1
|
Schranc Á, Diaper J, Südy R, Peták F, Habre W, Albu G. Lung recruitment by continuous negative extra-thoracic pressure support following one-lung ventilation: an experimental study. Front Physiol 2023; 14:1160731. [PMID: 37256073 PMCID: PMC10225513 DOI: 10.3389/fphys.2023.1160731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Lung recruitment maneuvers following one-lung ventilation (OLV) increase the risk for the development of acute lung injury. The application of continuous negative extrathoracic pressure (CNEP) is gaining interest both in intubated and non-intubated patients. However, there is still a lack of knowledge on the ability of CNEP support to recruit whole lung atelectasis following OLV. We investigated the effects of CNEP following OLV on lung expansion, gas exchange, and hemodynamics. Ten pigs were anesthetized and mechanically ventilated with pressure-regulated volume control mode (PRVC; FiO2: 0.5, Fr: 30-35/min, VT: 7 mL/kg, PEEP: 5 cmH2O) for 1 hour, then baseline (BL) data for gas exchange (arterial partial pressure of oxygen, PaO2; and carbon dioxide, PaCO2), ventilation and hemodynamical parameters and lung aeration by electrical impedance tomography were recorded. Subsequently, an endobronchial blocker was inserted, and OLV was applied with a reduced VT of 5 mL/kg. Following a new set of measurements after 1 h of OLV, two-lung ventilation was re-established, combining PRVC (VT: 7 mL/kg) and CNEP (-15 cmH2O) without any hyperinflation maneuver and data collection was then repeated at 5 min and 1 h. Compared to OLV, significant increases in PaO2 (154.1 ± 13.3 vs. 173.8 ± 22.1) and decreases in PaCO2 (52.6 ± 11.7 vs. 40.3 ± 4.5 mmHg, p < 0.05 for both) were observed 5 minutes following initiation of CNEP, and these benefits in gas exchange remained after an hour of CNEP. Gradual improvements in lung aeration in the non-collapsed lung were also detected by electrical impedance tomography (p < 0.05) after 5 and 60 min of CNEP. Hemodynamics and ventilation parameters remained stable under CNEP. Application of CNEP in the presence of whole lung atelectasis proved to be efficient in improving gas exchange via recruiting the lung without excessive airway pressures. These benefits of combined CNEP and positive pressure ventilation may have particular value in relieving atelectasis in the postoperative period of surgical procedures requiring OLV.
Collapse
Affiliation(s)
- Álmos Schranc
- Unit for Anesthesiological Investigations, Department of Anesthesiology Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - John Diaper
- Unit for Anesthesiological Investigations, Department of Anesthesiology Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Roberta Südy
- Unit for Anesthesiological Investigations, Department of Anesthesiology Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Ferenc Peták
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Walid Habre
- Unit for Anesthesiological Investigations, Department of Anesthesiology Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| | - Gergely Albu
- Unit for Anesthesiological Investigations, Department of Anesthesiology Pharmacology, Intensive Care and Emergency Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
2
|
Rozental O, Thalappillil R, White RS, Tam CW. Haemodynamic Monitoring Needs for Goal-Directed Fluid Therapy in Lung Resection. Heart Lung Circ 2021; 31:158-161. [PMID: 34654647 DOI: 10.1016/j.hlc.2021.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Affiliation(s)
- Olga Rozental
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Anesthesiology, NewYork-Presbyterian Hospital, New York, NY, USA.
| | - Richard Thalappillil
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Anesthesiology, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Robert S White
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Anesthesiology, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Christopher W Tam
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, USA; Department of Anesthesiology, NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
3
|
Behem CR, Graessler MF, Friedheim T, Kluttig R, Pinnschmidt HO, Duprée A, Debus ES, Reuter DA, Wipper SH, Trepte CJC. The use of pulse pressure variation for predicting impairment of microcirculatory blood flow. Sci Rep 2021; 11:9215. [PMID: 33911116 PMCID: PMC8080713 DOI: 10.1038/s41598-021-88458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Dynamic parameters of preload have been widely recommended to guide fluid therapy based on the principle of fluid responsiveness and with regard to cardiac output. An equally important aspect is however to also avoid volume-overload. This accounts particularly when capillary leakage is present and volume-overload will promote impairment of microcirculatory blood flow. The aim of this study was to evaluate, whether an impairment of intestinal microcirculation caused by volume-load potentially can be predicted using pulse pressure variation in an experimental model of ischemia/reperfusion injury. The study was designed as a prospective explorative large animal pilot study. The study was performed in 8 anesthetized domestic pigs (German landrace). Ischemia/reperfusion was induced during aortic surgery. 6 h after ischemia/reperfusion-injury measurements were performed during 4 consecutive volume-loading-steps, each consisting of 6 ml kg−1 bodyweight−1. Mean microcirculatory blood flow (mean Flux) of the ileum was measured using direct laser-speckle-contrast-imaging. Receiver operating characteristic analysis was performed to determine the ability of pulse pressure variation to predict a decrease in microcirculation. A reduction of ≥ 10% mean Flux was considered a relevant decrease. After ischemia–reperfusion, volume-loading-steps led to a significant increase of cardiac output as well as mean arterial pressure, while pulse pressure variation and mean Flux were significantly reduced (Pairwise comparison ischemia/reperfusion-injury vs. volume loading step no. 4): cardiac output (l min−1) 1.68 (1.02–2.35) versus 2.84 (2.15–3.53), p = 0.002, mean arterial pressure (mmHg) 29.89 (21.65–38.12) versus 52.34 (43.55–61.14), p < 0.001, pulse pressure variation (%) 24.84 (17.45–32.22) versus 9.59 (1.68–17.49), p = 0.004, mean Flux (p.u.) 414.95 (295.18–534.72) versus 327.21 (206.95–447.48), p = 0.006. Receiver operating characteristic analysis revealed an area under the curve of 0.88 (CI 95% 0.73–1.00; p value < 0.001) for pulse pressure variation for predicting a decrease of microcirculatory blood flow. The results of our study show that pulse pressure variation does have the potential to predict decreases of intestinal microcirculatory blood flow due to volume-load after ischemia/reperfusion-injury. This should encourage further translational research and might help to prevent microcirculatory impairment due to excessive fluid resuscitation and to guide fluid therapy in the future.
Collapse
Affiliation(s)
- Christoph R Behem
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Michael F Graessler
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Till Friedheim
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Rahel Kluttig
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Hans O Pinnschmidt
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Duprée
- Department of Visceral- and Thoracic Surgery, Center of Operative Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - E Sebastian Debus
- Department of Vascular Medicine, University Heart and Vascular Center Hamburg GmbH (UHZ), Hamburg, Germany
| | - Daniel A Reuter
- Department of Anesthesiology and Intensive Care Medicine, Rostock University Medical Center, Rostock, Germany
| | - Sabine H Wipper
- University Department for Vascular Surgery, Department of Operative Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | - Constantin J C Trepte
- Department of Anesthesiology, Center of Anesthesiology and Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
4
|
Monnet X, Teboul JL. Transpulmonary thermodilution: advantages and limits. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2017. [PMID: 28625165 PMCID: PMC5474867 DOI: 10.1186/s13054-017-1739-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background For complex patients in the intensive care unit or in the operating room, many questions regarding their haemodynamic management cannot be answered with simple clinical examination. In particular, arterial pressure allows only a rough estimation of cardiac output. Transpulmonary thermodilution is a technique that provides a full haemodynamic assessment through cardiac output and other indices. Main body Through the analysis of the thermodilution curve recorded at the tip of an arterial catheter after the injection of a cold bolus in the venous circulation, transpulmonary thermodilution intermittently measures cardiac output. This measure allows the calibration of pulse contour analysis. This provides continuous and real time monitoring of cardiac output, which is not possible with the pulmonary artery catheter. Transpulmonary thermodilution provides several variables beyond cardiac output. It estimates the end-diastolic volume of the four cardiac cavities, which is a marker of cardiac preload. It provides an estimation of the systolic function of the combined ventricles. It is more direct than the pulmonary artery catheter, but does not allow the distinct estimation of right and left cardiac function. It is easier and faster to perform than echocardiography, but does not provide a full evaluation of the cardiac structure and function. Transpulmonary thermodilution has the unique advantage of being able to estimate at the bedside extravascular lung water, which quantifies the volume of pulmonary oedema, and pulmonary vascular permeability, which quantifies the degree of a pulmonary capillary leak. Both indices are helpful for guiding fluid strategy, especially in case of acute respiratory distress syndrome. Conclusions Transpulmonary thermodilution provides a full cardiovascular evaluation that allows one to answer many questions regarding haemodynamic management. It belongs to the category of “advanced” devices that are indicated for the most critically ill and/or complex patients.
Collapse
Affiliation(s)
- Xavier Monnet
- Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Medical Intensive Care Unit, Le Kremlin-Bicêtre, F-94270, France. .,Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999, Le Kremlin-Bicêtre, F-94270, France. .,Service de réanimation médicale, Hôpital de Bicêtre, 78, rue du Général Leclerc, F-94270, Le Kremlin-Bicêtre, France.
| | - Jean-Louis Teboul
- Hôpitaux Universitaires Paris-Sud, Hôpital de Bicêtre, Medical Intensive Care Unit, Le Kremlin-Bicêtre, F-94270, France.,Université Paris-Sud, Faculté de médecine Paris-Sud, Inserm UMR S_999, Le Kremlin-Bicêtre, F-94270, France
| |
Collapse
|
5
|
Jozwiak M, Teboul JL, Monnet X. Extravascular lung water in critical care: recent advances and clinical applications. Ann Intensive Care 2015; 5:38. [PMID: 26546321 PMCID: PMC4636545 DOI: 10.1186/s13613-015-0081-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 10/27/2015] [Indexed: 12/16/2022] Open
Abstract
Extravascular lung water (EVLW) is the amount of fluid that is accumulated in the interstitial and alveolar spaces. In lung oedema, EVLW increases either because of increased lung permeability or because of increased hydrostatic pressure in the pulmonary capillaries, or both. Increased EVLW is always potentially life-threatening, mainly because it impairs gas exchange and reduces lung compliance. The only technique that provides an easy measurement of EVLW at the bedside is transpulmonary thermodilution. The validation of EVLW measurements by thermodilution was based on studies showing reasonable correlations with gravimetry or thermo-dye dilution in experimental and clinical studies. EVLW should be indexed to predicted body weight. This indexation reduces the proportion of ARDS patients for whom EVLW is in the normal range. Compared to non-indexed EVLW, indexed EVLW (EVLWI) is better correlated with the lung injury score and the oxygenation and it is a better predictor of mortality of patients with acute lung injury or acute respiratory distress syndrome (ARDS). Transpulmonary thermodilution also provides the pulmonary vascular permeability index (PVPI), which is an indirect reflection of the integrity of the alveolocapillary barrier. As clinical applications, EVLWI and PVPI may be useful to guide fluid management of patients at risk of fluid overload, as during septic shock and ARDS. High EVLWI and PVPI values predict mortality in several categories of critically ill patients, especially during ARDS. Thus, fluid administration should be limited when EVLWI is already high. Whatever the value of EVLWI, PVPI may indicate that fluid administration is particularly at risk of aggravating lung oedema. In the acute phase of haemodynamic resuscitation during septic shock and ARDS, high EVLWI and PVPI values may warn of the risk of fluid overload and prevent excessive volume expansion. At the post-resuscitation phase, they may prompt initiation of fluid removal thereby achieving a negative fluid balance.
Collapse
Affiliation(s)
- Mathieu Jozwiak
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France. .,AP-HP, Service de réanimation médicale, Hôpital de Bicêtre, 78, rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France. .,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| | - Jean-Louis Teboul
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France. .,AP-HP, Service de réanimation médicale, Hôpital de Bicêtre, 78, rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France. .,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| | - Xavier Monnet
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Le Kremlin Bicêtre, France. .,AP-HP, Service de réanimation médicale, Hôpital de Bicêtre, 78, rue du Général Leclerc, 94270, Le Kremlin-Bicêtre, France. .,Inserm UMR_S 999, Hôpital Marie Lannelongue, Le Plessis-Robinson, France.
| |
Collapse
|