1
|
Köhler T, Schwier E, Praxenthaler J, Kirchner C, Winde G, Koos B, Henzler D. Isoflurane, like sepsis, decreases CYP1A2 liver enzyme activity in intensive care patients: a clinical study and network model. Intensive Care Med Exp 2024; 12:33. [PMID: 38589754 PMCID: PMC11001842 DOI: 10.1186/s40635-024-00617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
PURPOSE Liver function of intensive care patients is routinely monitored by static blood pathology. For specific indications, liver specific cytochrome activity may be measured by the commercially available maximum liver function capacity (LiMAx) test via quantification of the cytochrome P450 1A2 (CYP1A2) dependent C-methacetin metabolism. Sedation with the volatile anesthetic isoflurane was suspected to abrogate the correlation of LiMAx test with global liver function. We hypothesized that isoflurane has a CYP1A2-activity and LiMAx test result decreasing effect. METHODS In this monocentric, observational clinical study previously liver healthy intensive care patients, scheduled to be changed from propofol to isoflurane sedation, were enrolled. LiMAx testing was done before, during and after termination of isoflurane sedation. RESULTS The mean LiMAx value decreased during isoflurane sedation. Septic patients (n = 11) exhibited lower LiMAx values compared to non-septic patients (n = 11) at all time points. LiMAx values decreased with isoflurane from 140 ± 82 to 30 ± 34 µg kg-1 h-1 in the septic group and from 253 ± 92 to 147 ± 131 µg kg-1 h-1 in the non-septic group while laboratory markers did not imply significant hepatic impairment. Lactate increased during isoflurane inhalation without clinical consequence. CONCLUSION Sepsis and isoflurane have independently demonstrated an effect on reducing the hepatic CYP1A2-activity. A network model was constructed that could explain the mechanism through the influence of isoflurane on hypoxia inducible factor (HIF-1α) by upregulation of the hypoxia-inducible pathway and the downregulation of CYP1A2-activity via the ligand-inducible pathway. Thus, the increased anaerobic metabolism may result in lactate accumulation. The influence of isoflurane sedation on the validated correlation of global liver function with CYP1A2-activity measured by LiMAx testing needs to be investigated in more detail.
Collapse
Affiliation(s)
- Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany.
- Department of Anesthesiology and Intensive Care Medicine, AMEOS-Klinikum Halberstadt, Academic Teaching Hospital, Gleimstraße 5, 38820, Halberstadt, Germany.
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| | - Janina Praxenthaler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, Southeast Bavaria Hospitals, Klinikum Traunstein, Traunstein, Germany
| | - Carmen Kirchner
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| | - Günther Winde
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| | - Björn Koos
- Department of Anesthesiology, Intensive Care and Pain Medicine, Ruhr University Bochum, Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| |
Collapse
|
2
|
Park SH, Lu Y, Shao Y, Prophete C, Horton L, Sisco M, Lee HW, Kluz T, Sun H, Costa M, Zelikoff J, Chen LC, Cohen MD. Longitudinal impact on rat cardiac tissue transcriptomic profiles due to acute intratracheal inhalation exposures to isoflurane. PLoS One 2021; 16:e0257241. [PMID: 34648499 PMCID: PMC8516213 DOI: 10.1371/journal.pone.0257241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022] Open
Abstract
Isoflurane (ISO) is a widely used inhalation anesthetic in experiments with rodents and humans during surgery. Though ISO has not been reported to impart long-lasting side effects, it is unknown if ISO can influence gene regulation in certain tissues, including the heart. Such changes could have important implications for use of this anesthetic in patients susceptible to heart failure/other cardiac abnormalities. To test if ISO could alter gene regulation/expression in heart tissues, and if such changes were reversible, prolonged, or late onset with time, SHR (spontaneously hypertensive) rats were exposed by intratracheal inhalation to a 97.5% air/2.5% ISO mixture on two consecutive days (2 hr/d). Control rats breathed filtered air only. On Days 1, 30, 240, and 360 post-exposure, rat hearts were collected and total RNA was extracted from the left ventricle for global gene expression analysis. The data revealed differentially-expressed genes (DEG) in response to ISO (compared to naïve control) at all post-exposure timepoints. The data showed acute ISO exposures led to DEG associated with wounding, local immune function, inflammation, and circadian rhythm regulation at Days 1 and 30; these effects dissipated by Day 240. There were other significantly-increased DEG induced by ISO at Day 360; these included changes in expression of genes associated with cell signaling, differentiation, and migration, extracellular matrix organization, cell-substrate adhesion, heart development, and blood pressure regulation. Examination of consistent DEG at Days 240 and 360 indicated late onset DEG reflecting potential long-lasting effects from ISO; these included DEG associated with oxidative phosphorylation, ribosome, angiogenesis, mitochondrial translation elongation, and focal adhesion. Together, the data show acute repeated ISO exposures could impart variable effects on gene expression/regulation in the heart. While some alterations self-resolved, others appeared to be long-lasting or late onset. Whether such changes occur in all rat models or in humans remains to be investigated.
Collapse
Affiliation(s)
- Sung-Hyun Park
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
- * E-mail:
| | - Yuting Lu
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Yongzhao Shao
- Departments of Population Health & Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Colette Prophete
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Lori Horton
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Maureen Sisco
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Hyun-Wook Lee
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Thomas Kluz
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Hong Sun
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Judith Zelikoff
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| | - Mitchell D. Cohen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, United States of America
| |
Collapse
|
3
|
Stenroos P, Pirttimäki T, Paasonen J, Paasonen E, Salo RA, Koivisto H, Natunen T, Mäkinen P, Kuulasmaa T, Hiltunen M, Tanila H, Gröhn O. Isoflurane affects brain functional connectivity in rats 1 month after exposure. Neuroimage 2021; 234:117987. [PMID: 33762218 DOI: 10.1016/j.neuroimage.2021.117987] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 02/16/2021] [Accepted: 03/16/2021] [Indexed: 10/21/2022] Open
Abstract
Isoflurane, the most commonly used preclinical anesthetic, induces brain plasticity and long-term cellular and molecular changes leading to behavioral and/or cognitive consequences. These changes are most likely associated with network-level changes in brain function. To elucidate the mechanisms underlying long-term effects of isoflurane, we investigated the influence of a single isoflurane exposure on functional connectivity, brain electrical activity, and gene expression. Male Wistar rats (n = 22) were exposed to 1.8% isoflurane for 3 h. Control rats (n = 22) spent 3 h in the same room without exposure to anesthesia. After 1 month, functional connectivity was evaluated with resting-state functional magnetic resonance imaging (fMRI; n = 6 + 6) and local field potential measurements (n = 6 + 6) in anesthetized animals. A whole genome expression analysis (n = 10+10) was also conducted with mRNA-sequencing from cortical and hippocampal tissue samples. Isoflurane treatment strengthened thalamo-cortical and hippocampal-cortical functional connectivity. Cortical low-frequency fMRI power was also significantly increased in response to the isoflurane treatment. The local field potential results indicating strengthened hippocampal-cortical alpha and beta coherence were in good agreement with the fMRI findings. Furthermore, altered expression was found in 20 cortical genes, several of which are involved in neuronal signal transmission, but no gene expression changes were noted in the hippocampus. Isoflurane induced prolonged changes in thalamo-cortical and hippocampal-cortical function and expression of genes contributing to signal transmission in the cortex. Further studies are required to investigate whether these changes are associated with the postoperative behavioral and cognitive symptoms commonly observed in patients and animals.
Collapse
Affiliation(s)
- Petteri Stenroos
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Tiina Pirttimäki
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Jaakko Paasonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Ekaterina Paasonen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Raimo A Salo
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Hennariikka Koivisto
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Heikki Tanila
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| | - Olli Gröhn
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI,-70211 Kuopio, Finland
| |
Collapse
|
4
|
Upton DH, Popovic K, Fulton R, Kassiou M. Anaesthetic-dependent changes in gene expression following acute and chronic exposure in the rodent brain. Sci Rep 2020; 10:9366. [PMID: 32518252 PMCID: PMC7283325 DOI: 10.1038/s41598-020-66122-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/13/2020] [Indexed: 11/09/2022] Open
Abstract
Anaesthesia has been predicted to affect gene expression of the memory-related regions of the brain including the primary visual cortex. It is also believed that anaesthesia causes inflammation of neural tissues, increasing elderly patients' chances of developing precursor lesions that lead to Alzheimer's disease and other neurodegeneration related diseases. We have analyzed the expression of over 22,000 genes and 129,800 transcripts using oligonucleotide microarrays to examine the brain expression profiles in Sprague Dawley rats following exposure to acute or chronic doses of the anaesthetics isoflurane, ketamine and propofol. Here we report for the first time molecular and genomic data on the effect on the rodent brain of chronic and acute exposure to isoflurane, ketamine and propofol. Our screen identified multiple genes that responded to all three anaesthetics. Although some of the genes were previously known to be anaesthesia responsive, we have for the most part identified novel genes involved in the acute and chronic rodent brain response to different anaesthesia treatments. The latter may be useful candidate genes in the search to elucidate the molecular pathways mediating anaesthetic effects in the brain and may allow us to identify mechanisms by which anaesthetics could impact on neurodegeneration.
Collapse
Affiliation(s)
- Dannielle H Upton
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Kata Popovic
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Roger Fulton
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - Michael Kassiou
- School of Chemistry, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Alleva R, Tognù A, Tomasetti M, Benassi MS, Pazzaglia L, van Oven H, Viganò E, De Simone N, Pacini I, Giannone S, Gagic S, Borghi R, Picone S, Borghi B. Effect of different anaesthetic techniques on gene expression profiles in patients who underwent hip arthroplasty. PLoS One 2019; 14:e0219113. [PMID: 31344051 PMCID: PMC6657832 DOI: 10.1371/journal.pone.0219113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 06/15/2019] [Indexed: 11/18/2022] Open
Abstract
Objectives To investigate the modulation of genes whose expression level is indicative of stress and toxicity following exposure to three anaesthesia techniques, general anaesthesia (GA), regional anaesthesia (RA), or integrated anaesthesia (IA). Methods Patients scheduled for hip arthroplasty receiving GA, RA and IA were enrolled at Rizzoli Orthopaedic Institute of Bologna, Italy and the expression of genes involved in toxicology were evaluated in peripheral blood mononuclear cells (PBMCs) collected before (T0), immediately after surgery (T1), and on the third day (T2) after surgery in association with biochemical parameters. Results All three anaesthesia methods proved safe and reliable in terms of pain relief and patient recovery. Gene ontology analysis revealed that GA and mainly IA were associated with deregulation of DNA repair system and stress-responsive genes, which was observed even after 3-days from anaesthesia. Conversely, RA was not associated with substantial changes in gene expression. Conclusions Based on the gene expression analysis, RA technique showed the smallest toxicological effect in hip arthroplasty. Trial registration ClinicalTrials.gov number NCT03585647.
Collapse
Affiliation(s)
- Renata Alleva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- * E-mail:
| | - Andrea Tognù
- Department of Anaesthesia and Postoperative Intensive Care, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Hanna van Oven
- Department of Anaesthesia and Postoperative Intensive Care, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Ettore Viganò
- Department of Anaesthesia and Postoperative Intensive Care, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Nicola De Simone
- Department of Anaesthesia and Postoperative Intensive Care, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Ilaria Pacini
- Department of Anaesthesia and Postoperative Intensive Care, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Sandra Giannone
- Department of Anaesthesia and Postoperative Intensive Care, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Sanjin Gagic
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Research Unit of Anaesthesia and Pain Therapy, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Raffaele Borghi
- Department of Anaesthesia and Postoperative Intensive Care, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Sara Picone
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Research Unit of Anaesthesia and Pain Therapy, Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Battista Borghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Research Unit of Anaesthesia and Pain Therapy, Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
6
|
Zhu Y, Xiao X, Li G, Bu J, Zhou W, Zhou S. Isoflurane anesthesia induces liver injury by regulating the expression of insulin-like growth factor 1. Exp Ther Med 2017; 13:1608-1613. [PMID: 28413517 DOI: 10.3892/etm.2017.4157] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/09/2016] [Indexed: 12/20/2022] Open
Abstract
It has been suggested that isoflurane may cause perioperative liver injury. However, the mechanism of its action remains unknown. The purpose of the present study was to determine this possible mechanism. Sprague-Dawley rats were randomly assigned into one of three groups (all n=12): Control group (exposed to mock anesthesia), isoflurane group (exposed to 2% isoflurane for 90 min), and isoflurane + insulin-like growth factor 1 (IGF-1) group (exposed to 2% isoflurane for 90 min and then treated with IGF-1). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were conducted to determine the levels of expression of IGF-1 and its receptor IGF-R. Liver necrosis was assessed by histological examination. TUNEL assay was performed to determine the apoptosis of hepatic cells. In addition, the levels of the proteins caspase-3 and B-cell lymphoma-extra large (Bcl-xL) were measured. Compared with the control group, levels of IGF-1 and IGF-1R mRNA and protein were significantly decreased following exposure to isoflurane (all P<0.05). The necrosis rate and liver apoptosis were significantly increased in the group treated with isoflurane alone compared with the control group (P<0.05), but were significantly decreased compared with the isoflurane group following application of IGF-1 (P<0.05). Additionally, isoflurane exposure significantly increased levels of caspase-3 compared with the control group (P<0.05), but decreased levels of Bcl-xL (P<0.05). By contrast, application of IGF-1 reversed these changes. The present study therefore suggests that isoflurane induces liver injury in part by regulating the expression of IGF-1 and that application of IGF-1 may protect against liver injury induced by isoflurane exposure.
Collapse
Affiliation(s)
- Yingxian Zhu
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaoyu Xiao
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Guowei Li
- Department of Orthopaedics II, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Juyuan Bu
- Department of General Surgery I, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Wenying Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Shaopeng Zhou
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
7
|
Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain. Behav Brain Res 2017; 317:453-460. [DOI: 10.1016/j.bbr.2016.09.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/14/2016] [Accepted: 09/18/2016] [Indexed: 11/19/2022]
|
8
|
Yamashita K, Matsumoto H, Saito F, Takeyoshi M. Differences in gene expression profiles in liver caused by different types of anesthesia: cases of CO2-O2 and isoflurane. J Toxicol Sci 2015; 40:829-36. [PMID: 26558464 DOI: 10.2131/jts.40.829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Anesthesia is used for pain control and is necessary in toxicological studies. In this study, we examined the effects of anesthesia on gene expression profiles caused by different types of anesthesia. To elucidate the effects of anesthesia on gene expression profiles, DNA microarray analysis was performed with CO2-O2 anesthesia and isoflurane anesthesia, and gene expression profiles in the liver were analyzed. Consequently, a total of 209 probes out of 61,573 showed higher or lower expression levels in the isoflurane anesthesia group compared with CO2-O2 anesthesia. This is less than 0.34% of all probes, indicating that the effects of different types of anesthesia on gene expression profiles are limited. However, careful consideration should be taken in the cases of handling the disturbed genes using DNA microarray, especially in case of research on glutathione-related pathway under isoflurane anesthesia.
Collapse
Affiliation(s)
- Kyosuke Yamashita
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan (CERI)
| | | | | | | |
Collapse
|
9
|
Isoflurane Ameliorates Acute Lung Injury by Preserving Epithelial Tight Junction Integrity. Anesthesiology 2015; 123:377-88. [PMID: 26068207 DOI: 10.1097/aln.0000000000000742] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Isoflurane may be protective in preclinical models of lung injury, but its use in patients with lung injury remains controversial and the mechanism of its protective effects remains unclear. The authors hypothesized that this protection is mediated at the level of alveolar tight junctions and investigated the possibility in a two-hit model of lung injury that mirrors human acute respiratory distress syndrome. METHODS Wild-type mice were treated with isoflurane 1 h after exposure to nebulized endotoxin (n = 8) or saline control (n = 9) and then allowed to recover for 24 h before mechanical ventilation (MV; tidal volume, 15 ml/kg, 2 h) producing ventilator-induced lung injury. Mouse lung epithelial cells were similarly treated with isoflurane 1 h after exposure to lipopolysaccharide. Cells were cyclically stretched the following day to mirror the MV protocol used in vivo. RESULTS Mice treated with isoflurane following exposure to inhaled endotoxin and before MV exhibited significantly less physiologic lung dysfunction. These effects appeared to be mediated by decreased vascular leak, but not altered inflammatory indices. Mouse lung epithelial cells treated with lipopolysaccharide and cyclic stretch and lungs harvested from mice after treatment with lipopolysaccharide and MV had decreased levels of a key tight junction protein (i.e., zona occludens 1) that was rescued by isoflurane treatment. CONCLUSIONS Isoflurane rescued lung injury induced by a two-hit model of endotoxin exposure followed by MV by maintaining the integrity of the alveolar-capillary barrier possibly by modulating the expression of a key tight junction protein.
Collapse
|
10
|
Biological processes and pathway changes in isoflurane-induced anesthesia revealed by bioinformatics analysis of gene expression profiles. J Anesth 2015. [DOI: 10.1007/s00540-015-2049-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
11
|
Werner W, Sallmon H, Leder A, Lippert S, Reutzel-Selke A, Morgül MH, Jonas S, Dame C, Neuhaus P, Iacomini J, Tullius SG, Sauer IM, Raschzok N. Independent effects of sham laparotomy and anesthesia on hepatic microRNA expression in rats. BMC Res Notes 2014; 7:702. [PMID: 25297646 PMCID: PMC4198680 DOI: 10.1186/1756-0500-7-702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 10/02/2014] [Indexed: 01/01/2023] Open
Abstract
Background Studies on liver regeneration following partial hepatectomy (PH) have identified several microRNAs (miRNAs) that show a regulated expression pattern. These studies involve major surgery to access the liver, which is known to have intrinsic effects on hepatic gene expression and may also affect miRNA screening results. We performed two-third PH or sham laparotomy (SL) in Wistar rats to investigate the effect of both procedures on miRNA expression in liver tissue and corresponding plasma samples by microarray and qRT-PCR analyses. As control groups, non-treated rats and rats undergoing anesthesia only were used. Results We found that 49 out of 323 miRNAs (15%) were significantly deregulated after PH in liver tissue 12 to 48 hours postoperatively (>20% change), while 45 miRNAs (14%) were deregulated following SL. Out of these miRNAs, 10 miRNAs were similarly deregulated after PH and SL, while one miRNA showed opposite regulation. In plasma, miRNA upregulation was observed for miR-133a and miR-133b following PH and SL, whereas miR-100 and miR-466c were similarly downregulated following anesthesia and surgery. Conclusions We show that miRNAs are indeed regulated by sham laparotomy and anesthesia in rats. These findings illustrate the critical need for finding appropriate control groups in experimental surgery.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Experimental Surgery and Regenerative Medicine, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Cohen MD, Vaughan JM, Garrett B, Prophete C, Horton L, Sisco M, Kodavanti UP, Ward WO, Peltier RE, Zelikoff J, Chen LC. Acute high-level exposure to WTC particles alters expression of genes associated with oxidative stress and immune function in the lung. J Immunotoxicol 2014; 12:140-53. [PMID: 24911330 DOI: 10.3109/1547691x.2014.914609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
First responders (FR) present at Ground Zero in the first 72 h after the World Trade Center (WTC) collapsed have progressively exhibited significant respiratory injuries. The few toxicology studies performed to date evaluated effects from just fine (< 2.5 µm) WTC dusts; none examined health effects/toxicities from atmospheres bearing larger particle sizes, despite the fact the majority (> 96%) of dusts were > 10 µm and most FR likely entrained dusts by mouth breathing. Using a system that generated/delivered supercoarse (10-53 µm) WTC dusts to F344 rats (in a manner that mimicked FR exposures), this study sought to examine potential toxicities in the lungs. In this exploratory study, rats were exposed for 2 h to 100 mg WTC dust/m(3) (while under isoflurane [ISO] anesthesia) or an air/ISO mixture; this dose conservatively modeled likely exposures by mouth-breathing FR facing ≈750-1000 mg WTC dust/m(3). Lungs were harvested 2 h post-exposure and total RNA extracted for subsequent global gene expression analysis. Among the > 1000 genes affected by WTC dust (under ISO) or ISO alone, 166 were unique to the dust exposure. In many instances, genes maximally-induced by the WTC dust exposure (relative to in naïve rats) were unchanged/inhibited by ISO only; similarly, several genes maximally inhibited in WTC dust rats were largely induced/unchanged in rats that received ISO only. These outcomes reflect likely contrasting effects of ISO and the WTC dust on lung gene expression. Overall, the data show that lungs of rats exposed to WTC dust (under ISO) - after accounting for any impact from ISO alone - displayed increased expression of genes related to lung inflammation, oxidative stress, and cell cycle control, while several involved in anti-oxidant function were inhibited. These changes suggested acute inflammogenic effects and oxidative stress in the lungs of WTC dust-exposed rats. This study, thus, concludes that a single very high exposure to WTC dusts could potentially have adversely affected the respiratory system - in terms of early inflammatory and oxidative stress processes. As these changes were not compared with other types of dusts, the uniqueness of these WTC-mediated effects remains to be confirmed. It also still remains to be determined if these effects might have any relevance to chronic lung pathologies that became evident among FR who encountered the highest dust levels on September 11, 2001 and the 2 days thereafter. Ongoing studies using longer-range post-exposure analyses (up to 1-year or more) will help to determine if effects seen here on genes were acute, reversible, or persistent, and associated with corresponding histopathologic/biochemical changes in situ.
Collapse
Affiliation(s)
- Mitchell D Cohen
- Department of Environmental Medicine, New York University School of Medicine , NY , USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Su MW, Chang SS, Chen CH, Huang CC, Chang SW, Tsai YC, Lam CF. Preconditioning renoprotective effect of isoflurane in a rat model of virtual renal transplant. J Surg Res 2014; 189:135-42. [PMID: 24674838 DOI: 10.1016/j.jss.2014.02.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 02/18/2014] [Accepted: 02/20/2014] [Indexed: 11/25/2022]
Abstract
BACKGROUND The development of warm-cold ischemia-reperfusion (IR) injury of the kidney grafts is inevitable during renal transplantation. However, there is currently no definite renoprotective strategy available in the protection of the graft tissue. In the present study, we compared the renal protection of preconditioning isoflurane with N-acetylcysteine (NAC) in a novel rat model of warm-cold renal IR injury. MATERIALS AND METHODS Adult Sprague-Dawley rats were randomly assigned to receive inhaled isoflurane (1.5% for 2 h), NAC (1 g/kg, intra-arterial injection) or placebo before the induction of brief warm ischemia (10 min) followed by cold ischemia (45 min) periods. Plasma levels of creatinine and tissue inflammatory reaction in the kidney were analyzed 72 h after reperfusion. RESULTS Elevated plasma level of creatinine and urea indicated the development of acute renal injury secondary to IR injury. The creatinine levels were reduced in animals pretreated with inhaled isoflurane and NAC, and the level was more significantly decreased in the isoflurane-treated group. Preconditioning with volatile isoflurane also significantly suppressed the tissue myeloperoxidase activity and expression of the inducible nitric oxide synthase. Immunostaining confirmed that myeloperoxidase expression was most significantly attenuated in the glomerulus and peritubular capillaries of rats pre-exposed to isoflurane. CONCLUSIONS We present the first study demonstrating that the administration of volatile isoflurane before induction of experimental warm-cold renal IR injury provides preconditioning renoprotective effect, which is superior to the treatment with NAC. The beneficial renoprotective effect of isoflurane is most likely mediated by attenuation of proinflammatory reaction in the injured kidney.
Collapse
Affiliation(s)
- Min-Wen Su
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shen-Shin Chang
- Department of Surgery, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chung-Hao Chen
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chien-Chi Huang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Wei Chang
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Yu-Chuan Tsai
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Chen-Fuh Lam
- Department of Anesthesiology, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan; Department of Anesthesiology, Buddhist Tzu-Chi General Hospital and Tzu-Chi University School of Medicine, Hualien, Taiwan.
| |
Collapse
|
14
|
Dabbagh A, Rajaei S. The role of anesthetic drugs in liver apoptosis. HEPATITIS MONTHLY 2013; 13:e13162. [PMID: 24069040 PMCID: PMC3782737 DOI: 10.5812/hepatmon.13162] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 07/13/2013] [Accepted: 08/06/2013] [Indexed: 02/07/2023]
Abstract
CONTEXT The modern practice of anesthesia is highly dependent ona group of anesthetic drugs which many of them are metabolized in the liver. EVIDENCE ACQUISITION The liver, of course, usually tolerates this burden. However, this is not always an unbroken rule. Anesthetic induced apoptosis has gained great concern during the last years; especially considering the neurologic system. RESULTS However, we have evidence that there is some concern regarding their effects on the liver cells. Fortunately not all the anesthetics are blamed and even some could be used safely, based on the available evidence. CONCLUSIONS Besides, there are some novel agents, yet under research, which could affect the future of anesthetic agents' fate regarding their hepatic effects.
Collapse
Affiliation(s)
- Ali Dabbagh
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Ali Dabbagh, Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran. Tel: +98-9121972368, Fax: +98-2122074101, E-mail: ,
| | - Samira Rajaei
- School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|