1
|
Edlinger-Stanger M, Bernardi MH, Kovacs K, Mascha M, Neugebauer T, Böhme S, Ayoubi N, Christofi N, Garry J, Fleming N, Hiesmayr M. The effect of acute ventilation-perfusion mismatch on respiratory heat exchange in a porcine model. PLoS One 2021; 16:e0254399. [PMID: 34252138 PMCID: PMC8274834 DOI: 10.1371/journal.pone.0254399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Background Respiratory heat exchange is an important physiological process occurring in the upper and lower respiratory tract and is usually completed when inspired gases reach the alveoli. Animal and human studies demonstrated that heat exchange can be modulated by altering pulmonary ventilation and perfusion. The purpose of this study was to examine the effect of acute ventilation-perfusion (V/Q) mismatch on respiratory heat exchange. In clinical practice, monitoring respiratory heat exchange might offer the possibility of real-time tracking of acute V/Q-mismatch. Methods In 11 anesthetized, mechanically ventilated pigs, V/Q-mismatch was established by means of four interventions: single lung ventilation, high cardiac output, occlusion of the left pulmonary artery and repeated whole-lung lavage. V/Q-distributions were determined by the multiple inert gas elimination technique (MIGET). Respiratory heat exchange was measured as respiratory enthalpy using the novel, pre-commercial VQm™ monitor (development stage, Rostrum Medical Innovations, Vancouver, CA). According to MIGET, shunt perfusion of low V/Q compartments increased during single lung ventilation, high cardiac output and whole-lung lavage, whereas dead space and ventilation of high V/Q compartments increased during occlusion of the left pulmonary artery and whole-lung lavage. Results Bohr dead space increased after pulmonary artery occlusion and whole-lung lavage, venous admixture increased during single lung ventilation and whole-lung lavage, PaO2/FiO2 was decreased during all interventions. MIGET confirmed acute V/Q-mismatch. Respiratory enthalpy did not change significantly despite significant acute V/Q-mismatch. Conclusion Clinically relevant V/Q-mismatch does not impair respiratory heat exchange in the absence of additional thermal stressors and may not have clinical utility in the detection of acute changes.
Collapse
Affiliation(s)
- Maximilian Edlinger-Stanger
- Department of Cardiothoracic Anaesthesia, Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
- * E-mail:
| | - Martin-Hermann Bernardi
- Department of Cardiothoracic Anaesthesia, Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Katharina Kovacs
- Department of Cardiothoracic Anaesthesia, Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Mascha
- Department of Cardiothoracic Anaesthesia, Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Thomas Neugebauer
- Department of Cardiothoracic Anaesthesia, Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| | - Stefan Böhme
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | - James Garry
- Rostrum Medical Innovations Inc., Vancouver, Canada
| | - Neal Fleming
- University of California Davis, Davis, California, United States of America
| | - Michael Hiesmayr
- Department of Cardiothoracic Anaesthesia, Intensive Care Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Chang EM, Bretherick A, Drummond GB, Baillie JK. Predictive validity of a novel non-invasive estimation of effective shunt fraction in critically ill patients. Intensive Care Med Exp 2019; 7:49. [PMID: 31428882 PMCID: PMC6701711 DOI: 10.1186/s40635-019-0262-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/25/2019] [Indexed: 11/17/2022] Open
Abstract
Background Accurate measurement of pulmonary oxygenation is important for classification of disease severity and quantification of outcomes in clinical studies. Currently, tension-based methods such as P/F ratio are in widespread use, but are known to be less accurate than content-based methods. However, content-based methods require invasive measurements or sophisticated equipment that are rarely used in clinical practice. We devised two new methods to infer shunt fraction from a single arterial blood gas sample: (1) a non-invasive effective shunt (ES) fraction calculated using a rearrangement of the indirect Fick equation, standard constants, and a procedural inversion of the relationship between content and tension and (2) inferred values from a database of outputs from an integrated mathematical model of gas exchange (DB). We compared the predictive validity—the accuracy of predictions of PaO2 following changes in FIO2—of each measure in a retrospective database of 78,159 arterial blood gas (ABG) results from critically ill patients. Results In a formal test set comprising 9,635 pairs of ABGs, the median absolute error (MAE) values for the four measures were as follows: alveolar-arterial difference, 7.30 kPa; PaO2/FIO2 ratio, 2.41 kPa; DB, 2.13 kPa; and ES, 1.88 kPa. ES performed significantly better than other measures (p < 10-10 in all comparisons). Further exploration of the DB method demonstrated that obtaining two blood gas measurements at different FIO2 provides a more precise description of pulmonary oxygenation. Conclusions Effective shunt can be calculated using a computationally efficient procedure using routinely collected arterial blood gas data and has better predictive validity than other analytic methods. For practical assessment of oxygenation in clinical research, ES should be used in preference to other indices. ES can be calculated at http://baillielab.net/es. Electronic supplementary material The online version of this article (10.1186/s40635-019-0262-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emma M Chang
- Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
| | - Andrew Bretherick
- Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK.,MRC Institute of Genetics and Molecular Medicine, The University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Gordon B Drummond
- Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK
| | - J Kenneth Baillie
- Anaesthesia, Critical Care and Pain Medicine, Royal Infirmary of Edinburgh, Edinburgh, EH16 4SA, UK. .,The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, EH25 9RG, UK.
| |
Collapse
|
3
|
Gerber D, Vasireddy R, Varadarajan B, Hartwich V, Schär MY, Eberle B, Vogt A. Near-real-time pulmonary shunt and dead space measurement with micropore membrane inlet mass spectrometry in pigs with induced pulmonary embolism or acute lung failure. J Clin Monit Comput 2019; 33:1033-1041. [PMID: 30603824 DOI: 10.1007/s10877-018-00245-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 12/22/2018] [Indexed: 10/27/2022]
Abstract
The multiple inert gas elimination technique (MIGET) using gas chromatography (GC) is an established but time-consuming method of determining ventilation/perfusion (VA/Q) distributions. MIGET-when performed using Micropore Membrane Inlet Mass Spectrometry (MMIMS)-has been proven to correlate well with GC-MIGET and reduces analysis time substantially. We aimed at comparing shunt fractions and dead space derived from MMIMS-MIGET with Riley shunt and Bohr dead space, respectively. Thirty anesthetized pigs were randomly assigned to lavage or pulmonary embolism groups. Inert gas infusion (saline mixture of SF6, krypton, desflurane, enflurane, diethyl ether, acetone) was maintained, and after induction of lung damage, blood and breath samples were taken at 15-min intervals over 4 h. The samples were injected into the MMIMS, and resultant retention and excretion data were translated to VA/Q distributions. We compared MMIMS-derived shunt (MM-S) to Riley shunt, and MMIMS-derived dead space (MM-VD) to Bohr dead space in 349 data pairs. MM-S was on average lower than Riley shunt (- 0.05 ± 0.10), with lower and upper limits of agreement of - 0.15 and 0.04, respectively. MM-VD was on average lower than Bohr dead space (- 0.09 ± 0.14), with lower and upper limits of agreement of - 0.24 and 0.05. MM-S and MM-VD correlated and agreed well with Riley shunt and with Bohr dead space. MM-S increased significantly after lung injury only in the lavage group, whereas MM-VD increased significantly in both groups. This is the first work evaluating and demonstrating the feasibility of near real-time VA/Q distribution measurements with the MIGET and the MMIMS methods.
Collapse
Affiliation(s)
- D Gerber
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - R Vasireddy
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - B Varadarajan
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - V Hartwich
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - M Y Schär
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - B Eberle
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - A Vogt
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland.
| |
Collapse
|
4
|
Effect of Bronchoconstriction-induced Ventilation-Perfusion Mismatch on Uptake and Elimination of Isoflurane and Desflurane. Anesthesiology 2017; 127:800-812. [PMID: 28857808 DOI: 10.1097/aln.0000000000001847] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Increasing numbers of patients with obstructive lung diseases need anesthesia for surgery. These conditions are associated with pulmonary ventilation/perfusion (VA/Q) mismatch affecting kinetics of volatile anesthetics. Pure shunt might delay uptake of less soluble anesthetic agents but other forms of VA/Q scatter have not yet been examined. Volatile anesthetics with higher blood solubility would be less affected by VA/Q mismatch. We therefore compared uptake and elimination of higher soluble isoflurane and less soluble desflurane in a piglet model. METHODS Juvenile piglets (26.7 ± 1.5 kg) received either isoflurane (n = 7) or desflurane (n = 7). Arterial and mixed venous blood samples were obtained during wash-in and wash-out of volatile anesthetics before and during bronchoconstriction by methacholine inhalation (100 μg/ml). Total uptake and elimination were calculated based on partial pressure measurements by micropore membrane inlet mass spectrometry and literature-derived partition coefficients and assumed end-expired to arterial gradients to be negligible. VA/Q distribution was assessed by the multiple inert gas elimination technique. RESULTS Before methacholine inhalation, isoflurane arterial partial pressures reached 90% of final plateau within 16 min and decreased to 10% after 28 min. By methacholine nebulization, arterial uptake and elimination delayed to 35 and 44 min. Desflurane needed 4 min during wash-in and 6 min during wash-out, but with bronchoconstriction 90% of both uptake and elimination was reached within 15 min. CONCLUSIONS Inhaled methacholine induced bronchoconstriction and inhomogeneous VA/Q distribution. Solubility of inhalational anesthetics significantly influenced pharmacokinetics: higher soluble isoflurane is less affected than fairly insoluble desflurane, indicating different uptake and elimination during bronchoconstriction.
Collapse
|
5
|
An in vitro lung model to assess true shunt fraction by multiple inert gas elimination. PLoS One 2017; 12:e0184212. [PMID: 28877216 PMCID: PMC5587330 DOI: 10.1371/journal.pone.0184212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 08/21/2017] [Indexed: 11/19/2022] Open
Abstract
The Multiple Inert Gas Elimination Technique, based on Micropore Membrane Inlet Mass Spectrometry, (MMIMS-MIGET) has been designed as a rapid and direct method to assess the full range of ventilation-to-perfusion (V/Q) ratios. MMIMS-MIGET distributions have not been assessed in an experimental setup with predefined V/Q-distributions. We aimed (I) to construct a novel in vitro lung model (IVLM) for the simulation of predefined V/Q distributions with five gas exchange compartments and (II) to correlate shunt fractions derived from MMIMS-MIGET with preset reference shunt values of the IVLM. Five hollow-fiber membrane oxygenators switched in parallel within a closed extracorporeal oxygenation circuit were ventilated with sweep gas (V) and perfused with human red cell suspension or saline (Q). Inert gas solution was infused into the perfusion circuit of the gas exchange assembly. Sweep gas flow (V) was kept constant and reference shunt fractions (IVLM-S) were established by bypassing one or more oxygenators with perfusate flow (Q). The derived shunt fractions (MM-S) were determined using MIGET by MMIMS from the retention data. Shunt derived by MMIMS-MIGET correlated well with preset reference shunt fractions. The in vitro lung model is a convenient system for the setup of predefined true shunt fractions in validation of MMIMS-MIGET.
Collapse
|
6
|
Effects of methacholine infusion on desflurane pharmacokinetics in piglets. Data Brief 2015; 5:939-47. [PMID: 26702425 PMCID: PMC4669490 DOI: 10.1016/j.dib.2015.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/31/2015] [Accepted: 11/01/2015] [Indexed: 11/21/2022] Open
Abstract
The data of a corresponding animal experiment demonstrates that nebulized methacholine (MCh) induced severe bronchoconstriction and significant inhomogeneous ventilation and pulmonary perfusion (V̇A/Q̇) distribution in pigs, which is similar to findings in human asthma. The inhalation of MCh induced bronchoconstriction and delayed both uptake and elimination of desflurane (Kretzschmar et al., 2015) [1]. The objective of the present data is to determine V̇A/Q̇ matching by Multiple Inert Gas Elimination Technique (MIGET) in piglets before and during methacholine- (MCh-) induced bronchoconstriction, induced by MCh infusion, and to assess the blood concentration profiles for desflurane (DES) by Micropore Membrane Inlet Mass Spectrometry (MMIMS). Healthy piglets (n=4) under general anesthesia were instrumented with arterial, central venous, and pulmonary artery lines. The airway was secured via median tracheostomy with an endotracheal tube, and animals were mechanically ventilated with intermittent positive pressure ventilation (IPPV) with a FiO2 of 0.4, tidal volume (VT)=10 ml/kg and PEEP of 5cmH2O using an open system. The determination of V.A/Q. was done by MIGET: before desflurane application and at plateau in both healthy state and during MCh infusion. Arterial blood was sampled at 0, 1, 2, 5, 10, 20, and 30 min during wash-in and washout, respectively. Bronchoconstriction was established by MCH infusion aiming at doubling the peak airway pressure, after which wash-in and washout of the anesthetic gas was repeated. Anesthesia gas concentrations were measured by MMIMS. Data were analyzed by ANOVA, paired t-test, and by nonparametric Friedman׳s test and Wilcoxon׳s matched pairs test. We measured airway pressures, pulmonary resistance, and mean paO2 as well as hemodynamic variables in all pigs before desflurane application and at plateau in both healthy state and during methacholine administration by infusion. By MIGET, fractional alveolar ventilation and pulmonary perfusion in relation to the V.A/Q. compartments, data of logSDQ̇ and logSDV̇ (the second moments describing global dispersion, i.e. heterogeneity of distribution) were estimated prior to and after MCh infusion. The uptake and elimination of desflurane was determined by MMIMS.
Collapse
|
7
|
Bronchoconstriction induced by inhaled methacholine delays desflurane uptake and elimination in a piglet model. Respir Physiol Neurobiol 2015; 220:88-94. [PMID: 26440992 DOI: 10.1016/j.resp.2015.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/22/2015] [Accepted: 09/27/2015] [Indexed: 12/11/2022]
Abstract
Bronchoconstriction is a hallmark of asthma and impairs gas exchange. We hypothesized that pharmacokinetics of volatile anesthetics would be affected by bronchoconstriction. Ventilation/perfusion (VA/Q) ratios and pharmacokinetics of desflurane in both healthy state and during inhalational administration of methacholine (MCh) to double peak airway pressure were studied in a piglet model. In piglets, MCh administration by inhalation (100 μg/ml, n=6) increased respiratory resistance, impaired VA/Q distribution, increased shunt, and decreased paO2 in all animals. The uptake and elimination of desflurane in arterial blood was delayed by nebulization of MCh, as determined by Micropore Membrane Inlet Mass Spectrometry (wash-in time to P50, healthy vs. inhalation: 0.5 min vs. 1.1 min, to P90: 4.0 min vs. 14.8 min). Volatile elimination was accordingly delayed. Inhaled methacholine induced severe bronchoconstriction and marked inhomogeneous VA/Q distribution in pigs, which is similar to findings in human asthma exacerbation. Furthermore, MCh-induced bronchoconstriction delayed both uptake and elimination of desflurane. These findings might be considered when administering inhalational anesthesia to asthmatic patients.
Collapse
|
8
|
HARTMANN EK, DUENGES B, BOEHME S, SZCZYRBA M, LIU T, KLEIN KU, BAUMGARDNER JE, MARKSTALLER K, DAVID M. Ventilation/perfusion ratios measured by multiple inert gas elimination during experimental cardiopulmonary resuscitation. Acta Anaesthesiol Scand 2014; 58:1032-9. [PMID: 25060587 DOI: 10.1111/aas.12378] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND During cardiopulmonary resuscitation (CPR) the ventilation/perfusion distribution (VA /Q) within the lung is difficult to assess. This experimental study examines the capability of multiple inert gas elimination (MIGET) to determine VA /Q under CPR conditions in a pig model. METHODS Twenty-one anaesthetised pigs were randomised to three fractions of inspired oxygen (1.0, 0.7 or 0.21). VA/ Q by micropore membrane inlet mass spectrometry-derived MIGET was determined at baseline and during CPR following induction of ventricular fibrillation. Haemodynamics, blood gases, ventilation distribution by electrical impedance tomography and return of spontaneous circulation were assessed. Intergroup differences were analysed by non-parametric testing. RESULTS MIGET measurements were feasible in all animals with an excellent correlation of measured and predicted arterial oxygen partial pressure (R(2) = 0.96, n = 21 for baseline; R(2) = 0.82, n = 21 for CPR). CPR induces a significant shift from normal VA /Q ratios to the high VA /Q range. Electrical impedance tomography indicates a dorsal to ventral shift of the ventilation distribution. Diverging pulmonary shunt fractions induced by the three inspired oxygen levels considerably increased during CPR and were traceable by MIGET, while 100% oxygen most negatively influenced the VA /Q. Return of spontaneous circulation were achieved in 52% of the animals. CONCLUSIONS VA /Q assessment by MIGET is feasible during CPR and provides a novel tool for experimental purposes. Changes in VA /Q caused by different oxygen fractions are traceable during CPR. Beyond pulmonary perfusion deficits, these data imply an influence of the inspired oxygen level on VA /Q. Higher oxygen levels significantly increase shunt fractions and impair the normal VA /Q ratio.
Collapse
Affiliation(s)
- E. K. HARTMANN
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
| | - B. DUENGES
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
| | - S. BOEHME
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
- Department of Anaesthesia, General Critical Care Medicine and Pain Therapy; Medical University of Vienna; Vienna Austria
| | - M. SZCZYRBA
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
| | - T. LIU
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
| | - K. U. KLEIN
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
- Department of Anaesthesia, General Critical Care Medicine and Pain Therapy; Medical University of Vienna; Vienna Austria
| | | | - K. MARKSTALLER
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
- Department of Anaesthesia, General Critical Care Medicine and Pain Therapy; Medical University of Vienna; Vienna Austria
| | - M. DAVID
- Department of Anaesthesiology; Medical Centre of the Johannes Gutenberg-University; Mainz Germany
| |
Collapse
|
9
|
Kretzschmar M, Schilling T, Vogt A, Rothen HU, Borges JB, Hachenberg T, Larsson A, Baumgardner JE, Hedenstierna G. Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry--a comparison with reference gas chromatography. J Appl Physiol (1985) 2013; 115:1107-18. [PMID: 23869066 DOI: 10.1152/japplphysiol.00072.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.
Collapse
Affiliation(s)
- Moritz Kretzschmar
- Department of Surgical Sciences, Anesthesia and Intensive Care, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Correlation of thermodilution-derived extravascular lung water and ventilation/perfusion-compartments in a porcine model. Intensive Care Med 2013; 39:1313-7. [PMID: 23595498 DOI: 10.1007/s00134-013-2915-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 03/24/2013] [Indexed: 10/27/2022]
Abstract
PURPOSE This study examines the correlation between the transpulmonary thermodilution derived extravascular lung water content (EVLW) and the ventilation/perfusion-distribution ([Formula: see text]) measured by multiple inert gas elimination (MIGET) in a porcine model. METHODS [Formula: see text] measured by micropore membrane inlet mass spectrometry-MIGET (MMIMS-MIGET) and EVLW were simultaneously measured in twelve pigs in the heathy state, with impaired gas exchange from repetitive lung lavage and after 3 h of ventilation. The relationship between [Formula: see text] compartments and EVLW was analysed by linear correlation and regression. RESULTS Considerable increases in EVLW and [Formula: see text] mismatching were induced through the lavage procedure. Significant correlations between the EVLW and the [Formula: see text] fractions representing pulmonary shunt and low [Formula: see text] were found. Perfusion to the normal [Formula: see text] regions was inversely correlated to the EVLW. CONCLUSIONS Increased EVLW is associated with increased low [Formula: see text] and shunt, but not equal to pulmonary shunt alone. Beneath true shunt EVLW can also be associated with low [Formula: see text] regions.
Collapse
|
11
|
HARTMANN EK, BOEHME S, DUENGES B, BENTLEY A, KLEIN KU, KWIECIEN R, SHI C, SZCZYRBA M, DAVID M, MARKSTALLER K. An inhaled tumor necrosis factor-alpha-derived TIP peptide improves the pulmonary function in experimental lung injury. Acta Anaesthesiol Scand 2013; 57:334-41. [PMID: 23216436 DOI: 10.1111/aas.12034] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2012] [Indexed: 01/11/2023]
Abstract
INTRODUCTION The lectin-like domain of TNF-α enhances the fluid clearance across the alveolar barrier. For experimental purposes, the lectin-like domain can be mimicked by a synthetic peptide representing the TIP-motif of TNF-α. The present study aims to assess the acute effect of TIP on the pulmonary function in a porcine model of acute respiratory distress syndrome (ARDS). METHODS Lung injury was induced in 16 pigs (25-27 kg) by bronchoalveolar lavage followed by injurious ventilation. Following randomisation, either nebulised TIP (1 mg/kg; AP301, APEPTICO, Vienna, Austria) or water for injection (control group) was administered. During 5 h of monitoring, the extravascular lung water index (EVLWI), the quotient of partial pressure of oxygen and inspired oxygen concentration (PaO(2) /FiO(2) ) and the pulmonary shunt fraction were repetitively assessed. The data were evaluated by an analysis of variance including Bonferroni-Holm correction. RESULTS Comparable baseline conditions in both groups were achieved. Ventilatory parameters were standardised in both groups. In the TIP group, a significant reduction of the EVLWI and a simultaneous increase in the PaO(2) /FiO(2) ratio was shown (each P < 0.0001). No changes in the control group were observed (EVLWI: P = 0.43, PaO(2) /FiO(2) : P = 0.60). The intergroup comparison demonstrates a significant advantage of TIP inhalation over placebo (EVLWI: P < 0.0001, PaO(2) /FiO(2) : P = 0.004, shunt fraction: P = 0.0005). CONCLUSIONS The inhalation of TIP induces an amelioration of clinical surrogate parameters of the lung function in a porcine lung injury model. By mimicking the lectin-like domain, the synthetic TIP peptide AP301 is an innovative approach as supportive therapy in ARDS.
Collapse
Affiliation(s)
- E. K. HARTMANN
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | | - B. DUENGES
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - A. BENTLEY
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | | | | | | - M. SZCZYRBA
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - M. DAVID
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | |
Collapse
|
12
|
Bodenstein M, Bierschock S, Boehme S, Wang H, Vogt A, Kwiecien R, David M, Markstaller K. Influence of fluid and volume state on PaO2oscillations in mechanically ventilated pigs. Exp Lung Res 2013; 39:80-90. [DOI: 10.3109/01902148.2012.758192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Hartmann EK, Boehme S, Bentley A, Duenges B, Klein KU, Elsaesser A, Baumgardner JE, David M, Markstaller K. Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R8. [PMID: 22248044 PMCID: PMC3396238 DOI: 10.1186/cc11147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/04/2011] [Accepted: 01/16/2012] [Indexed: 01/11/2023]
Abstract
Introduction Cyclic alveolar recruitment/derecruitment (R/D) is an important mechanism of ventilator-associated lung injury. In experimental models this process can be measured with high temporal resolution by detection of respiratory-dependent oscillations of the paO2 (ΔpaO2). A previous study showed that end-expiratory collapse can be prevented by an increased respiratory rate in saline-lavaged rabbits. The current study compares the effects of increased positive end-expiratory pressure (PEEP) versus an individually titrated respiratory rate (RRind) on intra-tidal amplitude of Δ paO2 and on average paO2 in saline-lavaged pigs. Methods Acute lung injury was induced by bronchoalveolar lavage in 16 anaesthetized pigs. R/D was induced and measured by a fast-responding intra-aortic probe measuring paO2. Ventilatory interventions (RRind (n = 8) versus extrinsic PEEP (n = 8)) were applied for 30 minutes to reduce Δ paO2. Haemodynamics, spirometry and Δ paO2 were monitored and the Ventilation/Perfusion distributions were assessed by multiple inert gas elimination. The main endpoints average and Δ paO2 following the interventions were analysed by Mann-Whitney-U-Test and Bonferroni's correction. The secondary parameters were tested in an explorative manner. Results Both interventions reduced Δ paO2. In the RRind group, ΔpaO2 was significantly smaller (P < 0.001). The average paO2 continuously decreased following RRind and was significantly higher in the PEEP group (P < 0.001). A sustained difference of the ventilation/perfusion distribution and shunt fractions confirms these findings. The RRind application required less vasopressor administration. Conclusions Different recruitment kinetics were found compared to previous small animal models and these differences were primarily determined by kinetics of end-expiratory collapse. In this porcine model, respiratory rate and increased PEEP were both effective in reducing the amplitude of paO2 oscillations. In contrast to a recent study in a small animal model, however, increased respiratory rate did not maintain end-expiratory recruitment and ultimately resulted in reduced average paO2 and increased shunt fraction.
Collapse
Affiliation(s)
- Erik K Hartmann
- Department of Anaesthesiology, Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|