1
|
Jiang L, Xiong W, Yang Y, Qian J. Insight into Cardioprotective Effects and Mechanisms of Dexmedetomidine. Cardiovasc Drugs Ther 2024; 38:1139-1159. [PMID: 38869744 DOI: 10.1007/s10557-024-07579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Cardiovascular disease remains the leading cause of death worldwide. Dexmedetomidine is a highly selective α2 adrenergic receptor agonist with sedative, analgesic, anxiolytic, and sympatholytic properties, and several studies have shown its possible protective effects in cardiac injury. The aim of this review is to further elucidate the underlying cardioprotective mechanisms of dexmedetomidine, thus suggesting its potential in the clinical management of cardiac injury. RESULTS AND CONCLUSION Our review summarizes the findings related to the involvement of dexmedetomidine in cardiac injury and discusses the results in the light of different mechanisms. We found that numerous mechanisms may contribute to the cardioprotective effects of dexmedetomidine, including the regulation of programmed cell death, autophagy and fibrosis, alleviation of inflammatory response, endothelial dysfunction and microcirculatory derangements, improvement of mitochondrial dysregulation, hemodynamics, and arrhythmias. Dexmedetomidine may play a promising and beneficial role in the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Xiong
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
2
|
Guan ZH, Yang D, Wang Y, Ma JB, Wang GN. Ectodysplasin-A2 receptor (EDA2R) knockdown alleviates myocardial ischemia/reperfusion injury through inhibiting the activation of the NF-κB signaling pathway. Exp Anim 2024; 73:376-389. [PMID: 38797667 PMCID: PMC11534487 DOI: 10.1538/expanim.24-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024] Open
Abstract
Ischemia/reperfusion (I/R) is a pathological process that occurs in numerous organs and is often associated with severe cellular damage and death. Ectodysplasin-A2 receptor (EDA2R) is a member of the TNF receptor family that has anti-inflammatory and antioxidant effects. However, to the best of our knowledge, its role in the progression of myocardial I/R injury remains unclear. The present study aimed to investigate the role of EDA2R during myocardial I/R injury and the molecular mechanisms involved. In vitro, dexmedetomidine (DEX) exhibited a protective effect on hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury and downregulated EDA2R expression. Subsequently, EDA2R silencing enhanced cell viability and reduced the apoptosis of cardiomyocytes. Furthermore, knockdown of EDA2R led to an elevated mitochondrial membrane potential (MMP), repressed the release of Cytochrome C and upregulated Bcl-2 expression. EDA2R knockdown also resulted in downregulated expression of Bax, and decreased activity of Caspase-3 and Caspase-9 in cardiomyocytes, reversing the effects of H/R on mitochondria-mediated apoptosis. In addition, knockdown of EDA2R suppressed H/R-induced oxidative stress. Mechanistically, EDA2R knockdown inactivated the NF-κB signaling pathway. Additionally, downregulation of EDA2R weakened myocardial I/R injury in mice, as reflected by improved left ventricular function and reduced infarct size, as well as suppressed apoptosis and oxidative stress. Additionally, EDA2R knockdown repressed the activation of NF-κB signal in vivo. Collectively, knockdown of EDA2R exerted anti-apoptotic and antioxidant effects against I/R injury in vivo and in vitro by suppressing the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhi-Hui Guan
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Di Yang
- Department of Anesthesiology, Heilongjiang Hospital, Beijing Children's Hospital, Capital Medical University, No. 57, Youyi Road, Harbin, 150028, P.R. China
| | - Yi Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| | - Jia-Bin Ma
- Department of Medical Service, Heilongjiang Province Healthcare Security Administration, No. 68, Zhongshan Road, Harbin, 150036, P.R. China
| | - Guo-Nian Wang
- Department of Anesthesiology, the Fourth Affiliated Hospital of Harbin Medical University, No. 37, Yiyuan Street, Harbin, 150001, P.R. China
| |
Collapse
|
3
|
Stroethoff M, Schneider N, Sung L, Wübbolt J, Heinen A, Raupach A. Cardioprotection by Preconditioning with Intralipid Is Sustained in a Model of Endothelial Dysfunction for Isolated-Perfused Hearts. Int J Mol Sci 2024; 25:10975. [PMID: 39456757 PMCID: PMC11507275 DOI: 10.3390/ijms252010975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Endothelial dysfunction (ED) is closely associated with most cardiovascular diseases. Experimental models are needed to analyze the potential impact of ED on cardioprotection in constant pressure Langendorff systems (CPLS). One cardioprotective strategy against ischemia/reperfusion injury (I/RI) is conditioning with the lipid emulsion Intralipid (IL). Whether ED modulates the cardioprotective effect of IL remains unknown. The aim of the study was to transfer a protocol using a constant flow Langendorff system for the induction of ED into a CPLS, without the loss of smooth muscle cell functionality, and to analyze the cardioprotective effect of IL against I/RI under ED. In isolated hearts of male Wistar rats, ED was induced by 10 min perfusion of a Krebs-Henseleit buffer containing 60 mM KCl (K+), and the vasodilatory response to the vasodilators histamine (endothelial-dependent) and sodium-nitroprusside (SNP, endothelial-independent) was measured. A CPLS was employed to determine cardioprotection of pre- or postconditioning with 1% IL against I/RI. The constant flow perfusion of K+ reduced endothelial response to histamine but not to SNP, indicating reduced vasodilatory functionality of endothelial cells but not smooth muscle cells. Preconditioning with IL reduced infarct size and improved cardiac function while postconditioning with IL had no effect. The induction of ED neither influenced infarct size nor affected the cardioprotective effect by preconditioning with IL. This protocol allows for studies of cardioprotective strategies under ED in CLPS. The protection by preconditioning with IL seems to be mediated independently of a functional endothelium.
Collapse
Affiliation(s)
- Martin Stroethoff
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - Natalie Schneider
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - Lea Sung
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - Jan Wübbolt
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| | - André Heinen
- Institute for Cardiovascular Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Annika Raupach
- Department of Anesthesiology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, 40225 Düsseldorf, Germany (J.W.)
| |
Collapse
|
4
|
Kesumarini D, Widyastuti Y, Boom CE, Dinarti LK. Effectiveness of Dexmedetomidine as Myocardial Protector in Children With Classic Tetralogy of Fallot Having Corrective Surgery: A Randomized Controlled Trial. J Cardiothorac Vasc Anesth 2024; 38:1369-1377. [PMID: 38555217 DOI: 10.1053/j.jvca.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 04/02/2024]
Abstract
OBJECTIVES Efficacy of dexmedetomidine (DEX) as a cardioprotective agent in Indonesian children undergoing classic tetralogy of Fallot (TOF) repair with cardiopulmonary bypass (CPB). DESIGN A prospective, parallel trial using block randomization along with double-blinded preparation of treatment agents by other parties. SETTING National Cardiovascular Center Harapan Kita, Indonesia. PARTICIPANTS Sixty-six children with classic TOF scheduled for corrective surgery. No children were excluded. All patients had fulfilled the criteria for analysis. INTERVENTIONS A total of 0.5 µg/kg bolus of DEX was added to the CPB priming solution, followed by 0.25 µg/kg/h maintenance during bypass. The placebo group used normal saline. Follow-ups were up to 30 days. MEASUREMENTS AND MAIN RESULTS Troponin I was lower in the DEX group at 6 hours (30.48 ± 19.33 v 42.73 ± 27.16, p = 0.039) and 24 hours after CPB (8.89 ± 5.42 v 14.04 ± 11.17, p = 0.02). Within a similar timeframe, DEX successfully lowered interleukin-6 (p = 0.03; p = 0.035, respectively). Lactate was lower in the Dex group at 1, 6, and 24 hours after CPB (p < 0.01; p = 0.048; p = 0.035; respectively). Dexmedetomidine increased cardiac output and index from 6 hours after bypass, but vice versa in systemic vascular resistance. Reduction of vasoactive inotropic score was seen during intensive care unit monitoring in the Dex group (p = 0.049). Nevertheless, DEX did not significantly affect the length of ventilation (p = 0.313), intensive care unit stay (p = 0.087), and mortality (p > 0.99). CONCLUSIONS Dexmedetomidine during CPB is an effective cardioprotective agent in TOF children having surgery. Postoperative mortality was comparable across groups.
Collapse
Affiliation(s)
- Dian Kesumarini
- Department of Anesthesia and Intensive Therapy, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia.
| | - Yunita Widyastuti
- Department of Anesthesia and Intensive Therapy, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| | - Cindy Elfira Boom
- Department of Anesthesia and Intensive Therapy, National Cardiovascular Center Harapan Kita, Jakarta, Indonesia
| | - Lucia Kris Dinarti
- Department of Cardiology and Vascular Medicine, Universitas Gadjah Mada/Dr. Sardjito Hospital, Yogyakarta, Indonesia
| |
Collapse
|
5
|
Takahashi K, Yoshikawa Y, Kanda M, Hirata N, Yamakage M. Dexmedetomidine as a cardioprotective drug: a narrative review. J Anesth 2023; 37:961-970. [PMID: 37750978 DOI: 10.1007/s00540-023-03261-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/07/2023] [Indexed: 09/27/2023]
Abstract
Dexmedetomidine (DEX), a highly selective alpha2-adrenoceptors agonist, is not only a sedative drug used during mechanical ventilation in the intensive care unit but also a cardio-protective drug against ischemia-reperfusion injury (IRI). Numerous preclinical in vivo and ex vivo studies, mostly evaluating the effect of DEX pretreatment in healthy rodents, have shown the efficacy of DEX in protecting the hearts from IRI. However, whether DEX can maintain its cardio-protective effect in hearts with comorbidities such as diabetes has not been fully elucidated. Multiple clinical trials have reported promising results, showing that pretreatment with DEX can attenuate cardiac damage in patients undergoing cardiac surgery. However, evidence of the post-treatment effects of DEX in clinical practice remains limited. In this narrative review, we summarize the previously reported evidence of DEX-induced cardio-protection against IRI and clarify the condition of the hearts and the timing of DEX administration that has not been tested. With further investigations evaluating these knowledge gaps, the use of DEX as a cardio-protective drug could be further facilitated in the management of patients undergoing cardiac surgery and might be considered in a broader area of clinical settings beyond cardiac surgery, including patients with acute myocardial infarction.
Collapse
Affiliation(s)
- Kanako Takahashi
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yusuke Yoshikawa
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Masatoshi Kanda
- Department of Rheumatology and Clinical Immunology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoyuki Hirata
- Department of Anesthesiology, Kumamoto University, Kumamoto, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-Ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
6
|
Zhou W, Zhang Y, Jiao Y, Yin W, Dong H, Xu S, Tang D, Jiang J, Shao J, Wang Z, Yu W. Dexmedetomidine maintains blood-brain barrier integrity by inhibiting Drp1-related endothelial mitochondrial dysfunction in ischemic stroke. Acta Biochim Biophys Sin (Shanghai) 2021; 53:1177-1188. [PMID: 34244711 DOI: 10.1093/abbs/gmab092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 12/17/2022] Open
Abstract
Stroke is the second leading cause of death and long-term disability worldwide, which lacks effective treatment. Perioperative stroke is associated with much higher rates of mortality and disability. The neuroprotective role of dexmedetomidine (Dex), a highly selective agonist of alpha2-adrenergic receptor, has been reported in a stroke rat model, and it was found that pretreatment of Dex before stroke could alleviate blood-brain barrier (BBB) breakdown. However, the underlying mechanisms are still unknown. As the brain endothelial cells are the main constituents of BBB and in high demand of energy, mitochondrial function of endothelial cells plays an important role in the maintenance of BBB. Given that dynamin-related protein 1 (Drp1) is a protein mediating mitochondrial fission, with mitochondrial fusion that balances mitochondrial morphology and ensures mitochondria function, the present study was designed to investigate the possible role of Drp1 in endothelial cells involved in the neuroprotective effects of Dex in ischemic stroke. Our results showed that preconditioning with Dex reduced infarction volume, alleviated brain water content and BBB damage, and improved neurological scores in middle cerebral artery occlusion rats. Meanwhile, Dex enhanced cell activity and decreased cell apoptosis in oxygen-glucose deprivation human brain microvascular endothelial cells in vitro. These protective effects of Dex were correlated with the mitochondrial morphology integrality of endothelial cells, mediated by increased phosphorylation of serine 637 in Drp1, and could be reversed by α2-adrenergic receptor antagonist Yohimbine and AMP-activated protein kinase inhibitor Compound C. These findings suggest new molecular pathways involved in the neuroprotective effects of Dex in ischemic stroke. As Dex is routinely used as a sedative drug clinically, our findings provide molecular evidence that it has perioperative neuroprotection from ischemic stroke.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yunchun Zhang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yingfu Jiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wen Yin
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Haiping Dong
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Saihong Xu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dan Tang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junli Jiang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, No.1 School of Clinical Medicine, Kunming Medical University, Kunming 650011, China
| | - Zhenhong Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weifeng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
7
|
Etomidate Attenuates the Ferroptosis in Myocardial Ischemia/Reperfusion Rat Model via Nrf2/HO-1 Pathway. Shock 2021; 56:440-449. [PMID: 34091586 DOI: 10.1097/shk.0000000000001751] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ferroptosis has been found to play an important role in myocardial ischemia reperfusion (MIR) injury (MIRI). This study aimed to explore whether the improvement effect of Etomidate (Eto) on MIRI was related to ferroptosis. METHODS The MIRI rats were constructed using left anterior descending artery occlusion for 30 min followed by reperfusion for 3 h. The Eto post-conditioning was performed by Eto administration at the beginning of the reperfusion. For rescue experiments, MIRI rats were pretreated with ferroptosis inducer erastin or Nrf2 inhibitor ML385 intraperitoneally 1 h prior to MIR surgery. RESULTS Eto mitigated cardiac dysfunction and myocardium damage, as well as the release of creatine kinase and lactate dehydrogenase caused by ischemia/reperfusion (IR). Additionally, Eto reduced the expression of myocardial fibrosis-related proteins (collagen II and α-smooth muscle actin) and the secretion of inflammatory factors (IL-6, IL-1β, and TNF-α) in MIRI rats. Also, Eto inhibited IR-induced ferroptosis in myocardium, including reducing superoxide dismutase content, glutathione activity, and glutathione peroxidase 4 expression, while increasing the levels of malondialdehyde and iron and Acyl-CoA synthetase long-chain family member 4. Moreover, the inhibition of Eto on IR-induced myocardial fibrosis and inflammation could be eliminated by erastin. The up-regulation of Nrf2 and HO-1 protein expression, and the nuclear translocation of Nrf2 induced by Eto in the myocardial tissues of MIRI rats, could be prevented by erastin. Besides, ML385 eliminated the inhibition of Eto on ferroptosis induced by MIR. CONCLUSIONS Eto attenuated the myocardial injury by inhibiting IR-induced ferroptosis via Nrf2 pathway, which may provide a new idea for clinical reperfusion therapy.
Collapse
|
8
|
Sek A, Kampa RP, Kulawiak B, Szewczyk A, Bednarczyk P. Identification of the Large-Conductance Ca 2+-Regulated Potassium Channel in Mitochondria of Human Bronchial Epithelial Cells. Molecules 2021; 26:molecules26113233. [PMID: 34072205 PMCID: PMC8199365 DOI: 10.3390/molecules26113233] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondria play a key role in energy metabolism within the cell. Potassium channels such as ATP-sensitive, voltage-gated or large-conductance Ca2+-regulated channels have been described in the inner mitochondrial membrane. Several hypotheses have been proposed to describe the important roles of mitochondrial potassium channels in cell survival and death pathways. In the current study, we identified two populations of mitochondrial large-conductance Ca2+-regulated potassium (mitoBKCa) channels in human bronchial epithelial (HBE) cells. The biophysical properties of the channels were characterized using the patch-clamp technique. We observed the activity of the channel with a mean conductance close to 285 pS in symmetric 150/150 mM KCl solution. Channel activity was increased upon application of the potassium channel opener NS11021 in the micromolar concentration range. The channel activity was completely inhibited by 1 µM paxilline and 300 nM iberiotoxin, selective inhibitors of the BKCa channels. Based on calcium and iberiotoxin modulation, we suggest that the C-terminus of the protein is localized to the mitochondrial matrix. Additionally, using RT-PCR, we confirmed the presence of α pore-forming (Slo1) and auxiliary β3-β4 subunits of BKCa channel in HBE cells. Western blot analysis of cellular fractions confirmed the mitochondrial localization of α pore-forming and predominately β3 subunits. Additionally, the regulation of oxygen consumption and membrane potential of human bronchial epithelial mitochondria in the presence of the potassium channel opener NS11021 and inhibitor paxilline were also studied. In summary, for the first time, the electrophysiological and functional properties of the mitoBKCa channel in a bronchial epithelial cell line were described.
Collapse
Affiliation(s)
- Aleksandra Sek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
- Faculty of Chemistry, University of Warsaw, 02-093 Warsaw, Poland
| | - Rafal P. Kampa
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.S.); (R.P.K.); (B.K.); (A.S.)
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
- Correspondence: ; Tel.: +48-22-593-8620
| |
Collapse
|