1
|
Pathwise Convergent Approximation for the Fractional SDEs. MATHEMATICS 2022. [DOI: 10.3390/math10040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fractional stochastic differential equation (FSDE)-based random processes are used in a wide spectrum of scientific disciplines. However, in the majority of cases, explicit solutions for these FSDEs do not exist and approximation schemes have to be applied. In this paper, we study one-dimensional stochastic differential equations (SDEs) driven by stochastic process with Hölder continuous paths of order 1/2<γ<1. Using the Lamperti transformation, we construct a backward approximation scheme for the transformed SDE. The inverse transformation provides an approximation scheme for the original SDE which converges at the rate h2γ, where h is a time step size of a uniform partition of the time interval under consideration. This approximation scheme covers wider class of FSDEs and demonstrates higher convergence rate than previous schemes by other authors in the field.
Collapse
|
2
|
Hu Y, Liu Y, Nualart D. Crank–Nicolson scheme for stochastic differential equations driven by fractional Brownian motions. ANN APPL PROBAB 2021. [DOI: 10.1214/20-aap1582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Yaozhong Hu
- Department of Mathematical and Statistical Sciences, University of Alberta
| | - Yanghui Liu
- Department of Mathematics, Baruch College CUNY
| | | |
Collapse
|
3
|
Peng S, Zhang H. Wong–Zakai Approximation for Stochastic Differential Equations Driven by G-Brownian Motion. J THEOR PROBAB 2020. [DOI: 10.1007/s10959-020-01058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Numerical Scheme for Stochastic Differential Equations Driven by Fractional Brownian Motion with $$ 1/4<H <1/2$$. J THEOR PROBAB 2020. [DOI: 10.1007/s10959-019-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Optimal strong convergence rate of a backward Euler type scheme for the Cox–Ingersoll–Ross model driven by fractional Brownian motion. Stoch Process Their Appl 2020. [DOI: 10.1016/j.spa.2019.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
|
7
|
Liu Y, Tindel S. First-order Euler scheme for SDEs driven by fractional Brownian motions: The rough case. ANN APPL PROBAB 2019. [DOI: 10.1214/17-aap1374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Hu Y, Liu Y, Nualart D. Rate of convergence and asymptotic error distribution of Euler approximation schemes for fractional diffusions. ANN APPL PROBAB 2016. [DOI: 10.1214/15-aap1114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
|
10
|
Beskos A, Dureau J, Kalogeropoulos K. Bayesian inference for partially observed stochastic differential equations driven by fractional Brownian motion. Biometrika 2015. [DOI: 10.1093/biomet/asv051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Cohen S, Panloup F, Tindel S. Approximation of stationary solutions to SDEs driven by multiplicative fractional noise. Stoch Process Their Appl 2014. [DOI: 10.1016/j.spa.2013.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Baudoin F, Ouyang C, Tindel S. Upper bounds for the density of solutions to stochastic differential equations driven by fractional Brownian motions. ANNALES DE L'INSTITUT HENRI POINCARÉ, PROBABILITÉS ET STATISTIQUES 2014. [DOI: 10.1214/12-aihp522] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Friz P, Riedel S. Convergence rates for the full Gaussian rough paths. ANNALES DE L'INSTITUT HENRI POINCARÉ, PROBABILITÉS ET STATISTIQUES 2014. [DOI: 10.1214/12-aihp507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
On inference for fractional differential equations. STATISTICAL INFERENCE FOR STOCHASTIC PROCESSES 2013. [DOI: 10.1007/s11203-013-9076-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
|
16
|
|