Rosenbaum PR. The cross-cut statistic and its sensitivity to bias in observational studies with ordered doses of treatment.
Biometrics 2015;
72:175-83. [PMID:
26295693 DOI:
10.1111/biom.12373]
[Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 06/01/2015] [Accepted: 07/01/2015] [Indexed: 11/28/2022]
Abstract
A common practice with ordered doses of treatment and ordered responses, perhaps recorded in a contingency table with ordered rows and columns, is to cut or remove a cross from the table, leaving the outer corners--that is, the high-versus-low dose, high-versus-low response corners--and from these corners to compute a risk or odds ratio. This little remarked but common practice seems to be motivated by the oldest and most familiar method of sensitivity analysis in observational studies, proposed by Cornfield et al. (1959), which says that to explain a population risk ratio purely as bias from an unobserved binary covariate, the prevalence ratio of the covariate must exceed the risk ratio. Quite often, the largest risk ratio, hence the one least sensitive to bias by this standard, is derived from the corners of the ordered table with the central cross removed. Obviously, the corners use only a portion of the data, so a focus on the corners has consequences for the standard error as well as for bias, but sampling variability was not a consideration in this early and familiar form of sensitivity analysis, where point estimates replaced population parameters. Here, this cross-cut analysis is examined with the aid of design sensitivity and the power of a sensitivity analysis.
Collapse