• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643712)   Today's Articles (431)   Subscriber (50625)
For:  [Subscribe] [Scholar Register]
Number Cited by Other Article(s)
1
Predictive probability matching priors for a certain non-regular model. Stat Probab Lett 2021. [DOI: 10.1016/j.spl.2021.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
2
A matching prior for the shape parameter of the exponential power distribution. Stat Probab Lett 2015. [DOI: 10.1016/j.spl.2014.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
3
Chang IH, Mukerjee R. Predictive sets with approximate frequentist and Bayesian validity for arbitrary priors. STATISTICS-ABINGDON 2014. [DOI: 10.1080/02331888.2014.955102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
4
Objective Bayesian analysis for exponential power regression models. SANKHYA B 2012. [DOI: 10.1007/s13571-012-0045-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
5
Ho KW. The use of Jeffreys priors for the Student-tdistribution. J STAT COMPUT SIM 2012. [DOI: 10.1080/00949655.2011.563239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
6
Gerrard R, Tsanakas A. Failure probability under parameter uncertainty. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2011;31:727-744. [PMID: 21175720 DOI: 10.1111/j.1539-6924.2010.01549.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
7
Ghosh M. Objective Priors: An Introduction for Frequentists. Stat Sci 2011. [DOI: 10.1214/10-sts338] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
8
Ho KW. A matching prior for extreme quantile estimation of the generalized Pareto distribution. J Stat Plan Inference 2010. [DOI: 10.1016/j.jspi.2009.12.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
9
Komaki F. Shrinkage priors for Bayesian prediction. Ann Stat 2006. [DOI: 10.1214/009053606000000010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
10
Sweeting TJ, Datta GS, Ghosh M. Nonsubjective priors via predictive relative entropy regret. Ann Stat 2006. [DOI: 10.1214/009053605000000804] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
11
Spitzner DJ. Risk-reducing shrinkage estimation for generalized linear models. J R Stat Soc Series B Stat Methodol 2005. [DOI: 10.1111/j.1467-9868.2005.00495.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
12
Bernardo JM. Reference Analysis. HANDBOOK OF STATISTICS 2005. [DOI: 10.1016/s0169-7161(05)25002-2] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
13
Chang IH, Mukerjee R. Asymptotic results on the frequentist mean squared error of generalized Bayes point predictors. Stat Probab Lett 2004. [DOI: 10.1016/j.spl.2003.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
14
Bayarri MJ, Berger JO. The Interplay of Bayesian and Frequentist Analysis. Stat Sci 2004. [DOI: 10.1214/088342304000000116] [Citation(s) in RCA: 281] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
15
Probability matching priors for predicting unobservable random effects with application to ANOVA models. Stat Probab Lett 2003. [DOI: 10.1016/s0167-7152(03)00004-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
16
Datta GS, Mukerjee R. Probability matching priors for predicting a dependent variable with application to regression models. ANN I STAT MATH 2003. [DOI: 10.1007/bf02530481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA