1
|
Lower Gaussian heat kernel bounds for the random conductance model in a degenerate ergodic environment. Stoch Process Their Appl 2021. [DOI: 10.1016/j.spa.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2
|
Quenched local limit theorem for random walks among time-dependent ergodic degenerate weights. Probab Theory Relat Fields 2021. [DOI: 10.1007/s00440-021-01028-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractWe establish a quenched local central limit theorem for the dynamic random conductance model on $${\mathbb {Z}}^d$$
Z
d
only assuming ergodicity with respect to space-time shifts and a moment condition. As a key analytic ingredient we show Hölder continuity estimates for solutions to the heat equation for discrete finite difference operators in divergence form with time-dependent degenerate weights. The proof is based on De Giorgi’s iteration technique. In addition, we also derive a quenched local central limit theorem for the static random conductance model on a class of random graphs with degenerate ergodic weights.
Collapse
|
3
|
Dario P, Gu C. Quantitative homogenization of the parabolic and elliptic Green’s functions on percolation clusters. ANN PROBAB 2021. [DOI: 10.1214/20-aop1456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Paul Dario
- School of Mathematical Sciences, Tel Aviv University
| | | |
Collapse
|
4
|
|
5
|
Andres S, Deuschel JD, Slowik M. Green kernel asymptotics for two-dimensional random walks under random conductances. ELECTRONIC COMMUNICATIONS IN PROBABILITY 2020. [DOI: 10.1214/20-ecp337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Gracar P, Stauffer A. Random walks in random conductances: Decoupling and spread of infection. Stoch Process Their Appl 2019. [DOI: 10.1016/j.spa.2018.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Boukhadra O. On heat kernel decay for the random conductance model. Stat Probab Lett 2018. [DOI: 10.1016/j.spl.2017.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Gold J. Intrinsic isoperimetry of the giant component of supercritical bond percolation in dimension two. ELECTRON J PROBAB 2018. [DOI: 10.1214/18-ejp178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Sapozhnikov A. Random walks on infinite percolation clusters in models with long-range correlations. ANN PROBAB 2017. [DOI: 10.1214/16-aop1103] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Garet O, Marchand R, Procaccia EB, Théret M. Continuity of the time and isoperimetric constants in supercritical percolation. ELECTRON J PROBAB 2017. [DOI: 10.1214/17-ejp90] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Banerjee S, Hoffman C. Random mass splitting and a quenched invariance principle. Stoch Process Their Appl 2016. [DOI: 10.1016/j.spa.2015.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Andres S, Deuschel JD, Slowik M. Heat kernel estimates for random walks with degenerate weights. ELECTRON J PROBAB 2016. [DOI: 10.1214/16-ejp4382] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Procaccia EB, Rosenthal R, Sapozhnikov A. Quenched invariance principle for simple random walk on clusters in correlated percolation models. Probab Theory Relat Fields 2015. [DOI: 10.1007/s00440-015-0668-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Benjamini I, Duminil-Copin H, Kozma G, Yadin A. Disorder, entropy and harmonic functions. ANN PROBAB 2015. [DOI: 10.1214/14-aop934] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Berger N, Rosenthal R. Random walks on discrete point processes. ANNALES DE L'INSTITUT HENRI POINCARÉ, PROBABILITÉS ET STATISTIQUES 2015. [DOI: 10.1214/13-aihp593] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Harnack inequalities on weighted graphs and some applications to the random conductance model. Probab Theory Relat Fields 2015. [DOI: 10.1007/s00440-015-0623-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Rousselle A. Quenched invariance principle for random walks on Delaunay triangulations. ELECTRON J PROBAB 2015. [DOI: 10.1214/ejp.v20-4006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Arnaud Rousselle
- Université de Rouen and Université Paris Ouest Nanterre La Défense
| |
Collapse
|
18
|
de Buyer P, Mourrat JC. Diffusive decay of the environment viewed by the particle. ELECTRONIC COMMUNICATIONS IN PROBABILITY 2015. [DOI: 10.1214/ecp.v20-3998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
|
20
|
Kantorovich distance in the martingale CLT and quantitative homogenization of parabolic equations with random coefficients. Probab Theory Relat Fields 2013. [DOI: 10.1007/s00440-013-0529-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Caputo P, Faggionato A, Prescott T. Invariance principle for Mott variable range hopping and other walks on point processes. ANNALES DE L'INSTITUT HENRI POINCARÉ, PROBABILITÉS ET STATISTIQUES 2013. [DOI: 10.1214/12-aihp490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
22
|
Buckley S. Anomalous heat kernel behaviour for the dynamic random conductance model. ELECTRONIC COMMUNICATIONS IN PROBABILITY 2013. [DOI: 10.1214/ecp.v18-2525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Xiao Y, Zheng X. Discrete fractal dimensions of the ranges of random walks in $${{\mathbb Z}^d}$$ associate with random conductances. Probab Theory Relat Fields 2012. [DOI: 10.1007/s00440-012-0418-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
König W, Salvi M, Wolff T. Large deviations for the local times of a random walk among
random conductances. ELECTRONIC COMMUNICATIONS IN PROBABILITY 2012. [DOI: 10.1214/ecp.v17-1820] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Procaccia E, Rosenthal R. Concentration estimates for the isoperimetric constant of the
supercritical percolation cluster. ELECTRONIC COMMUNICATIONS IN PROBABILITY 2012. [DOI: 10.1214/ecp.v17-2185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Biskup M, Spohn H. Scaling limit for a class of gradient fields with nonconvex potentials. ANN PROBAB 2011. [DOI: 10.1214/10-aop548] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
|
28
|
Fribergh A. The speed of a biased random walk on a percolation cluster at high density. ANN PROBAB 2010. [DOI: 10.1214/09-aop521] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
|
30
|
Barlow MT, Deuschel JD. Invariance principle for the random conductance model with unbounded conductances. ANN PROBAB 2010. [DOI: 10.1214/09-aop481] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Boukhadra O. Standard Spectral Dimension for the Polynomial Lower Tail Random Conductances Model. ELECTRON J PROBAB 2010. [DOI: 10.1214/ejp.v15-839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Hambly B, Barlow M. Parabolic Harnack inequality and local limit theorem for percolation clusters. ELECTRON J PROBAB 2009. [DOI: 10.1214/ejp.v14-587] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Biskup M, Prescott T. Functional CLT for Random Walk Among Bounded Random Conductances. ELECTRON J PROBAB 2007. [DOI: 10.1214/ejp.v12-456] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|