• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643712)   Today's Articles (433)   Subscriber (50629)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Liang M, Yu M. Relative contrast estimation and inference for treatment recommendation. Biometrics 2023;79:2920-2932. [PMID: 36645310 DOI: 10.1111/biom.13826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/29/2022] [Indexed: 01/17/2023]
2
Wang Y, Ghassabian A, Gu B, Afanasyeva Y, Li Y, Trasande L, Liu M. Semiparametric distributed lag quantile regression for modeling time-dependent exposure mixtures. Biometrics 2023;79:2619-2632. [PMID: 35612351 PMCID: PMC10718172 DOI: 10.1111/biom.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
3
Zhu H, Zhang Y, Li Y, Lian H. Semiparametric function-on-function quantile regression model with dynamic single-index interactions. Comput Stat Data Anal 2023;182:107727. [PMID: 39044771 PMCID: PMC11264192 DOI: 10.1016/j.csda.2023.107727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
4
Robust estimation for a general functional single index model via quantile regression. J Korean Stat Soc 2022. [DOI: 10.1007/s42952-022-00174-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
5
Liu CS, Liang HY. Bayesian analysis in single-index quantile regression with missing observation. COMMUN STAT-THEOR M 2022. [DOI: 10.1080/03610926.2022.2042027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
6
Liu M, Yang J, Liu Y, Jia B, Chen YF, Sun L, Ma S. A fusion learning method to subgroup analysis of Alzheimer's disease. J Appl Stat 2022;50:1686-1708. [PMID: 37260470 PMCID: PMC10228330 DOI: 10.1080/02664763.2022.2036953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
7
Ding H, Zhang R, Zhu H. New estimation for heteroscedastic single-index measurement error models. J Nonparametr Stat 2022. [DOI: 10.1080/10485252.2021.2025238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
8
Wu Y, Wang L, Fu H. Model-Assisted Uniformly Honest Inference for Optimal Treatment Regimes in High Dimension. J Am Stat Assoc 2021. [DOI: 10.1080/01621459.2021.1929246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
9
Guo W, Zhou XH, Ma S. Estimation of Optimal Individualized Treatment Rules Using a Covariate-Specific Treatment Effect Curve With High-Dimensional Covariates. J Am Stat Assoc 2021. [DOI: 10.1080/01621459.2020.1865167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
10
Han ZC, Lin JG, Zhao YY. Adaptive semiparametric estimation for single index models with jumps. Comput Stat Data Anal 2020. [DOI: 10.1016/j.csda.2020.107013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
11
Jiang R, Yu K. Single-index composite quantile regression for massive data. J MULTIVARIATE ANAL 2020. [DOI: 10.1016/j.jmva.2020.104669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
12
Yang J, Tian G, Lu F, Lu X. Single-index modal regression via outer product gradients. Comput Stat Data Anal 2020. [DOI: 10.1016/j.csda.2019.106867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
13
Honda T, Ing CK, Wu WY. Adaptively weighted group Lasso for semiparametric quantile regression models. BERNOULLI 2019. [DOI: 10.3150/18-bej1091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
14
Identification and estimation in quantile varying-coefficient models with unknown link function. TEST-SPAIN 2019. [DOI: 10.1007/s11749-019-00638-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
15
Single index quantile regression for censored data. STAT METHOD APPL-GER 2019. [DOI: 10.1007/s10260-019-00450-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
16
Ota H, Kato K, Hara S. Quantile regression approach to conditional mode estimation. Electron J Stat 2019. [DOI: 10.1214/19-ejs1607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
17
Time-varying quantile single-index model for multivariate responses. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2018.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
18
Escanciano JC, Goh SC. Quantile-Regression Inference With Adaptive Control of Size. J Am Stat Assoc 2018. [DOI: 10.1080/01621459.2018.1505624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
19
Quantile estimations via modified Cholesky decomposition for longitudinal single-index models. ANN I STAT MATH 2018. [DOI: 10.1007/s10463-018-0673-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
20
Estimation and testing for time-varying quantile single-index models with longitudinal data. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2017.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
21
Christou E, Akritas MG. Variable selection in heteroscedastic single-index quantile regression. COMMUN STAT-THEOR M 2017. [DOI: 10.1080/03610926.2017.1405271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
22
Tang Y, Wang HJ, Liang H. Composite Estimation for Single‐Index Models with Responses Subject to Detection Limits. Scand Stat Theory Appl 2017. [DOI: 10.1111/sjos.12307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
23
Zhang Y, Lian H, Yu Y. Estimation and variable selection for quantile partially linear single-index models. J MULTIVARIATE ANAL 2017. [DOI: 10.1016/j.jmva.2017.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
24
Zhao W, Lian H, Liang H. GEE analysis for longitudinal single-index quantile regression. J Stat Plan Inference 2017. [DOI: 10.1016/j.jspi.2017.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
25
Ma S, He X. Inference for single-index quantile regression models with profile optimization. Ann Stat 2016. [DOI: 10.1214/15-aos1404] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA