1
|
Dreyfuss JM, Djordjilović V, Pan H, Bussberg V, MacDonald AM, Narain NR, Kiebish MA, Blüher M, Tseng YH, Lynes MD. ScreenDMT reveals DiHOMEs are replicably inversely associated with BMI and stimulate adipocyte calcium influx. Commun Biol 2024; 7:996. [PMID: 39143411 PMCID: PMC11324735 DOI: 10.1038/s42003-024-06646-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Activating brown adipose tissue (BAT) improves systemic metabolism, making it a promising target for metabolic syndrome. BAT is activated by 12,13-dihydroxy-9Z-octadecenoic acid (12,13-diHOME), which we previously identified to be inversely associated with BMI and which directly improves metabolism in multiple tissues. Here we profile plasma lipidomics from 83 people and test which lipids' association with BMI replicates in a concordant direction using our novel tool ScreenDMT, whose power and validity we demonstrate via mathematical proofs and simulations. We find that the linoleic acid diols 12,13-diHOME and 9,10-diHOME are both replicably inversely associated with BMI and mechanistically activate calcium influx in mouse brown and white adipocytes in vitro, which implicates this signaling pathway and 9,10-diHOME as candidate therapeutic targets. ScreenDMT can be applied to test directional mediation, directional replication, and qualitative interactions, such as identifying biomarkers whose association is shared (replication) or opposite (qualitative interaction) across diverse populations.
Collapse
Affiliation(s)
- Jonathan M Dreyfuss
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Vera Djordjilović
- Department of Economics, Ca' Foscari University of Venice, Cannaregio 873, Venice, Italy
| | - Hui Pan
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Matthew D Lynes
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA.
- Department of Medicine, MaineHealth, Portland, ME, USA.
- Roux Institute at Northeastern University, Portland, ME, USA.
| |
Collapse
|
2
|
Xu N, Solari A, Goeman JJ. Combining Partial True Discovery Guarantee Procedures. Biom J 2024; 66:e202300075. [PMID: 38953670 DOI: 10.1002/bimj.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/31/2024] [Accepted: 05/04/2024] [Indexed: 07/04/2024]
Abstract
Closed testing has recently been shown to be optimal for simultaneous true discovery proportion control. It is, however, challenging to construct true discovery guarantee procedures in such a way that it focuses power on some feature sets chosen by users based on their specific interest or expertise. We propose a procedure that allows users to target power on prespecified feature sets, that is, "focus sets." Still, the method also allows inference for feature sets chosen post hoc, that is, "nonfocus sets," for which we deduce a true discovery lower confidence bound by interpolation. Our procedure is built from partial true discovery guarantee procedures combined with Holm's procedure and is a conservative shortcut to the closed testing procedure. A simulation study confirms that the statistical power of our method is relatively high for focus sets, at the cost of power for nonfocus sets, as desired. In addition, we investigate its power property for sets with specific structures, for example, trees and directed acyclic graphs. We also compare our method with AdaFilter in the context of replicability analysis. The application of our method is illustrated with a gene ontology analysis in gene expression data.
Collapse
Affiliation(s)
- Ningning Xu
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| | - Aldo Solari
- Department of Economics, Management and Statistics, University of Milano-Bicocca, Milan, Italy
- Department of Economics, Ca' Foscari University of Venice, Venice, Italy
| | - Jelle J Goeman
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
3
|
Dreyfuss JM, Djordjilovic V, Pan H, Bussberg V, MacDonald AM, Narain NR, Kiebish MA, Blüher M, Tseng YH, Lynes MD. ScreenDMT reveals linoleic acid diols replicably associate with BMI and stimulate adipocyte calcium fluxes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548737. [PMID: 37503007 PMCID: PMC10369939 DOI: 10.1101/2023.07.12.548737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Activating brown adipose tissue (BAT) improves systemic metabolism, making it a promising target for metabolic syndrome. BAT is activated by 12, 13-dihydroxy-9Z-octadecenoic acid (12, 13-diHOME), which we previously identified to be inversely associated with BMI and which directly improves metabolism in multiple tissues. Here we profile plasma lipidomics from a cohort of 83 people and test which lipids' association with BMI replicates in a concordant direction using our novel tool ScreenDMT, whose power and validity we demonstrate via mathematical proofs and simulations. We find that the linoleic acid diols 12, 13-diHOME and 9, 10-diHOME both replicably inversely associate with BMI and mechanistically activate calcium fluxes in mouse brown and white adipocytes in vitro, which implicates this pathway and 9, 10-diHOME as candidate therapeutic targets. ScreenDMT can be applied to test directional mediation, directional replication, and qualitative interactions, such as identifying biomarkers whose association is shared (replication) or opposite (qualitative interaction) across diverse populations.
Collapse
Affiliation(s)
- Jonathan M. Dreyfuss
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Vera Djordjilovic
- Department of Economics, Ca’ Foscari University of Venice, Cannaregio 873, Venice, Italy
| | - Hui Pan
- Bioinformatics & Biostatistics Core, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital, Leipzig, Germany
| | - Yu-Hua Tseng
- Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Matthew D. Lynes
- Center for Molecular Medicine, MaineHealth Institute for Research, Scarborough, ME, USA
- Department of Medicine, MaineHealth, Portland, ME, USA
- Roux Institute at Northeastern University, Portland, ME, USA
| |
Collapse
|
4
|
Bogomolov M. Testing partial conjunction hypotheses under dependency, with applications to meta-analysis. Electron J Stat 2023. [DOI: 10.1214/22-ejs2100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Marina Bogomolov
- Faculty of Data and Decision Sciences, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|