1
|
Andersen ME, Guerrero T. Assessing Modes of Action, Measures of Tissue Dose and Human Relevance of Rodent Toxicity Endpoints with Octamethylcyclotetrasiloxane (D4). Toxicol Lett 2022; 357:57-72. [PMID: 34995712 DOI: 10.1016/j.toxlet.2021.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/07/2021] [Accepted: 12/30/2021] [Indexed: 10/19/2022]
Abstract
Octamethylcyclotetrasiloxane (D4), a highly lipophilic, volatile compound with low water solubility, is metabolized to lower molecular weight, linear silanols. Toxicity has been documented in several tissues in animals following mixed vapor/aerosol exposures by inhalation at near saturating vapor concentrations or with gavage dosing in vegetable oil vehicles. These results, together with more mechanism-based studies and detailed pharmacokinetic information, were used to assess likely modes of action (MOAs) and the tissue dose measures of D4 and metabolites that would serve as key events leading to these biological responses. This MOA analysis indicates that pulmonary effects arise from direct epithelial contact with mixed vapor/aerosol atmospheres of D4; liver hypertrophy and hepatocyte proliferation arise from adaptive, rodent-specific actions of D4 with nuclear receptor signaling pathways; and, nephropathy results from silanol metabolites binding with alpha-2μ globulin (a rat specific protein). At this time, the MOAs of other liver effects - pigment accumulation and bile duct hyperplasia (BDH) preferentially observed in Sprague-Dawley (SD) rats- are not known. Hypothalamic actions of D4 delaying the rat mid-cycle gonadotrophin releasing hormone (GnRH) surge that result in reproductive effects and subsequent vaginal/uterine/ovarian tissue responses, including small increases in incidence of benign endometrial adenomas, are associated with prolongation of endogenous estrogen exposures due to delays in ovulation. Human reproduction is not controlled by a mid-cycle GnRH surge. Since the rodent-specific reproductive and the vaginal/uterine/ovarian tissue responses are not relevant for risk assessments in human populations, D4 should neither be classified as a CMR (i.e., carcinogenic, mutagenic, or toxic for reproduction) substance nor be regarded as an endocrine disruptor. Bile duct hyperplasia (BDH) and pigment accumulation in liver seen in SD rats are endpoints that could serve to define a Benchmark Dose or No-Observed-Effect-Level (NOEL) for D4.
Collapse
Affiliation(s)
- Melvin E Andersen
- Andersen ToxConsulting LLC, 424 Granite Lake Ct., Denver, NC 28037, United States.
| | - Tracy Guerrero
- American Chemistry Council Director, Silicones, Environmental, Health, and Safety Center, 700 2nd Street, NE, Washington, DC, 20002, United States.
| |
Collapse
|
2
|
Bönisch H, Fink KB, Malinowska B, Molderings GJ, Schlicker E. Serotonin and beyond-a tribute to Manfred Göthert (1939-2019). NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1829-1867. [PMID: 33991216 PMCID: PMC8376721 DOI: 10.1007/s00210-021-02083-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023]
Abstract
Manfred Göthert, who had served Naunyn-Schmiedeberg's Arch Pharmacol as Managing Editor from 1998 to 2005, deceased in June 2019. His scientific oeuvre encompasses more than 20 types of presynaptic receptors, mostly on serotoninergic and noradrenergic neurones. He was the first to identify presynaptic receptors for somatostatin and ACTH and described many presynaptic receptors, known from animal preparations, also in human tissue. In particular, he elucidated the pharmacology of presynaptic 5-HT receptors. A second field of interest included ligand-gated and voltage-dependent channels. The negative allosteric effect of anesthetics at peripheral nACh receptors is relevant for the peripheral clinical effects of these drugs and modified the Meyer-Overton hypothesis. The negative allosteric effect of ethanol at NMDA receptors in human brain tissue occurred at concentrations found in the range of clinical ethanol intoxication. Moreover, the inhibitory effect of gabapentinoids on P/Q Ca2+ channels and the subsequent decrease in AMPA-induced noradrenaline release may contribute to their clinical effect. Another ligand-gated ion channel, the 5-HT3 receptor, attracted the interest of Manfred Göthert from the whole animal via isolated preparations down to the cellular level. He contributed to that molecular study in which 5-HT3 receptor subtypes were disclosed. Finally, he found altered pharmacological properties of 5-HT receptor variants like the Arg219Leu 5-HT1A receptor (which was also shown to be associated with major depression) and the Phe124Cys 5-HT1B receptor (which may be related to sumatriptan-induced vasospasm). Manfred Göthert was a brilliant scientist and his papers have a major impact on today's pharmacology.
Collapse
Affiliation(s)
- H Bönisch
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany
| | - K B Fink
- Merz Pharmaceuticals, Frankfurt/Main, Germany
| | - B Malinowska
- Department of Physiology and Pathophysiology, Medical University of Białystok, Białystok, Poland
| | - G J Molderings
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - E Schlicker
- Institute of Pharmacology and Toxicology, University of Bonn, Venusberg-Campus 1, 53105, Bonn, Germany.
| |
Collapse
|
3
|
Abstract
General anesthesia serves a critically important function in the clinical care of human patients. However, the anesthetized state has foundational implications for biology because anesthetic drugs are effective in organisms ranging from paramecia, to plants, to primates. Although unconsciousness is typically considered the cardinal feature of general anesthesia, this endpoint is only strictly applicable to a select subset of organisms that are susceptible to being anesthetized. We review the behavioral endpoints of general anesthetics across species and propose the isolation of an organism from its environment - both in terms of the afferent arm of sensation and the efferent arm of action - as a generalizable definition. We also consider the various targets and putative mechanisms of general anesthetics across biology and identify key substrates that are conserved, including cytoskeletal elements, ion channels, mitochondria, and functionally coupled electrical or neural activity. We conclude with a unifying framework related to network function and suggest that general anesthetics - from single cells to complex brains - create inefficiency and enhance modularity, leading to the dissociation of functions both within an organism and between the organism and its surroundings. Collectively, we demonstrate that general anesthesia is not restricted to the domain of modern medicine but has broad biological relevance with wide-ranging implications for a diverse array of species.
Collapse
Affiliation(s)
- Max B Kelz
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Perelman School of Medicine, 3620 Hamilton Walk, 334 John Morgan Building, Philadelphia, PA 19104, USA; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Translational Research Laboratories, 125 S. 31st St., Philadelphia, PA 19104-3403, USA; Mahoney Institute for Neuroscience, University of Pennsylvania, Clinical Research Building, 415 Curie Blvd, Philadelphia, PA 19104, USA.
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, 7433 Medical Science Building 1, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA; Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
4
|
SHIRAI O, KITAZUMI Y, KANO K. Relation between Membrane Transport and Transport within Body Fluid on the Expression of Pharmacological Activities of Drugs — Mass Transfer in the Quantitative Structure-activity Relationship (QSAR) —. BUNSEKI KAGAKU 2016. [DOI: 10.2116/bunsekikagaku.65.249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Osamu SHIRAI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Yuki KITAZUMI
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| | - Kenji KANO
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
5
|
Kimball C, Luo J, Yin S, Hu H, Dhaka A. The Pore Loop Domain of TRPV1 Is Required for Its Activation by the Volatile Anesthetics Chloroform and Isoflurane. Mol Pharmacol 2015; 88:131-8. [DOI: 10.1124/mol.115.098277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/16/2015] [Indexed: 12/30/2022] Open
|
6
|
Interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol: mechanistic and clinical implications for anesthetic and cardiotoxic effects. Anesthesiol Res Pract 2013; 2013:297141. [PMID: 24174934 PMCID: PMC3794646 DOI: 10.1155/2013/297141] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 08/13/2013] [Accepted: 08/17/2013] [Indexed: 01/13/2023] Open
Abstract
Despite a long history in medical and dental application, the molecular mechanism and precise site of action are still arguable for local anesthetics. Their effects are considered to be induced by acting on functional proteins, on membrane lipids, or on both. Local anesthetics primarily interact with sodium channels embedded in cell membranes to reduce the excitability of nerve cells and cardiomyocytes or produce a malfunction of the cardiovascular system. However, the membrane protein-interacting theory cannot explain all of the pharmacological and toxicological features of local anesthetics. The administered drug molecules must diffuse through the lipid barriers of nerve sheaths and penetrate into or across the lipid bilayers of cell membranes to reach the acting site on transmembrane proteins. Amphiphilic local anesthetics interact hydrophobically and electrostatically with lipid bilayers and modify their physicochemical property, with the direct inhibition of membrane functions, and with the resultant alteration of the membrane lipid environments surrounding transmembrane proteins and the subsequent protein conformational change, leading to the inhibition of channel functions. We review recent studies on the interaction of local anesthetics with biomembranes consisting of phospholipids and cholesterol. Understanding the membrane interactivity of local anesthetics would provide novel insights into their anesthetic and cardiotoxic effects.
Collapse
|
7
|
Abstract
BACKGROUND The concept of conserved processes presents unique opportunities for using nonhuman animal models in biomedical research. However, the concept must be examined in the context that humans and nonhuman animals are evolved, complex, adaptive systems. Given that nonhuman animals are examples of living systems that are differently complex from humans, what does the existence of a conserved gene or process imply for inter-species extrapolation? METHODS We surveyed the literature including philosophy of science, biological complexity, conserved processes, evolutionary biology, comparative medicine, anti-neoplastic agents, inhalational anesthetics, and drug development journals in order to determine the value of nonhuman animal models when studying conserved processes. RESULTS Evolution through natural selection has employed components and processes both to produce the same outcomes among species but also to generate different functions and traits. Many genes and processes are conserved, but new combinations of these processes or different regulation of the genes involved in these processes have resulted in unique organisms. Further, there is a hierarchy of organization in complex living systems. At some levels, the components are simple systems that can be analyzed by mathematics or the physical sciences, while at other levels the system cannot be fully analyzed by reducing it to a physical system. The study of complex living systems must alternate between focusing on the parts and examining the intact whole organism while taking into account the connections between the two. Systems biology aims for this holism. We examined the actions of inhalational anesthetic agents and anti-neoplastic agents in order to address what the characteristics of complex living systems imply for inter-species extrapolation of traits and responses related to conserved processes. CONCLUSION We conclude that even the presence of conserved processes is insufficient for inter-species extrapolation when the trait or response being studied is located at higher levels of organization, is in a different module, or is influenced by other modules. However, when the examination of the conserved process occurs at the same level of organization or in the same module, and hence is subject to study solely by reductionism, then extrapolation is possible.
Collapse
Affiliation(s)
- Ray Greek
- Americans For Medical Advancement (www.AFMA-curedisease.org), 2251 Refugio Rd, Goleta, CA, 93117, USA
| | - Mark J Rice
- Department of Anesthesiology, University of Florida College of Medicine, PO Box 100254, Gainesville, FL, 32610-0254, USA
| |
Collapse
|
8
|
Turkyilmaz S, Almeida PF, Regen SL. Effects of isoflurane, halothane, and chloroform on the interactions and lateral organization of lipids in the liquid-ordered phase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:14380-14385. [PMID: 21995557 PMCID: PMC3226895 DOI: 10.1021/la2035278] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The first quantitative insight has been obtained into the effects that volatile anesthetics have on the interactions and lateral organization of lipids in model membranes that mimic "lipid rafts". Specifically, nearest-neighbor recogntion measurements, in combination with Monte Carlo simulations, have been used to investigate the action of isoflurane, halothane, and chloroform on the compactness and lateral organization of cholesterol-rich bilayers of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) in the liquid-ordered (l(o)) phase. All three anesthetics induce a similar weakening of sterol-phospholipid association, corresponding to ca. 30 cal/mol of lipid at clinically relevant concentrations. Monte Carlo lattice simulations show that the lateral organization of the l(o) phase, under such conditions, remains virtually unchanged. In sharp contrast to their action on the l(o) phase, these anesthetics have been found to have a similar strengthening effect on sterol-phospholipid association in the liquid-disordered (l(d)) phase. The possibility of discrete complexes being formed between DPPC and these anesthetics and the biological relevance of these findings are discussed.
Collapse
Affiliation(s)
- Serhan Turkyilmaz
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Paulo F. Almeida
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, North Carolina 28403
| | - Steven L. Regen
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
9
|
Tsuchiya H, Ueno T, Mizogami M. Stereostructure-based differences in the interactions of cardiotoxic local anesthetics with cholesterol-containing biomimetic membranes. Bioorg Med Chem 2011; 19:3410-5. [PMID: 21550810 DOI: 10.1016/j.bmc.2011.04.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 04/12/2011] [Accepted: 04/13/2011] [Indexed: 01/09/2023]
Abstract
Amide-type pipecoloxylidide local anesthetics, bupivacaine, and ropivacaine, show cardiotoxic effects with the potency depending on stereostructures. Cardiotoxic drugs not only bind to cardiomyocyte membrane channels to block them but also modify the physicochemical property of membrane lipid bilayers in which channels are embedded. The opposite configurations allow enantiomers to be discriminated by their enantiospecific interactions with another chiral molecule in membranes. We compared the interactions of local anesthetic stereoisomers with biomimetic membranes consisting of chiral lipid components, the differences of which might be indicative of the drug design for reducing cardiotoxicity. Fluorescent probe-labeled biomimetic membranes were prepared with cardiolipin and cholesterol of varying compositions and different phospholipids. Local anesthetics were reacted with the membrane preparations at a cardiotoxically relevant concentration of 200 μM. The potencies to interact with biomimetic membranes and change their fluidity were compared by measuring fluorescence polarization. All local anesthetics acted on lipid bilayers to increase membrane fluidity. Chiral cardiolipin was ineffective in discriminating S(-)-enantiomers from their antipodes. On the other hand, cholesterol produced the enantiospecific membrane interactions of bupivacaine and ropivacaine with increasing its composition in membranes. In 40 mol% and more cholesterol-containing membranes, the membrane-interacting potency was S(-)-bupivacaine<racemic bupivacaine<R(+)-bupivacaine, and S(-)-ropivacaine<R(+)-ropivacaine. Ropivacaine (S(-)-enantiomer), levobupivacaine (S(-)-enantiomeric), and bupivacaine (racemic) interacted with biomimetic membranes in increasing order of intensity. The rank order of membrane interactivity agreed with that of known cardiotoxicity. The stereoselective membrane interactions determined by cholesterol with higher chirality appears to be associated with the stereoselective cardiotoxic effects of local anesthetics. The stereostructure and membrane interactivity relationship supports the clinical use and development of S(-)-enantiomers to decrease the adverse effects of pipecoloxylidide local anesthetics on the cardiovascular system.
Collapse
Affiliation(s)
- Hironori Tsuchiya
- Department of Dental Basic Education, Asahi University School of Dentistry, Mizuho, Gifu 501-0296, Japan.
| | | | | |
Collapse
|
10
|
The interactivities with lipid membranes differentially characterize selective and nonselective beta1-blockers. Eur J Anaesthesiol 2010; 27:829-34. [PMID: 20601889 DOI: 10.1097/eja.0b013e32833bf5e4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE beta-Adrenoceptor-blocking agents have been used for perioperative management during anaesthesia, in which selective beta1-blockers are advantageous over nonselective beta-blockers. Apart from the different affinity for beta-adrenoceptors, beta1-blockers were differentially characterized in light of their different interaction with lipid membranes. METHODS Selective (atenolol, metoprolol and esmolol) and nonselective (alprenolol, oxprenolol and propranolol) beta1-blockers were reacted at 0.2-1 mmol l with 1,2-dipalmitoylphosphatidylcholine liposomes and biomimetic membranes consisting of phospholipids, sphingolipid and cholesterol. Their membrane interactivities were comparatively determined using the potency to modify membrane fluidity by measuring fluorescence polarization. Their relative hydrophobicities were evaluated by reversed-phase liquid chromatography. RESULTS The chromatographic evaluation divided the tested drugs into more hydrophobic ones containing nonselective beta-blockers and less hydrophobic ones containing selective beta1-blockers. Nonselective beta-blockers, but not selective beta1-blockers, fluidized liposomal membranes, with the potency being oxprenolol < alprenolol < propranolol. Membrane-active alprenolol preferentially acted on the hydrophobic deeper regions of phospholipid bilayers. The potency of nonselective beta-blockers to fluidize biomimetic membranes was greatest in propranolol, followed by alprenolol and oxprenolol, whereas all selective beta1-blockers were inactive. CONCLUSION The membrane-fluidizing effects of beta-blockers are correlated with their relative hydrophobicities and their respective conformations to perturb the alignment of phospholipid acyl chains. The membrane-interacting characteristics differentiate beta-blockers as nonselective propranolol, alprenolol and oxprenolol vs. beta1-selective atenolol, metoprolol and esmolol. Such differentiation reflects not only the structural difference but also the beta-adrenoceptor-blocking difference. The membrane fluidization may be partly responsible for the nonselective blockade of beta-adrenoceptors.
Collapse
|
11
|
Subbotina JO, Johannes J, Lev B, Noskov SY. Halothane solvation in water and organic solvents from molecular simulations with new polarizable potential function. J Phys Chem B 2010; 114:6401-8. [PMID: 20411978 DOI: 10.1021/jp908339j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The partitioning of a substrate from one phase into another is a complex process with widespread applications: from chemical technology to the pharmaceutical industry. One particularly well-known and well-studied example is 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane) trafficking through the lipid bilayer. Halothane is a model volatile anesthetic known to impact functions of model lipid bilayers, altering the structure and thickness upon its partitioning from the bulk phase. A number of theoretical and experimental investigations suggest the importance of electronic polarizability, determining a preference for halothane to partition in the interfacial systems as in lipid bilayers or binary solvents. The recently published protocol for the development of polarizable force fields based on the classical Drude model has provided fresh impetus to efforts directed at understanding the molecular principles governing complex thermodynamics of the hydrophobic hydration. Here, molecular simulations were combined with free energy simulations to study solvation of halothane in polarizable water and methanol. The absolute free energy of halothane solvation in different solvents (water, methanol, and n-hexane) has been evaluated for additive and polarizable models. It was found that both additive and polarizable models provide an adequate description of the halothane solvation in high-dielectric (polar) solvents such as water, but explicit accounting for electronic polarization is imperative for a correct description of the solvation thermodynamics in nonpolar systems. To study halothane dynamics in binary mixtures, all-atom molecular dynamics (MD) simulations for halothane-methanol mixtures in a wide range of concentrations were performed alongside an analysis of structural organization, dynamics, and thermodynamic properties to dissect the molecular determinants of the halothane solvation in polar and amphiphilic liquids such as methanol. Additionally, a theoretical test of the hypothesis on the weak hydrogen bonding of halothane and methanol in the condensed phase is provided, which was presented on the basis of spectroscopic analysis of the C-H vibrations in different gas-phase complexes. The simulations performed in the condensed phase suggest that hydrophobic interactions between halothane and methanol play a dominant role in preferential solvation.
Collapse
Affiliation(s)
- Julia O Subbotina
- Institute for BioComplexity and Informatics and Department for Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
12
|
Tsuchiya H, Ueno T, Mizogami M, Takakura K. Do local anesthetics interact preferentially with membrane lipid rafts? Comparative interactivities with raft-like membranes. J Anesth 2010; 24:639-42. [DOI: 10.1007/s00540-010-0943-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/24/2010] [Indexed: 01/15/2023]
|
13
|
Eger EI, Raines DE, Shafer SL, Hemmings HC, Sonner JM. Is a new paradigm needed to explain how inhaled anesthetics produce immobility? Anesth Analg 2008; 107:832-48. [PMID: 18713892 DOI: 10.1213/ane.0b013e318182aedb] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A paradox arises from present information concerning the mechanism(s) by which inhaled anesthetics produce immobility in the face of noxious stimulation. Several findings, such as additivity, suggest a common site at which inhaled anesthetics act to produce immobility. However, two decades of focused investigation have not identified a ligand- or voltage-gated channel that alone is sufficient to mediate immobility. Indeed, most putative targets provide minimal or no mediation. For example, opioid, 5-HT3, gamma-aminobutyric acid type A and glutamate receptors, and potassium and calcium channels appear to be irrelevant or play only minor roles. Furthermore, no combination of actions on ligand- or voltage-gated channels seems sufficient. A few plausible targets (e.g., sodium channels) merit further study, but there remains the possibility that immobilization results from a nonspecific mechanism.
Collapse
Affiliation(s)
- Edmond I Eger
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143-0464, USA.
| | | | | | | | | |
Collapse
|
14
|
|