1
|
Li J, Wei Y, Xiang J, Zhang D. Role of the ventral tegmental area in general anesthesia. Eur J Pharmacol 2025; 986:177145. [PMID: 39566814 DOI: 10.1016/j.ejphar.2024.177145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
The ventral tegmental area (VTA), located in the midbrain, plays a pivotal role in the regulation of many important behaviors, such as reward, addiction, aversion, memory, learning, and sleep-wakefulness cycles. The majority of VTA neurons are dopaminergic neurons, although there is a significant proportion of GABAergic neurons and few glutamatergic neurons. These neuronal types project to different brain regions, thus mediating various biological functions. Therefore, the diverse roles of the VTA might depend on its heterogeneous neuronal types and projecting circuits. General anesthesia and sleep-wakefulness cycles share the feature of reversible loss of consciousness, and several common neural mechanisms underlie these two conditions. In addition to the well-known regulatory role of VTA in sleep-wakefulness, emerging evidence has demonstrated that VTA activity is also associated with promoting emergence from general anesthesia. Herein, we reviewed the literature and summarized the evidence regarding the modulation of the VTA by general anesthesia in rodents, which will improve the understanding of the modulatory mechanism of the VTA in general anesthesia.
Collapse
Affiliation(s)
- Jia Li
- Department of Anesthesiology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710000, China; Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China.
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, 518100, China
| | - Jiaxin Xiang
- Department of Anesthesiology, Weill Cornell Medicine, New York, 10065, USA
| | - Donghang Zhang
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology), Ministry of Education, Wuhan, 430048, China; Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Wang Y, Wang D, Zhang X, Li H, Wang S, He Y, Zhao G, Dong H, Li J. Dorsal Raphe Serotonergic Neurons-Ventral Tegmental Area Neural Pathway Promotes Wake From Sleep. CNS Neurosci Ther 2024; 30:e70141. [PMID: 39593192 PMCID: PMC11598740 DOI: 10.1111/cns.70141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/24/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Dorsal raphe nucleus (DRN) serotonergic neurons projecting to the ventral tegmental area (VTA) neural circuit participate in regulating wake-related behaviors; however, the effect and mechanism of which in regulating sleep-wake are poorly understood. METHODS Fiber photometry was used to study DRN serotonergic afferent activity changes in the VTA during sleep-wake processes. Optogenetics and chemogenetics were took advantage to study the effects of DRN serotonergic afferents modulating VTA during sleep-wake. In vivo electrophysiology was employed to investigate how VTA neuronal firings were influenced by upregulation of DRN serotonergic afferents during sleep-wake. RESULTS We found that DRN serotonergic afferent activity in the VTA was higher during wake than during NREM and REM sleep. Chemogenetic activation of VTA-projecting DRN serotonergic neurons increased wake, and optogenetic activation of DRN serotonergic terminals in the VTA induced wake during NREM and REM sleep. Furthermore, we found that optogenetic activation of DRN serotonergic terminals in the VTA increased glutamatergic neuronal firing, decreased dopaminergic neuronal firing, but not influenced GABAergic neuronal firing during NREM sleep. CONCLUSION Our findings provide evidence in understanding the role of DRN serotonergic neurons-VTA neural pathway in regulating sleep-wake, in which dynamic VTA dopaminergic, glutamatergic, and GABAergic neuronal firing changes responded to the wake promoting effect of DRN serotonergic afferents.
Collapse
Affiliation(s)
- Yuhao Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
- Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Dan Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Huiming Li
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Sa Wang
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Yuting He
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
- Shaanxi University of Chinese MedicineXianyangShaanxiChina
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Hailong Dong
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| | - Jiannan Li
- Department of Anesthesiology and Perioperative MedicineXijing Hospital, Fourth Military Medical UniversityXi'anShaanxiChina
| |
Collapse
|
3
|
Vincent KF, Zhang ER, Cho AJ, Kato-Miyabe R, Mallari OG, Moody OA, Obert DP, Park GH, Solt K. Electrical stimulation of the ventral tegmental area restores consciousness from sevoflurane-, dexmedetomidine-, and fentanyl-induced unconsciousness in rats. Brain Stimul 2024; 17:687-697. [PMID: 38821397 PMCID: PMC11212499 DOI: 10.1016/j.brs.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
BACKGROUND Dopaminergic neurons in the ventral tegmental area (VTA) are crucially involved in regulating arousal, making them a potential target for reversing general anesthesia. Electrical deep brain stimulation (DBS) of the VTA restores consciousness in animals anesthetized with drugs that primarily enhance GABAA receptors. However, it is unknown if VTA DBS restores consciousness in animals anesthetized with drugs that target other receptors. OBJECTIVE To evaluate the efficacy of VTA DBS in restoring consciousness after exposure to four anesthetics with distinct receptor targets. METHODS Sixteen adult Sprague-Dawley rats (8 female, 8 male) with bipolar electrodes implanted in the VTA were exposed to dexmedetomidine, fentanyl, ketamine, or sevoflurane to produce loss of righting, a proxy for unconsciousness. After receiving the dopamine D1 receptor antagonist, SCH-23390, or saline (vehicle), DBS was initiated at 30 μA and increased by 10 μA until reaching a maximum of 100 μA. The current that evoked behavioral arousal and restored righting was recorded for each anesthetic and compared across drug (saline/SCH-23390) condition. Electroencephalogram, heart rate and pulse oximetry were recorded continuously. RESULTS VTA DBS restored righting after sevoflurane, dexmedetomidine, and fentanyl-induced unconsciousness, but not ketamine-induced unconsciousness. D1 receptor antagonism diminished the efficacy of VTA stimulation following sevoflurane and fentanyl, but not dexmedetomidine. CONCLUSIONS Electrical DBS of the VTA restores consciousness in animals anesthetized with mechanistically distinct drugs, excluding ketamine. The involvement of the D1 receptor in mediating this effect is anesthetic-specific.
Collapse
Affiliation(s)
- Kathleen F Vincent
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA.
| | - Edlyn R Zhang
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Angel J Cho
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Risako Kato-Miyabe
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Olivia G Mallari
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Olivia A Moody
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - David P Obert
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Gwi H Park
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| | - Ken Solt
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Song XJ, Hu JJ. Neurobiological basis of emergence from anesthesia. Trends Neurosci 2024; 47:355-366. [PMID: 38490858 DOI: 10.1016/j.tins.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/25/2024] [Accepted: 02/19/2024] [Indexed: 03/17/2024]
Abstract
The suppression of consciousness by anesthetics and the emergence of the brain from anesthesia are complex and elusive processes. Anesthetics may exert their inhibitory effects by binding to specific protein targets or through membrane-mediated targets, disrupting neural activity and the integrity and function of neural circuits responsible for signal transmission and conscious perception/subjective experience. Emergence from anesthesia was generally thought to depend on the elimination of the anesthetic from the body. Recently, studies have suggested that emergence from anesthesia is a dynamic and active process that can be partially controlled and is independent of the specific molecular targets of anesthetics. This article summarizes the fundamentals of anesthetics' actions in the brain and the mechanisms of emergence from anesthesia that have been recently revealed in animal studies.
Collapse
Affiliation(s)
- Xue-Jun Song
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| | - Jiang-Jian Hu
- Department of Medical Neuroscience and SUSTech Center for Pain Medicine, Southern University of Science and Technology School of Medicine, Shenzhen, China
| |
Collapse
|
5
|
Gao H, Wang J, Zhang R, Luo T. Recent advances in neural mechanism of general anesthesia induced unconsciousness: insights from optogenetics and chemogenetics. Front Pharmacol 2024; 15:1360864. [PMID: 38655183 PMCID: PMC11035785 DOI: 10.3389/fphar.2024.1360864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 03/20/2024] [Indexed: 04/26/2024] Open
Abstract
For over 170 years, general anesthesia has played a crucial role in clinical practice, yet a comprehensive understanding of the neural mechanisms underlying the induction of unconsciousness by general anesthetics remains elusive. Ongoing research into these mechanisms primarily centers around the brain nuclei and neural circuits associated with sleep-wake. In this context, two sophisticated methodologies, optogenetics and chemogenetics, have emerged as vital tools for recording and modulating the activity of specific neuronal populations or circuits within distinct brain regions. Recent advancements have successfully employed these techniques to investigate the impact of general anesthesia on various brain nuclei and neural pathways. This paper provides an in-depth examination of the use of optogenetic and chemogenetic methodologies in studying the effects of general anesthesia on specific brain nuclei and pathways. Additionally, it discusses in depth the advantages and limitations of these two methodologies, as well as the issues that must be considered for scientific research applications. By shedding light on these facets, this paper serves as a valuable reference for furthering the accurate exploration of the neural mechanisms underlying general anesthesia. It aids researchers and clinicians in effectively evaluating the applicability of these techniques in advancing scientific research and clinical practice.
Collapse
Affiliation(s)
- Hui Gao
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jingyi Wang
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Rui Zhang
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Tao Luo
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|