cells. Cells from the neuronal cell line SH-SY5Y and from the breast cell line MCF-7 were exposed ex vivo to enflurane, isoflurane, desflurane, halothane, sevoflurane, or nitrous oxide. Microarray gene expression profiles were studied. We observed significant differences in gene expression levels of cell cultures and response in time when exposed to different VA. Some genes used for predictive genetic fingerprints for breast cancer were affected by VA. Our findings suggest that VA modulate gene expression in breast and brain tumor cell cultures in a unique and time-dependent manner.
Collapse
Affiliation(s)
- Johannes M Huitink
- Department of Anesthesiology, VU University Medical Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kawaguchi H, Hirakawa K, Miyauchi K, Koike K, Ohno Y, Sakamoto A. Pattern recognition analysis of proton nuclear magnetic resonance spectra of brain tissue extracts from rats anesthetized with propofol or isoflurane. PLoS One 2010; 5:e11172. [PMID: 20567596 PMCID: PMC2887427 DOI: 10.1371/journal.pone.0011172] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 05/27/2010] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND General anesthesia is routinely used as a surgical procedure and its safety has been endorsed by clinical outcomes; however, its effects at the molecular level have not been elucidated. General anesthetics influence glucose metabolism in the brain. However, the effects of anesthetics on brain metabolites other than those related to glucose have not been well characterized. We used a pattern recognition analysis of proton nuclear magnetic resonance spectra to visualize the changes in holistic brain metabolic phenotypes in response to the widely used intravenous anesthetic propofol and the volatile anesthetic isoflurane. METHODOLOGY/PRINCIPAL FINDINGS Rats were randomized into five groups (n = 7 each group). Propofol and isoflurane were administered to two groups each, for 2 or 6 h. The control group received no anesthesia. Brains were removed directly after anesthesia. Hydrophilic compounds were extracted from excised whole brains and measured by proton nuclear magnetic resonance spectroscopy. All spectral data were processed and analyzed by principal component analysis for comparison of the metabolite profiles. Data were visualized by plotting principal component (PC) scores. In the plots, each point represents an individual sample. The propofol and isoflurane groups were clustered separately on the plots, and this separation was especially pronounced when comparing the 6-h groups. The PC scores of the propofol group were clearly distinct from those of the control group, particularly in the 6-h group, whereas the difference in PC scores was more subtle in the isoflurane group and control groups. CONCLUSIONS/SIGNIFICANCE The results of the present study showed that propofol and isoflurane exerted differential effects on holistic brain metabolism under anesthesia.
Collapse
Affiliation(s)
- Hiroshi Kawaguchi
- Department of Anesthesiology, Nippon Medical School, Bunkyo-ku, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Postoperative cognitive dysfunction (POCD) is a known phenomenon occurring after anesthesia with volatile anesthetics (VA), such as isoflurane. Recent reports suggest that VA interact with neurodegenerative disease-associated proteins including compounds with pathogenic relevance in Alzheimer disease (AD) and induce processes that may be linked to AD neuropathology. Unfortunately, our present understanding of the exact anesthetics' molecular mechanisms of action, their side effects on the brain, and their catenation with AD pathology is still limited. The present study analyzes the differential proteome of the hippocampus immediately after and 3 days after a 3-hour 1 minimal alveolar concentration isoflurane anesthesia in rats. Differential 2-dimensional electrophoresis, mass spectrometry, and functional network mapping were used to identify and functionally classify 12 different hippocampal proteins, which were significantly regulated after isoflurane anesthesia (6 up-regulated, 11 down-regulated with P<0.01). Induction of differential expression ranged from 0.05 (25-fold down-regulation) to 4.4 (4.4-fold up-regulation). Ten proteins were regulated immediately after and 7 proteins 3 days after isoflurane exposure. The proteome displays isoflurane-responsive protein candidates, which have also been shown to play a role in AD. They were grouped according to their key biologic activities, which showed that isoflurane affects selected biologic processes including synaptic plasticity, stress response, detoxification, and cytoskeleton in early and late recovery phases after anesthesia. These processes are also affected in AD. Results are discussed in view of AD, the toxicity mechanisms of isoflurane as well as the implications for our present understanding and conduction of clinical anesthesia.
Collapse
|
25
|
Abstract
Technological innovations have increased our potential to evaluate global changes in protein and small molecule levels in a rapid and comprehensive manner. This is especially true in mass spectrometry-based research where improvements, including ease-of-use, in high performance liquid chromatography (HPLC), column chemistries, instruments, software, and molecular databases have advanced the fields of proteomics and metabolomics considerably. Applications of these technologies in clinical research include biomarker discovery, drug targeting, and elucidating molecular networks, and a systems-based approach, utilizing multiple "omics," can also be taken. While the exact choice of workflow can dramatically impact the results of a study, the basic steps are similar, both within and between metabolomics and proteomics experiments. Although gel-based methods of quantitation are still widely used, our laboratory focuses on mass spectrometry-based methods, specifically protein and small molecule profiling.
Collapse
|
26
|
Xu CJ, Hoefsloot HC, Dijkstra M, Havenga K, Roelofsen H, Vonk RJ, Smilde AK. Computational modeling of the human serum proteome response to colon resection surgery. Anal Chim Acta 2010; 661:20-7. [DOI: 10.1016/j.aca.2009.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Revised: 12/03/2009] [Accepted: 12/04/2009] [Indexed: 10/20/2022]
|
27
|
Time-dependent alterations of cerebral proteins following short-term normobaric hyperoxia. Mol Cell Biochem 2010; 339:9-21. [PMID: 20049628 DOI: 10.1007/s11010-009-0365-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Sufficient oxygenation is indispensable for cognitive performance in mammals. In order to assure adequate oxygenation and to prevent hypoxia in medicine or aviation, different approaches of oxygen delivery are realized. With regard to hyperoxia, it is well known that it increases the risk of tissue toxicity and inflammation by generating radical oxygen species. However, this impact of hyperoxia on the expression of specific brain proteins has not been evaluated in detail yet. The present study analyzes time-dependent changes in protein expression in rat brain after a short-term exposure to normobaric hyperoxia. Thirty-six Wistar rats were randomly assigned to six different groups, three normobaric hyperoxia (NH) groups or three normobaric normoxia (NN) groups, each consisting of n = 6 animals. NH animals were exposed to 100% oxygen, NN rats to 21% oxygen, each group for 3 h. One group of NH and one group of NN were killed immediately after the 3 h, one group each after 3 days and one group each after 7 days. Rat brains were removed for analysis and whole brain detergent protein lysates were separated via two-dimensional gel electrophoresis followed by subsequent identification of protein expression alterations by peptide mass fingerprinting using mass spectrometry. Also, a functional network mapping and molecular pathway analysis were carried out. Statistical analysis was performed using analysis of variance (ANOVA) with Bonferroni correction using P < 0.01. Physiological parameters of the animals did not differ significantly between the two groups except for partial oxygen pressure (580 vs. 89 mmHg; P < 0.05). The expression of nine proteins was found to be significantly altered (five up-regulated: GOT1, CCT2, TCP1, G6PD, and ALB; four down-regulated: PEBP1, PRDX2, ENO1, and MDH1). IPA generated a network with eight focus proteins associated with pathways in "cell death, cancer, and signalling". Although hyperoxia was normobaric and induced for only 3 h, significant changes in brain protein expression were detectable immediately after the 3 h, after 3 days, as well as after 7 days. This may indicate effects on brain protein expression take place in the rat brain following a relatively short period of hyperoxia.
Collapse
|
28
|
Zhang X, Liu Y, Feng C, Yang S, Wang Y, Wu AS, Yue Y. Proteomic profiling of the insoluble fractions in the rat hippocampus post-propofol anesthesia. Neurosci Lett 2009; 465:165-70. [PMID: 19682543 DOI: 10.1016/j.neulet.2009.08.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Revised: 08/04/2009] [Accepted: 08/08/2009] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction after propofol anesthesia has been previously found. The underlying mechanisms of this sequel remain unclear. Insoluble proteins as major targets of anesthetics participated in various pathophysiological processes. This study aimed to provide evidence that changes in insoluble proteome in rat hippocampus may be involved in molecular mechanism of cognitive dysfunction following propofol anesthesia. Proteins extracted from rat hippocampus were separated by two-dimensional electrophoresis (2-DE). Their expression patterns were observed at 1, 6, 24 h and 7 days after 3 h of propofol anesthesia. Differentially expressed protein spots among groups were submitted to matrix-assisted laser desorption/ionization time of flight mass spectrometer (MALDI-TOF MS) assay and peptide mass fingerprinting (PMF) identification. Identified proteins were further analyzed through Gene Ontology (GO). Results of 2-DE were selectively assayed using Western blot and RT-PCR. Fifty-nine differentially expressed proteins were detected, among which 43 were identified through MALDI-TOF MS. Most identified proteins were distributed in organelles and membranes. According to biological process category, 27 proteins were involved in metabolic process, 19 in developmental process, 14 in stimulus-response, and 21 in biological regulation. Most changes took place within 24 h, with more down-regulation within 6 h. Twelve proteins did not restore to the basic level until the 7th day after propofol anesthesia. Expressions of insoluble proteome dynamically changed following propofol anesthesia. Down-regulations at early stage might produce depressive effects, which may be involved in molecular mechanism of cognitive dysfunction after propofol anesthesia.
Collapse
Affiliation(s)
- Xuena Zhang
- Department of Anaesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, PR China
| | | | | | | | | | | | | |
Collapse
|
29
|
Alterations in rat serum proteome and metabolome as putative disease markers in sepsis. ACTA ACUST UNITED AC 2009; 66:1065-75. [PMID: 19359916 DOI: 10.1097/ta.0b013e3181958ad7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Despite a decreased mortality from sepsis, the absolute number of sepsis-related deaths has actually increased during the last years. At present, there are no biological markers available that can reliably assist early clinical diagnosis and the prompt initiation of therapy. This study investigated the changes in serum protein expression in a coecal ligature and puncture model of rat sepsis at 12, 24, and 48 hours after the induction of sepsis using differential proteomics. METHODS Sixty-two male Wistar rats were randomly assigned to a sepsis group (coecal ligature and puncture; n = 46) or a sham group (n = 16). Surviving rats were killed 12 hour (n = 6), 24 hour (n = 9), or 48 hour (n = 4) after operation, and their serum lysates were subjected to two-dimensional gel electrophoresis and peptide mass fingerprinting. A systematic functional network mapping and molecular pathway analysis were performed using Ingenuity Pathways Analysis. RESULTS Septic mortality was 58.7%, but no rat of the sham group was lost. Per gel, an average of 1,082 +/- 10 spots could be discriminated, of which 40 different protein spots were differentially expressed (p < 0.01). From the total of 40, the number of regulated protein spots was 13 (12 hour group) versus 10 (24 hour group) versus 18 (48 hour group). Ingenuity pathways analysis identified 10 of the differential proteins and allocated them to a pathway of tissue inflammation. CONCLUSIONS The present study quantitatively detected several proteins differentially expressed in acute sepsis. Since a longer time-period was investigated and compared with previous studies, the results may offer new insights into septic organ dysfunction and altered protein pathways. The horizontal analysis of protein expression arrays and systematic biochemical pathways may represent an important new tool for the clinical assessment of septic conditions and support the development of early sepsis markers.
Collapse
|
30
|
Pan JZ, Xi J, Eckenhoff MF, Eckenhoff RG. Inhaled anesthetics elicit region-specific changes in protein expression in mammalian brain. Proteomics 2008; 8:2983-92. [PMID: 18655074 DOI: 10.1002/pmic.200800057] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Inhaled anesthetics bind specifically to many proteins in the mammalian brain. Within the subgroup of proteins whose activity is substantially modulated by anesthetic binding, it is reasonable to expect anesthetic-induced alterations in host expression level. Thus, in an attempt to define the group of functional targets for these commonly used drugs, we examined changes in protein expression after anesthetic exposure in both intact rodent brains and in neuronal cell culture. Differential in-gel electrophoresis was used to minimize variance, in order to detect small changes. Quantitative analysis shows that 5 h exposures to 1 minimum alveolar concentration (1 MAC) halothane caused changes in the expression of approximately 2% of detectable proteins, but only at 2-24 h after awakening, and only in the cortex. An equipotent concentration of isoflurane altered the expression of only approximately 1% of detectable proteins, and only in the hippocampus. Primary cortical neurons were exposed to three-fold higher concentrations of anesthetics with no evidence of cytotoxicity. Small changes in protein expression were elicited by both drugs. Despite the fact that anesthetics produce profound changes in neurobiology and behavior, we found only minor changes in brain protein expression. A pronounced degree of regional selectivity was noted, indicating an under appreciated degree of specificity for these promiscuous drugs.
Collapse
Affiliation(s)
- Jonathan Z Pan
- Department of Anesthesiology and Critical Care, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|