1
|
Cho S, Jeon JM, Kim D, Yu K, Park BU. Partially Linear Additive Regression with a General Hilbertian Response 1. J Am Stat Assoc 2022. [DOI: 10.1080/01621459.2022.2149407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
2
|
|
3
|
Jeon JM, Park BU, Van Keilegom I. Additive regression for non-Euclidean responses and predictors. Ann Stat 2021. [DOI: 10.1214/21-aos2048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Jeon JM, Park BU, Van Keilegom I. Additive regression for predictors of various natures and possibly incomplete Hilbertian responses. Electron J Stat 2021. [DOI: 10.1214/21-ejs1823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | - Byeong U. Park
- Department of Statistics, Seoul National University Gwanak-ro 1, Seoul 08826, South Korea
| | | |
Collapse
|
5
|
|
6
|
Affiliation(s)
- Pavel Čížek
- Department of Econometrics & Operations Research Tilburg University Tilburg The Netherlands
| | - Serhan Sadıkoğlu
- Department of Econometrics & Operations Research Tilburg University Tilburg The Netherlands
| |
Collapse
|
7
|
Affiliation(s)
- Kyunghee Han
- Department of Statistics, University of California, Davis
| | | | - Byeong U. Park
- Department of Statistics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
|
9
|
Lee K, Lee YK, Park BU, Yang SJ. Time-dynamic varying coefficient models for longitudinal data. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2018.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Han K, Müller HG, Park BU. Smooth backfitting for additive modeling with small errors-in-variables, with an application to additive functional regression for multiple predictor functions. BERNOULLI 2018. [DOI: 10.3150/16-bej898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Abstract
Abstract: Quantile regression quantifies the association of explanatory variables with a conditional quantile of a dependent variable without assuming any specific conditional distribution. It hence models the quantiles, instead of the mean as done in standard regression. In cases where either the requirements for mean regression, such as homoscedasticity, are violated or interest lies in the outer regions of the conditional distribution, quantile regression can explain dependencies more accurately than classical methods. However, many quantile regression papers are rather theoretical so the method has still not become a standard tool in applications. In this article, we explain quantile regression from an applied perspective. In particular, we illustrate the concept, advantages and disadvantages of quantile regression using two datasets as examples.
Collapse
Affiliation(s)
- Elisabeth Waldmann
- Department of Medical Informatics,
Biometry and Epidemiology, Friedrich-Alexander-Universität,
Erlangen-Nürnberg,Germany
| |
Collapse
|
12
|
|
13
|
|
14
|
Lee YK, Mammen E, Nielsen JP, Park BU. Operational time and in-sample density forecasting. Ann Stat 2017. [DOI: 10.1214/16-aos1486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
15
|
Kolar M, Taddy M. Discussion of “Coauthorship and citation networks for statisticians”. Ann Appl Stat 2016. [DOI: 10.1214/16-aoas896d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Yang M, Xue L, Yang L. Variable selection for additive model via cumulative ratios of empirical strengths total. J Nonparametr Stat 2016. [DOI: 10.1080/10485252.2016.1191633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
|
18
|
|
19
|
|
20
|
Testing for additivity in nonparametric quantile regression. ANN I STAT MATH 2014. [DOI: 10.1007/s10463-014-0461-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Park BU, Mammen E, Lee YK, Lee ER. Varying Coefficient Regression Models: A Review and New Developments. Int Stat Rev 2013. [DOI: 10.1111/insr.12029] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Comments on: An updated review of Goodness-of-Fit tests for regression models. TEST-SPAIN 2013. [DOI: 10.1007/s11749-013-0333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Lee YK, Mammen E, Park BU. Backfitting and smooth backfitting for additive quantile models. Ann Stat 2012. [DOI: 10.1214/12-aos1059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
|
25
|
Lee YK, Mammen E, Park BU. Projection-type estimation for varying coefficient regression models. BERNOULLI 2012. [DOI: 10.3150/10-bej331] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Discussion: Nonparametric estimation of noisy integral equations of the second kind. J Korean Stat Soc 2009. [DOI: 10.1016/j.jkss.2009.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Mammen E, Yu K. Nonparametric estimation of noisy integral equations of the second kind. J Korean Stat Soc 2009. [DOI: 10.1016/j.jkss.2008.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|