1
|
Hu X, Xia K, Dai M, Han X, Yuan P, Liu J, Liu S, Jia F, Chen J, Jiang F, Yu J, Yang H, Wang J, Xu X, Jin X, Kristiansen K, Xiao L, Chen W, Han M, Duan S. Intermittent fasting modulates the intestinal microbiota and improves obesity and host energy metabolism. NPJ Biofilms Microbiomes 2023; 9:19. [PMID: 37029135 PMCID: PMC10081985 DOI: 10.1038/s41522-023-00386-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/23/2023] [Indexed: 04/09/2023] Open
Abstract
Intermittent fasting (IF) is a promising paradigm for weight loss which has been shown to modulate the gut microbiota based on 16S rRNA gene amplicon sequencing. Here, 72 Chinese volunteers with a wide range of body mass index (BMI) participated in a three-week IF program during which an average loss of 3.67 kg body weight accompanied with improved clinical parameters was observed irrespective of initial anthropometric and gut microbiota status. Fecal samples were collected before and after the intervention and subjected to shotgun metagenomic sequencing. De novo assembly yielded 2934 metagenome-assembled genomes (MAGs). Profiling revealed significant enrichment of Parabacteroides distasonis and Bacteroides thetaiotaomicron after the intervention, with inverse correlations between their relative abundances and parameters related to obesity and atherosclerotic cardiovascular diseases (ASCVD). MAGs enriched after the intervention showed high richness and diversity of carbohydrate-active enzymes, with an increased relative abundances of genes related to succinate production and glutamate fermentation.
Collapse
Affiliation(s)
- Xiangwei Hu
- BGI-Shenzhen, Shenzhen, 518083, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Kai Xia
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Minhui Dai
- Department of Clinical Nutrition, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xiaofeng Han
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Peng Yuan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Jia Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Shiwei Liu
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China
| | - Fuhuai Jia
- Ningbo Yufangtang Biological Technology Co., Ltd, Ningbo, 315012, China
| | - Jiayu Chen
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Fangfang Jiang
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Jieyao Yu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083, China
- Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI-Qingdao, 266555, Qingdao, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Jian Wang
- BGI-Shenzhen, Shenzhen, 518083, China
- James D. Watson Institute of Genome Sciences, Hangzhou, 310058, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Karsten Kristiansen
- BGI-Shenzhen, Shenzhen, 518083, China
- Institute of Metagenomics, Qingdao-Europe Advance Institute for Life Sciences, BGI-Qingdao, 266555, Qingdao, China
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Liang Xiao
- BGI-Shenzhen, Shenzhen, 518083, China
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China
| | - Wei Chen
- Department of Clinical Nutrition, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China.
| | - Mo Han
- BGI-Shenzhen, Shenzhen, 518083, China.
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.
- Shenzhen Engineering Laboratory of Detection and Intervention of Human Intestinal Microbiome, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Shenglin Duan
- Beijing Key Laboratory of the Innovative Development of Functional Staple and Nutritional Intervention for Chronic Diseases, China National Research Institute of Food and Fermentation Industries Co., Ltd, Beijing, 100015, China.
| |
Collapse
|