1
|
Taheri M, Tehrani HA, Farzad SA, Korourian A, Arefian E, Ramezani M. The potential of mesenchymal stem cell coexpressing cytosine deaminase and secretory IL18-FC chimeric cytokine in suppressing glioblastoma recurrence. Int Immunopharmacol 2024; 142:113048. [PMID: 39236459 DOI: 10.1016/j.intimp.2024.113048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
Glioblastoma multiforme (GBM) patients have a high recurrence rate of 90%, and the 5-year survival rate is only about 5%. Cytosine deaminase (CDA)/5-fluorocytosine (5-FC) gene therapy is a promising glioma treatment as 5-FC can cross the blood-brain barrier (BBB), while 5-fluorouracil (5-FU) cannot. Furthermore, 5-FU can assist reversing the immunological status of cold solid tumors. This study developed mesenchymal stem cells (MSCs) co-expressing yeast CDA and the secretory IL18-FC superkine to prevent recurrent tumor progression by simultaneously exerting cytotoxic effects and enhancing immune responses. IL18 was fused with Igk and IgG2a FC domains to enhance its secretion and serum half-life. The study confirmed the expression and activity of the CDA enzyme, as well as the expression, secretion, and activity of secretory IL18 and IL18-FC superkine, which were expressed by lentiviruses transduced-MSCs. In the transwell tumor-tropism assay, it was observed that the genetically modified MSCs retained their selective tumor-tropism ability following transduction. CDA-expressing MSCs, in the presence of 5-FC (200 µg/ml), induced cell cycle arrest and apoptosis in glioma cells through bystander effects in an indirect transwell co-culture system. They reduced the viability of the direct co-culture system when they constituted only 12.5 % of the cell population. The effectiveness of engineered MSCs in suppressing tumor progression was assessed by intracerebral administration of a lethal dose of GL261 cells combined in a ratio of 1:1 with MSCs expressing CDA, or CDA and sIL18, or CDA and sIL18-FC, into C57BL/6 mice. PET scan showed no conspicuous tumor mass in the MSC-CDA-sIL18-FC group that received 5-FC treatment. The pathological analysis showed that tumor progression suppressed in this group until 20th day after cell inoculation. Cytokine assessment showed that both interferon-gamma (IFN-γ) and interleukin-4 (IL-4) increased in the serum of MSC-CDA-sIL18 and MSC-CDA-sIL18-FC, treated with normal saline (NS) compared to those of the control group. The MSC-CDA-sIL18-FC group that received 5-FC treatment showed reduced serum levels of IL-6 and a considerably improved survival rate compared to the control group. Therefore, MSCs co-expressing yeast CDA and secretory IL18-FC, with tumor tropism capability, may serve as a supplementary approach to standard GBM treatment to effectively inhibit tumor progression and prevent recurrence.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Sara Amel Farzad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Korourian
- Quality Control Department Pathobiology Laboratory Center, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran; Stem Cells Technology and Tissue Regeneration Department, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Ziani-Zeryouh A, Wouters R, Thirion G, Vandenbrande K, Vankerckhoven A, Berckmans Y, Bevers S, Verbeeck J, De Keersmaecker K, Coosemans A, Riva M. Toward more accurate preclinical glioblastoma modeling: Reverse translation of clinical standard of care in a glioblastoma mouse model. Methods Cell Biol 2023; 183:381-397. [PMID: 38548420 DOI: 10.1016/bs.mcb.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) is the deadliest of all brain cancers. GBM patients receive an intensive treatment schedule consisting of surgery, radiotherapy and chemotherapy, which only modestly extends patient survival. Therefore, preclinical studies are testing novel experimental treatments. In such preclinical studies, these treatments are administered as monotherapy in the majority of cases; conversely, in patients the new treatments are always combined with the standard of care. Most likely, this difference contributes to the failure of clinical trials despite the successes of the preclinical studies. In this methodological study, we show in detail how to implement the full clinical standard of care in preclinical GBM research. Systematically testing new treatments, including cellular immunotherapies, in combination with the clinical standard of care can result in a better translation of preclinical results to the clinic and ultimately increase patient survival.
Collapse
Affiliation(s)
- Aaron Ziani-Zeryouh
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Oncoinvent, A.S., Oslo, Norway
| | - Gitte Thirion
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Katja Vandenbrande
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Ann Vankerckhoven
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Yani Berckmans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Sien Bevers
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Jelle Verbeeck
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Kim De Keersmaecker
- Laboratory for Disease Mechanisms in Cancer, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| | - Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium; Department of Neurosurgery, Mont-Godinne Hospital, UCL Namur, Yvoir, Belgium
| |
Collapse
|
3
|
Zheng Y, Ma X, Feng S, Zhu H, Chen X, Yu X, Shu K, Zhang S. Dendritic cell vaccine of gliomas: challenges from bench to bed. Front Immunol 2023; 14:1259562. [PMID: 37781367 PMCID: PMC10536174 DOI: 10.3389/fimmu.2023.1259562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Gliomas account for the majority of brain malignant tumors. As the most malignant subtype of glioma, glioblastoma (GBM) is barely effectively treated by traditional therapies (surgery combined with radiochemotherapy), resulting in poor prognosis. Meanwhile, due to its "cold tumor" phenotype, GBM fails to respond to multiple immunotherapies. As its capacity to prime T cell response, dendritic cells (DCs) are essential to anti-tumor immunity. In recent years, as a therapeutic method, dendritic cell vaccine (DCV) has been immensely developed. However, there have long been obstacles that limit the use of DCV yet to be tackled. As is shown in the following review, the role of DCs in anti-tumor immunity and the inhibitory effects of tumor microenvironment (TME) on DCs are described, the previous clinical trials of DCV in the treatment of GBM are summarized, and the challenges and possible development directions of DCV are analyzed.
Collapse
Affiliation(s)
- Ye Zheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shouchang Feng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjiang Yu
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Suojun Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Riva M, Wouters R, Nittner D, Ceusters J, Sterpin E, Giovannoni R, Himmelreich U, Gsell W, VAN Ranst M, Coosemans A. Radiation dose-escalation and dose-fractionation modulate the immune microenvironment, cancer stem cells and vasculature in experimental high-grade gliomas. J Neurosurg Sci 2023; 67:55-65. [PMID: 33056947 DOI: 10.23736/s0390-5616.20.05060-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND In the context of high-grade gliomas (HGGs), very little evidence is available concerning the optimal radiotherapy (RT) schedule to be used in radioimmunotherapy combinations. This studied was aimed at shedding new light in this field by analyzing the effects of RT dose escalation and dose fractionation on the tumor microenvironment of experimental HGGs. METHODS Neurospheres (NS) CT-2A HGG-bearing C57BL/6 mice were treated with stereotactic RT. For dose-escalation experiments, mice received 2, 4 or 8 Gy as single administrations. For dose-fractionation experiments, mice received 4 Gy as a single fraction or multiple (1.33x3 Gy) fractions. The impact of the RT schedule on murine survival and tumor immunity was evaluated. Modifications of glioma stem cells (GSCs), tumor vasculature and tumor cell replication were also assessed. RESULTS RT dose-escalation was associated with an improved immune profile, with higher CD8+ T cells and CD8+ T cells/regulatory T cells (Tregs) ratio (P=0.0003 and P=0.0022, respectively) and lower total tumor associated microglia/macrophages (TAMs), M2 TAMs and monocytic myeloid derived suppressor cells (mMDSCs) (P=0.0011, P=0.0024 and P<0.0001, respectively). The progressive increase of RT dosages prolonged survival (P<0.0001) and reduced tumor vasculature (P=0.069), tumor cell proliferation (P<0.0001) and the amount of GSCs (P=0.0132 or lower). Compared to the unfractionated regimen, RT dose-fractionation negatively affected tumor immunity by inducing higher total TAMs, M2 TAMs and mMDSCs (P=0.0051, P=0.0036 and P=0.0436, respectively). Fractionation also induced a shorter survival (P=0.0078), a higher amount of GSCs (P=0.0015 or lower) and a higher degree of tumor cell proliferation (P=0.0003). CONCLUSIONS This study demonstrates that RT dosage and fractionation significantly influence survival, tumor immunity and GSCs in experimental HGGs. These findings should be taken into account when aiming at designing more synergistic and effective radio-immunotherapy combinations.
Collapse
Affiliation(s)
- Matteo Riva
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium - .,Department of Neurosurgery, UcL Namur, Mont-Godinne University Hospital, Yvoir, Belgium -
| | - Roxanne Wouters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | - David Nittner
- Center for the Biology of Disease, Catholic University of Leuven Center for Human Genetics - InfraMouse, VIB, Catholic University of University of Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | - Edmond Sterpin
- Laboratory of Experimental Radiotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Catholic University of Leuven, Leuven, Belgium
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Catholic University of Leuven, Leuven, Belgium
| | - Marc VAN Ranst
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Laboratory of Tumor Immunology and Immunotherapy, Department of Oncology, Catholic University of Leuven, Leuven, Belgium.,Department of Gynecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Vedunova M, Turubanova V, Vershinina O, Savyuk M, Efimova I, Mishchenko T, Raedt R, Vral A, Vanhove C, Korsakova D, Bachert C, Coppieters F, Agostinis P, Garg AD, Ivanchenko M, Krysko O, Krysko DV. DC vaccines loaded with glioma cells killed by photodynamic therapy induce Th17 anti-tumor immunity and provide a four-gene signature for glioma prognosis. Cell Death Dis 2022; 13:1062. [PMID: 36539408 PMCID: PMC9767932 DOI: 10.1038/s41419-022-05514-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
Gliomas, the most frequent type of primary tumor of the central nervous system in adults, results in significant morbidity and mortality. Despite the development of novel, complex, multidisciplinary, and targeted therapies, glioma therapy has not progressed much over the last decades. Therefore, there is an urgent need to develop novel patient-adjusted immunotherapies that actively stimulate antitumor T cells, generate long-term memory, and result in significant clinical benefits. This work aimed to investigate the efficacy and molecular mechanism of dendritic cell (DC) vaccines loaded with glioma cells undergoing immunogenic cell death (ICD) induced by photosens-based photodynamic therapy (PS-PDT) and to identify reliable prognostic gene signatures for predicting the overall survival of patients. Analysis of the transcriptional program of the ICD-based DC vaccine led to the identification of robust induction of Th17 signature when used as a vaccine. These DCs demonstrate retinoic acid receptor-related orphan receptor-γt dependent efficacy in an orthotopic mouse model. Moreover, comparative analysis of the transcriptome program of the ICD-based DC vaccine with transcriptome data from the TCGA-LGG dataset identified a four-gene signature (CFH, GALNT3, SMC4, VAV3) associated with overall survival of glioma patients. This model was validated on overall survival of CGGA-LGG, TCGA-GBM, and CGGA-GBM datasets to determine whether it has a similar prognostic value. To that end, the sensitivity and specificity of the prognostic model for predicting overall survival were evaluated by calculating the area under the curve of the time-dependent receiver operating characteristic curve. The values of area under the curve for TCGA-LGG, CGGA-LGG, TCGA-GBM, and CGGA-GBM for predicting five-year survival rates were, respectively, 0.75, 0.73, 0.9, and 0.69. These data open attractive prospects for improving glioma therapy by employing ICD and PS-PDT-based DC vaccines to induce Th17 immunity and to use this prognostic model to predict the overall survival of glioma patients.
Collapse
Affiliation(s)
- Maria Vedunova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Victoria Turubanova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olga Vershinina
- grid.28171.3d0000 0001 0344 908XInstitute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Maria Savyuk
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Iuliia Efimova
- grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium
| | - Tatiana Mishchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Robrecht Raedt
- grid.5342.00000 0001 2069 77984Brain Team, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Anne Vral
- grid.5342.00000 0001 2069 7798Radiobiology Research Group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Christian Vanhove
- grid.5342.00000 0001 2069 7798IBiTech-MEDISIP-Infinity Laboratory, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium
| | - Daria Korsakova
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Claus Bachert
- grid.5342.00000 0001 2069 7798Upper Airways Research Laboratory, Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Frauke Coppieters
- grid.5342.00000 0001 2069 7798Center for Medical Genetics Ghent (CMGG), Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Patrizia Agostinis
- grid.5596.f0000 0001 0668 7884Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium ,grid.511459.dVIB Center for Cancer Biology Research, Leuven, Belgium
| | - Abhishek D. Garg
- grid.5596.f0000 0001 0668 7884Laboratory of Cell Stress & Immunity (CSI), Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Mikhail Ivanchenko
- grid.28171.3d0000 0001 0344 908XInstitute of Information Technology, Mathematics and Mechanics, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Olga Krysko
- grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Dmitri V. Krysko
- grid.28171.3d0000 0001 0344 908XInstitute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia ,grid.5342.00000 0001 2069 7798Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Ghent, Belgium ,grid.510942.bCancer Research Institute Ghent, Ghent, Belgium
| |
Collapse
|
6
|
Sandbhor P, Goda JS, Mohanty B, Chaudhari P, Dutt S, Banerjee R. Bio-polymeric transferrin-targeted temozolomide nanoparticles in gel for synergistic post-surgical GBM therapy. NANOSCALE 2022; 14:12773-12788. [PMID: 36001382 DOI: 10.1039/d2nr00171c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spatiotemporal targeting of anti-glioma drugs remains a pressing issue in glioblastoma (GBM) treatment. We challenge this issue by developing a minimally invasive in situ implantable hydrogel implant comprising transferrin-targeted temozolomide-miltefosine nanovesicles in the surgically resected GBM cavity (tumour bed). Injection of the "nanovesicle in hydrogel system" in orthotopic GBM-bearing mice improved drug penetration into the peri-cavitary region (∼4.5 mm in depth) with the potential to act as a bridge therapy in the immediate postoperative period, before the initiation of adjuvant radiotherapy. The controlled and sustained release of temozolomide over a month in the surgical cavity eradicated the microscopic GBM cells present within the tumour bed, thereby augmenting the efficacy of adjuvant therapy. The drug (temozolomide and miltefosine) combination was tolerable and efficiently inhibited tumour growth, causing significant prolongation of the survival of tumour-bearing mice compared to that with the free drug. Direct implantation at the target site in the brain resulted in spatiotemporal anti-glioma activity with minimal extracranial and systemic distribution. Nanovesicle in flexible hydrogel systems can be used as potential platforms for the post-surgical management of GBM before initiating adjuvant radiation therapy.
Collapse
Affiliation(s)
- Puja Sandbhor
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| | - Jayant S Goda
- Radiation Oncology Department, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, and Homi Bhabha National Institute, India.
| | - Bhabani Mohanty
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
- Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, and Homi Bhabha National Institute, India
| | - Pradip Chaudhari
- Radiation Oncology Department, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, and Homi Bhabha National Institute, India.
- Department of Comparative Oncology and Small Animal Imaging Facility, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, and Homi Bhabha National Institute, India
| | - Shilpee Dutt
- Department Shilpee Lab/DNA Repair and Cellular Oncology Lab, ACTREC, Tata Memorial Center, Kharghar Navi-Mumbai, and Homi Bhabha National Institute, India
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Bombay, Powai, Mumbai, India
| |
Collapse
|
7
|
Tumor Microenvironment and Immune Escape in the Time Course of Glioblastoma. Mol Neurobiol 2022; 59:6857-6873. [PMID: 36048342 PMCID: PMC9525332 DOI: 10.1007/s12035-022-02996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/07/2022] [Indexed: 12/02/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive primary brain tumor with a malignant prognosis. GBM is characterized by high cellular heterogeneity and its progression relies on the interaction with the central nervous system, which ensures the immune-escape and tumor promotion. This interplay induces metabolic, (epi)-genetic and molecular rewiring in both domains. In the present study, we aim to characterize the time-related changes in the GBM landscape, using a syngeneic mouse model of primary GBM. GL261 glioma cells were injected in the right striatum of immuno-competent C57Bl/6 mice and animals were sacrificed after 7, 14, and 21 days (7D, 14D, 21D). The tumor development was assessed through 3D tomographic imaging and brains were processed for immunohistochemistry, immunofluorescence, and western blotting. A human transcriptomic database was inquired to support the translational value of the experimental data. Our results showed the dynamic of the tumor progression, being established as a bulk at 14D and surrounded by a dense scar of reactive astrocytes. The GBM growth was paralleled by the impairment in the microglial/macrophagic recruitment and antigen-presenting functions, while the invasive phase was characterized by changes in the extracellular matrix, as shown by the analysis of tenascin C and metalloproteinase-9. The present study emphasizes the role of the molecular changes in the microenvironment during the GBM progression, fostering the development of novel multi-targeted, time-dependent therapies in an experimental model similar to the human disease.
Collapse
|
8
|
Tang F, Pan Z, Wang Y, Lan T, Wang M, Li F, Quan W, Liu Z, Wang Z, Li Z. Advances in the Immunotherapeutic Potential of Isocitrate Dehydrogenase Mutations in Glioma. Neurosci Bull 2022; 38:1069-1084. [PMID: 35670952 PMCID: PMC9468211 DOI: 10.1007/s12264-022-00866-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Isocitrate dehydrogenase (IDH) is an essential metabolic enzyme in the tricarboxylic acid cycle (TAC). The high mutation frequency of the IDH gene plays a complicated role in gliomas. In addition to affecting gliomas directly, mutations in IDH can also alter their immune microenvironment and can change immune-cell function in direct and indirect ways. IDH mutations mediate immune-cell infiltration and function by modulating immune-checkpoint gene expression and chemokine secretion. In addition, IDH mutation-derived D2-hydroxyglutarate can be absorbed by surrounding immune cells, also affecting their functioning. In this review, we summarize current knowledge about the effects of IDH mutations as well as other gene mutations on the immune microenvironment of gliomas. We also describe recent preclinical and clinical data related to IDH-mutant inhibitors for the treatment of gliomas. Finally, we discuss different types of immunotherapy and the immunotherapeutic potential of IDH mutations in gliomas.
Collapse
Affiliation(s)
- Feng Tang
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zhiyong Pan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Yi Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Tian Lan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Mengyue Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Fengping Li
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Wei Quan
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zhenyuan Liu
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China
| | - Zefen Wang
- Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China.
| | - Zhiqiang Li
- Brain Glioma Center and Department of Neurosurgery, Wuhan University Zhongnan Hospital, Wuhan, 430071, China.
| |
Collapse
|
9
|
Radzevičiūtė E, Malyško-Ptašinskė V, Novickij J, Novickij V, Girkontaitė I. Transfection by Electroporation of Cancer and Primary Cells Using Nanosecond and Microsecond Electric Fields. Pharmaceutics 2022; 14:1239. [PMID: 35745814 PMCID: PMC9230780 DOI: 10.3390/pharmaceutics14061239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022] Open
Abstract
Gene transfer into primary immune cells as well as into cell lines is essential for scientific and therapeutical applications. One of the methods used for gene transfer is electroporation (EP). EP is a method where a pulsed electric field (PEF) causes a highly transient permeability of the targeted cell membrane. In this work, we present the electrotransfection of CHO-K1, 4T1 cell lines, and primary murine DCs with detectable protein-encoding plasmids in the sub-microsecond range. Microsecond (µs)- and nanosecond (ns)-range pulsed electric field transfection protocols were used. The efficiency of electrotransfection was evaluated using green fluorescent protein (GFP)-encoding plasmids (4.7 kbp; p-EGFP-N1) and plasmids expressing a firefly luciferase and red fluorescent protein (tdTomato) (8.5 kbp; pcDNA3.1(+)/Luc2 = tdT)). It was shown that the used nsPEFs protocol (7 kV/cm × 300 ns × 100, 1 MHz) ensured a better transfection efficiency than µsPEFs (1.2 kV/cm × 100 µs × 8, 1 Hz). Plasmid size and concentration had a strong impact on the cell transfection efficiency too. We also showed that there were no significant differences in transfection efficiency between immature and mature DCs. Finally, the nsPEF protocols were successfully applied for the stable transfection of the CHO-K1 cell line with the linearized pcDNA3.1(+)/Luc2 = tdT plasmid. The results of the study are applicable in gene therapy and DNA vaccination studies for the derivation of optimal electrotransfection conditions.
Collapse
Affiliation(s)
- Eivina Radzevičiūtė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania;
| | - Veronika Malyško-Ptašinskė
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Jurij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Vitalij Novickij
- Faculty of Electronics, Vilnius Gediminas Technical University, 03227 Vilnius, Lithuania; (V.M.-P.); (J.N.)
| | - Irutė Girkontaitė
- State Research Institute Centre for Innovative Medicine, Department of Immunology, 08406 Vilnius, Lithuania;
| |
Collapse
|
10
|
Han MH, Kim CH. Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Res Treat 2022; 10:1-11. [PMID: 35118842 PMCID: PMC8819466 DOI: 10.14791/btrt.2022.10.e25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is the most common malignant central nervous system (CNS) tumor (48.3%), with a median survival of only about 14.6 months. Although the CNS is an immune-privileged site, activated T cells can cross the blood-brain barrier. The recent successes of several immunotherapies for various cancers have drawn interest in immunotherapy for treatment of malignant glioma. There have been extensive attempts to evaluate the efficiency of immunotherapy against malignant glioma. Passive immunotherapy for malignant glioma includes monoclonal antibody-mediated immunotherapy, cytokine-mediated therapy, and adoptive cell transfer, also known as chimeric antigen receptor T cell treatment. On the other hand, active immunotherapy, which stimulates the patient’s adaptive immune system against specific tumor-associated antigens, includes cancer vaccines that are divided into peptide vaccines and cell-based vaccines. In addition, there is immune checkpoint blockade therapy, which increases the efficiency of immunotherapy by reducing the resistance of malignant glioma to immunotherapy. Despite centuries of efforts, immunotherapeutic successes for malignant glioma remain limited. However, many clinical trials of adoptive cell transfer immunotherapy on malignant glioma are ongoing, and the outcomes are eagerly awaited. In addition, although there are still several obstacles, current clinical trials using personalized neoantigen-based dendritic cell vaccines offer new hope to glioblastoma patients. Furthermore, immune checkpoint targeted therapy is expected to decipher the mechanism of immunotherapy resistance in malignant glioma in the near future. More studies are needed to increase the efficacy of immunotherapy in malignant glioma. We hope that immunotherapy will become a new treatment of malignant glioma.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Choong Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| |
Collapse
|
11
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
12
|
Riva M, Wouters R, Sterpin E, Giovannoni R, Boon L, Himmelreich U, Gsell W, Van Ranst M, Coosemans A. Radiotherapy, Temozolomide, and Antiprogrammed Cell Death Protein 1 Treatments Modulate the Immune Microenvironment in Experimental High-Grade Glioma. Neurosurgery 2021; 88:E205-E215. [PMID: 33289503 DOI: 10.1093/neuros/nyaa421] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 07/02/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The lack of immune synergy with conventional chemoradiation could explain the failure of checkpoint inhibitors in current clinical trials for high-grade gliomas (HGGs). OBJECTIVE To analyze the impact of radiotherapy (RT), Temozolomide (TMZ) and antiprogrammed cell death protein 1 (αPD1) (as single or combined treatments) on the immune microenvironment of experimental HGGs. METHODS Mice harboring neurosphere /CT-2A HGGs received RT (4 Gy, single dose), TMZ (50 mg/kg, 4 doses) and αPD1 (100 μg, 3 doses) as monotherapies or combinations. The influence on survival, tumor volume, and tumor-infiltrating immune cells was analyzed. RESULTS RT increased total T cells (P = .0159) and cluster of differentiation (CD)8+ T cells (P = .0078) compared to TMZ. Lymphocyte subpopulations resulting from TMZ or αPD1 treatment were comparable with those of controls. RT reduced M2 tumor-associated macrophages/microglia (P = .0019) and monocytic myeloid derived suppressor cells (mMDSCs, P = .0003) compared to controls. The effect on mMDSC was also seen following TMZ and αPD1 treatment, although less pronounced (P = .0439 and P = .0538, respectively). Combining RT with TMZ reduced CD8+ T cells (P = .0145) compared to RT alone. Adding αPD1 partially mitigated this effect as shown by the increased CD8+ T cells/Tregs ratio, even if this result failed to reach statistical significance (P = .0973). Changing the combination sequence of RT, TMZ, and αPD1 did not alter survival nor the immune effects. CONCLUSION RT, TMZ, and αPD1 modify the immune microenvironment of HGG. The combination of RT with TMZ induces a strong immune suppression which cannot be effectively counteracted by αPD1.
Collapse
Affiliation(s)
- Matteo Riva
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.,Department of Neurosurgery, University Hospital of Godinne, UCL Namur, Yvoir, Belgium
| | - Roxanne Wouters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium
| | - Edmond Sterpin
- Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Leuven, Belgium
| | - Roberto Giovannoni
- School of Medicine and Surgery, University of Milano Bicocca, Monza, Italy
| | - Louis Boon
- Polpharma Biologics, Utrecht, the Netherlands
| | - Uwe Himmelreich
- Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Biomedical MRI, KU Leuven, Leuven, Belgium
| | - Willy Gsell
- Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), Biomedical MRI, KU Leuven, Leuven, Belgium
| | - Marc Van Ranst
- Rega Institute for Medical Research, Laboratory for Clinical and Epidemiological Virology, KU Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven, Belgium.,Department of Gynaecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven, Belgium
| |
Collapse
|
13
|
Piper K, DePledge L, Karsy M, Cobbs C. Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Front Oncol 2021; 11:615704. [PMID: 33718170 PMCID: PMC7945033 DOI: 10.3389/fonc.2021.615704] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma is the most common and lethal primary brain malignancy. Despite major investments in research into glioblastoma biology and drug development, treatment remains limited and survival has not substantially improved beyond 1-2 years. Cancer stem cells (CSC) or glioma stem cells (GSC) refer to a population of tumor originating cells capable of self-renewal and differentiation. While controversial and challenging to study, evidence suggests that GCSs may result in glioblastoma tumor recurrence and resistance to treatment. Multiple treatment strategies have been suggested at targeting GCSs, including immunotherapy, posttranscriptional regulation, modulation of the tumor microenvironment, and epigenetic modulation. In this review, we discuss recent advances in glioblastoma treatment specifically focused on targeting of GCSs as well as their potential integration into current clinical pathways and trials.
Collapse
Affiliation(s)
- Keenan Piper
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,Sidney Kimmel Medical College, Philadelphia, PA, United States
| | - Lisa DePledge
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States.,University of Washington School of Medicine, Spokane, WA, United States
| | - Michael Karsy
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Charles Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, United States
| |
Collapse
|
14
|
Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers (Basel) 2020; 13:cancers13010032. [PMID: 33374196 PMCID: PMC7796083 DOI: 10.3390/cancers13010032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Although multiple meta-analyses on active specific immunotherapy treatment for glioblastoma multiforme (GBM) have demonstrated a significant prolongation of overall survival, no single research group has succeeded in demonstrating the efficacy of this type of treatment in a prospective, double-blind, placebo-controlled, randomized clinical trial. In this paper, we explain how the complexity of the tumor biology and tumor–host interactions make proper stratification of a control group impossible. The individualized characteristics of advanced therapy medicinal products for immunotherapy contribute to heterogeneity within an experimental group. The dynamics of each tumor and in each patient aggravate comparative stable patient groups. Finally, combinations of immunotherapy strategies should be integrated with first-line treatment. We illustrate the complexity of a combined first-line treatment with individualized multimodal immunotherapy in a group of 70 adults with GBM and demonstrate that the integration of immunogenic cell death treatment within maintenance chemotherapy followed by dendritic cell vaccines and maintenance immunotherapy might provide a step towards improving the overall survival rate of GBM patients. Abstract Immunotherapies represent a promising strategy for glioblastoma multiforme (GBM) treatment. Different immunotherapies include the use of checkpoint inhibitors, adoptive cell therapies such as chimeric antigen receptor (CAR) T cells, and vaccines such as dendritic cell vaccines. Antibodies have also been used as toxin or radioactive particle delivery vehicles to eliminate target cells in the treatment of GBM. Oncolytic viral therapy and other immunogenic cell death-inducing treatments bridge the antitumor strategy with immunization and installation of immune control over the disease. These strategies should be included in the standard treatment protocol for GBM. Some immunotherapies are individualized in terms of the medicinal product, the immune target, and the immune tumor–host contact. Current individualized immunotherapy strategies focus on combinations of approaches. Standardization appears to be impossible in the face of complex controlled trial designs. To define appropriate control groups, stratification according to the Recursive Partitioning Analysis classification, MGMT promotor methylation, epigenetic GBM sub-typing, tumor microenvironment, systemic immune functioning before and after radiochemotherapy, and the need for/type of symptom-relieving drugs is required. Moreover, maintenance of a fixed treatment protocol for a dynamic, deadly cancer disease in a permanently changing tumor–host immune context might be inappropriate. This complexity is illustrated using our own data on individualized multimodal immunotherapies for GBM. Individualized medicines, including multimodal immunotherapies, are a rational and optimal yet also flexible approach to induce long-term tumor control. However, innovative methods are needed to assess the efficacy of complex individualized treatments and implement them more quickly into the general health system.
Collapse
|
15
|
Martens K, Seys SF, Alpizar YA, Schrijvers R, Bullens DMA, Breynaert C, Lebeer S, Steelant B. Staphylococcus aureus enterotoxin B disrupts nasal epithelial barrier integrity. Clin Exp Allergy 2020; 51:87-98. [PMID: 33090566 DOI: 10.1111/cea.13760] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 10/08/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND Staphylococcus aureus colonization and release of enterotoxin B (SEB) has been associated with severe chronic rhinosinusitis with nasal polyps (CRSwNP). The pathogenic mechanism of SEB on epithelial barriers, however, is largely unexplored. OBJECTIVE We investigated the effect of SEB on nasal epithelial barrier function. METHODS SEB was apically administered to air-liquid interface (ALI) cultures of primary polyp and nasal epithelial cells of CRSwNP patients and healthy controls, respectively. Epithelial cell integrity and tight junction expression were evaluated. The involvement of Toll-like receptor 2 (TLR2) activation was studied in vitro with TLR2 monoclonal antibodies and in vivo in tlr2-/- knockout mice. RESULTS SEB applied to ALI cultures of polyp epithelial cells decreased epithelial cell integrity by diminishing occludin and zonula occludens (ZO)-1 protein expression. Antagonizing TLR2 prevented SEB-induced barrier disruption. SEB applied in the nose of control mice increased mucosal permeability and decreased mRNA expression of occludin and ZO-1, whereas mucosal integrity and tight junction expression remained unaltered in tlr2-/- mice. Furthermore, in vitro SEB stimulation resulted in epithelial production of IL-6 and IL-8, which was prevented by TLR2 antagonization. CONCLUSION & CLINICAL RELEVANCE SEB damages nasal polyp epithelial cell integrity by triggering TLR2 in CRSwNP. Our results suggest that SEB might represent a driving factor of disease exacerbation, rather than a causal factor for epithelial defects in CRSwNP. Interfering with TLR2 triggering might provide a way to avoid the pathophysiological consequences of S. aureus on inflammation in CRSwNP.
Collapse
Affiliation(s)
- Katleen Martens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium.,Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Sven F Seys
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium
| | - Yeranddy A Alpizar
- KU Leuven Department of Cellular and Molecular Medicine, Laboratory of Ion Channel Research, Leuven, Belgium.,BIOMED, University of Hasselt, Hasselt, Belgium
| | - Rik Schrijvers
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium
| | - Dominique M A Bullens
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium.,Clinical Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium
| | - Sarah Lebeer
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | - Brecht Steelant
- KU Leuven Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Unit, Leuven, Belgium
| |
Collapse
|
16
|
|
17
|
Riva M, Wouters R, Weerasekera A, Belderbos S, Nittner D, Thal DR, Baert T, Giovannoni R, Gsell W, Himmelreich U, Van Ranst M, Coosemans A. CT-2A neurospheres-derived high-grade glioma in mice: a new model to address tumor stem cells and immunosuppression. Biol Open 2019; 8:bio.044552. [PMID: 31511246 PMCID: PMC6777368 DOI: 10.1242/bio.044552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recently, several promising treatments for high-grade gliomas (HGGs) failed to provide significant benefit when translated from the preclinical setting to patients. Improving the animal models is fundamental to overcoming this translational gap. To address this need, we developed and comprehensively characterized a new in vivo model based on the orthotopic implantation of CT-2A cells cultured in neurospheres (NS/CT-2A). Murine CT-2A methylcholanthrene-induced HGG cells (C57BL/6 background) were cultured in monolayers (ML) or NS and orthotopically inoculated in syngeneic animals. ML/CT-2A and NS/CT-2A tumors' characterization included the analysis of tumor growth, immune microenvironment, glioma stem cells (GSCs), vascularization and metabolites. The immuno-modulating properties of NS/CT-2A and ML/CT-2A cells on splenocytes were tested in vitro. Mice harboring NS/CT-2A tumors had a shorter survival than those harboring ML/CT-2A tumors (P=0.0033). Compared to standard ML/CT-2A tumors, NS/CT-2A tumors showed more abundant GSCs (P=0.0002 and 0.0770 for Nestin and CD133, respectively) and regulatory T cells (Tregs, P=0.0074), and a strong tendency towards an increased vascularization (P=0.0503). There were no significant differences in metabolites' composition between NS/ and ML/CT-2A tumors. In vitro, NS were able to drive splenocytes towards a more immunosuppressive status by reducing CD8+ T cells (P=0.0354) and by promoting Tregs (P=0.0082), macrophages (MF, P=0.0019) and their M2 subset (P=0.0536). Compared to standard ML/CT-2A tumors, NS/CT-2A tumors show a more aggressive phenotype with increased immunosuppression and GSCs proliferation. Because of these specific features, the NS/CT-2A model represents a clinically relevant platform in the search for new HGG treatments aimed at reducing immunosuppression and eliminating GSCs. Summary: The NS/CT-2A tumor model represents a valuable research platform for the study of innovative treatments aimed at eliminating GSCs and reversing the tumor-induced immunosuppression in HGGs.
Collapse
Affiliation(s)
- Matteo Riva
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium .,Department of Neurosurgery, Erasme Hospital, Bruxelles 1070, Belgium
| | - Roxanne Wouters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium
| | - Akila Weerasekera
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - Sarah Belderbos
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - David Nittner
- Center for the Biology of Disease, KU Leuven Center for Human Genetics - InfraMouse, VIB, University of Leuven, Leuven 3000, Belgium
| | - Dietmar R Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium.,Department of Pathology, UZ-Leuven, Leuven 3000, Belgium
| | - Thaïs Baert
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium.,Department of Gynecology and Gynecologic Oncology, Kliniken Essen Mitte (KEM), Essen 2910, Germany
| | - Roberto Giovannoni
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy
| | - Willy Gsell
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology and Molecular Small Animal Imaging Center (MoSAIC), KU Leuven, Leuven 3000, Belgium
| | - Marc Van Ranst
- Laboratory for Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, KU Leuven, Leuven 3000, Belgium.,Department of Gynaecology and Obstetrics, Leuven Cancer Institute, UZ Leuven, Leuven 3000, Belgium
| |
Collapse
|
18
|
Munegowda MA, Fisher C, Molehuis D, Foltz W, Roufaiel M, Bassan J, Nitz M, Mandel A, Lilge L. Efficacy of ruthenium coordination complex-based Rutherrin in a preclinical rat glioblastoma model. Neurooncol Adv 2019; 1:vdz006. [PMID: 32642649 PMCID: PMC7212850 DOI: 10.1093/noajnl/vdz006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background Glioblastoma is an aggressive brain cancer in adults with a grave prognosis, aggressive radio and chemotherapy provide only a 15 months median survival. Methods We evaluated the tolerability and efficacy of the Ruthenium-based photosensitizer TLD-1433 with apo-Transferrin (Rutherrin) in the rat glioma 2 (RG-2) model. The specific tumor uptake ratio and photodynamic therapy (PDT) threshold of the rat glioblastoma and normal brain were determined, survival and CD8+T-cell infiltration post-therapy were analyzed. Results were compared with those obtained for 5-aminolevulinic acid (ALA)-induced Protoporphyrin IX (PpIX)-mediated photodynamic therapy in the same animal model. As both photosensitizers have different photophysical properties, the number of absorbed photons required to achieve an equal cell kill was determined for in vitro and in vivo studies. Results A significantly lower absorbed energy was sufficient to achieve LD50 with Rutherrin versus PpIX-mediated PDT. Rutherrin provides a higher specific uptake ratio (SUR) >20 in tumors versus normal brain, whereas the SUR for ALA-induced PpIX was 10.6. To evaluate the short-term tissue response in vivo, enhanced T2-weighted magnetic resonance imaging (MRI) provided the spatial extent of edema, post PpIX-PDT at twice the cross-section versus Rutherrin-PDT suggesting reduced nonspecific damage, typically associated with a secondary wave of neuronal damage. Following a single therapy, a significant survival increase was observed in rats bearing glioma for PDT mediated by Rutherrin versus PpIX for the selected treatment conditions. Rutherrin-PDT also demonstrated an increased CD8+T-cell infiltration in the tumors. Conclusion Rutherrin-PDT was well tolerated providing a safe and effective treatment of RG-2 glioma.
Collapse
Affiliation(s)
| | - Carl Fisher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Daniel Molehuis
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Warren Foltz
- Techna Institute, University Health Network, Toronto, Ontario, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Roufaiel
- Theralase Technologies Inc., Toronto, Ontario, Canada
| | - Jay Bassan
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Arkady Mandel
- Theralase Technologies Inc., Toronto, Ontario, Canada
| | - Lothar Lilge
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
19
|
Vermeersch E, Liénart S, Collignon A, Lucas S, Gallimore A, Gysemans C, Unutmaz D, Vanhoorelbeke K, De Meyer SF, Maes W, Deckmyn H. Deletion of GARP on mouse regulatory T cells is not sufficient to inhibit the growth of transplanted tumors. Cell Immunol 2018; 332:129-133. [PMID: 30093071 DOI: 10.1016/j.cellimm.2018.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/13/2018] [Accepted: 07/29/2018] [Indexed: 12/17/2022]
Abstract
GARP is a transmembrane protein that presents latent TGF-β1 on the surface of regulatory T cells (Tregs). Neutralizing anti-GARP monoclonal antibodies that prevent the release of active TGF-β1, inhibit the immunosuppressive activity of human Tregs in vivo. In this study, we investigated the contribution of GARP on mouse Tregs to immunosuppression in experimental tumors. Unexpectedly, Foxp3 conditional garp knockout (KO) mice challenged orthotopically with GL261 tumor cells or subcutaneously with MC38 colon carcinoma cells did not show prolonged survival or delayed tumor growth. Also, the suppressive function of KO Tregs was similar to that of wild type Tregs in the T cell transfer model in allogeneic, immunodeficient mice. In conclusion, garp deletion in mouse Tregs is not sufficient to impair their immunosuppressive activity in vivo.
Collapse
Affiliation(s)
- E Vermeersch
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - S Liénart
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - A Collignon
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - S Lucas
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - A Gallimore
- Medical Biochemistry and Immunology, Henry Wellcome Building, Heath Park, Cardiff CF14 4XN, UK
| | - C Gysemans
- Laboratory of Clinical and Experimental Endocrinology (CEE), Department of Chronic Diseases, Metabolism and Ageing (CHROMETA), KU Leuven, Leuven, Belgium
| | - D Unutmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - K Vanhoorelbeke
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - S F De Meyer
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - W Maes
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - H Deckmyn
- Laboratory for Thrombosis Research, IRF Life Sciences, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium.
| |
Collapse
|
20
|
High-grade glioma associated immunosuppression does not prevent immune responses induced by therapeutic vaccines in combination with T reg depletion. Cancer Immunol Immunother 2018; 67:1545-1558. [PMID: 30054667 PMCID: PMC6182405 DOI: 10.1007/s00262-018-2214-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/20/2018] [Indexed: 01/20/2023]
Abstract
High-grade gliomas (HGG) exert systemic immunosuppression, which is of particular importance as immunotherapeutic strategies such as therapeutic vaccines are increasingly used to treat HGGs. In a first cohort of 61 HGG patients we evaluated a panel of 30 hematological and 34 plasma biomarkers. Then, we investigated in a second cohort of 11 relapsed HGG patients receiving immunomodulation with metronomic cyclophosphamide upfront to a DC-based vaccine whether immune abnormalities persisted and whether they hampered induction of IFNγ+ T-cell responses. HGG patients from the first cohort showed increased numbers of leukocytes, neutrophils and MDSCs and in parallel reduced numbers of CD4+/CD8+ T-cells, plasmacytoid and conventional DC2s. MDSCs and T-cell alterations were more profound in WHO IV° glioma patients. Moreover, levels of MDSCs and epidermal growth factor were negatively associated with survival. Serum levels of IL-2, IL-4, IL-5 and IL-10 were altered in HGG patients, however, without any impact on clinical outcome. In the immunotherapy cohort, 6-month overall survival was 100%. Metronomic cyclophosphamide led to > 40% reduction of regulatory T cells (Treg). In parallel to Treg-depletion, MDSCs and DC subsets became indistinguishable from healthy controls, whereas T-lymphopenia persisted. Despite low T-cells, IFNγ-responses could be induced in 9/10 analyzed cases. Importantly, frequency of CD8+VLA-4+ T-cells with CNS-homing properties, but not of CD4+ VLA-4+ T-cells, increased during vaccination. Our study identifies several features of systemic immunosuppression in HGGs. Metronomic cyclophosphamide in combination with an active immunization alleviates the latter and the combined treatment allows induction of a high rate of anti-glioma immune responses.
Collapse
|
21
|
Mathivet T, Bouleti C, Van Woensel M, Stanchi F, Verschuere T, Phng LK, Dejaegher J, Balcer M, Matsumoto K, Georgieva PB, Belmans J, Sciot R, Stockmann C, Mazzone M, De Vleeschouwer S, Gerhardt H. Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth. EMBO Mol Med 2018; 9:1629-1645. [PMID: 29038312 PMCID: PMC5709745 DOI: 10.15252/emmm.201607445] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioma growth and progression are characterized by abundant development of blood vessels that are highly aberrant and poorly functional, with detrimental consequences for drug delivery efficacy. The mechanisms driving this vessel dysmorphia during tumor progression are poorly understood. Using longitudinal intravital imaging in a mouse glioma model, we identify that dynamic sprouting and functional morphogenesis of a highly branched vessel network characterize the initial tumor growth, dramatically changing to vessel expansion, leakage, and loss of branching complexity in the later stages. This vascular phenotype transition was accompanied by recruitment of predominantly pro‐inflammatory M1‐like macrophages in the early stages, followed by in situ repolarization to M2‐like macrophages, which produced VEGF‐A and relocate to perivascular areas. A similar enrichment and perivascular accumulation of M2 versus M1 macrophages correlated with vessel dilation and malignancy in human glioma samples of different WHO malignancy grade. Targeting macrophages using anti‐CSF1 treatment restored normal blood vessel patterning and function. Combination treatment with chemotherapy showed survival benefit, suggesting that targeting macrophages as the key driver of blood vessel dysmorphia in glioma progression presents opportunities to improve efficacy of chemotherapeutic agents. We propose that vessel dysfunction is not simply a general feature of tumor vessel formation, but rather an emergent property resulting from a dynamic and functional reorganization of the tumor stroma and its angiogenic influences.
Collapse
Affiliation(s)
- Thomas Mathivet
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium .,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Claire Bouleti
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Matthias Van Woensel
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Fabio Stanchi
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Tina Verschuere
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Li-Kun Phng
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory for Vascular Morphogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Joost Dejaegher
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Marly Balcer
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ken Matsumoto
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Petya B Georgieva
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium.,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Jochen Belmans
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Raf Sciot
- Department of Pathology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Christian Stockmann
- UMR 970, Paris Cardiovascular Research Center, Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Massimiliano Mazzone
- Lab of Molecular Oncology and Angiogenesis, Department of Oncology, KU Leuven, Leuven, Belgium.,Lab of Molecular Oncology and Angiogenesis, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Department of Neurosciences, Laboratory of Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Holger Gerhardt
- Vascular Patterning Lab, Center for Cancer Biology, VIB, Leuven, Belgium .,Vascular Patterning Lab, Department of Oncology, KU Leuven, Leuven, Belgium.,Integrative Vascular Biology Laboratory, Max-Delbrück-Center for Molecular Medicine, Helmholtz Association (MDC), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
22
|
Li F, Lv B, Liu Y, Hua T, Han J, Sun C, Xu L, Zhang Z, Feng Z, Cai Y, Zou Y, Ke Y, Jiang X. Blocking the CD47-SIRPα axis by delivery of anti-CD47 antibody induces antitumor effects in glioma and glioma stem cells. Oncoimmunology 2017; 7:e1391973. [PMID: 29308321 DOI: 10.1080/2162402x.2017.1391973] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
Tumor initiating cells or cancer stem cells (CSCs) play an important role in the initiation, development, metastasis, and recurrence of tumors. However, traditional therapies have limited effects against CSCs and targeting these cells is crucial when developing new therapeutic strategies against cancer. One potentially targetable factor is CD47, a member of the immunoglobulin superfamily. This protein acts as an anti-phagocytic "don't eat me" signal and is often found expressed by cancer cells, particularly CSCs. CD47 functions by activating signal regulatory protein-α (SIRP-α) expressed on macrophages, preventing phagocytosis. However, the role of CD47 in glioma stem cells (GSCs) has been not been thoroughly investigated. Our study therefore examined the expression and function of this protein in glioma cells and GSCs. We found that CD47 was highly expressed on glioma cells, especially GSCs, and that expression associated with worse clinical outcomes. We also found that CD47+ glioma cells possessed stem/progenitor cell-like characteristics and knocking down CD47 expression resulted in a reduction in these characteristics. Treatment with anti-CD47 antibody led to increased phagocytosis of glioma cells and GSCs by macrophages. We next examined the effects of anti-CD47 antibody on glioma cells/GSCs in an immune competent mouse glioma model, revealing significant inhibition of tumor growth and prolonged survival times. Importantly, there were no apparent side effects in the animal model. In summary, we have shown that CD47 is a potentially safe and effective therapeutic target for glioma.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Bingke Lv
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yang Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Tian Hua
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Jianbang Han
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Chengmei Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Limin Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhongfei Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Zhiming Feng
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yingqian Cai
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yuxi Zou
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Yiquan Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Xiaodan Jiang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
23
|
Immunotherapy with subcutaneous immunogenic autologous tumor lysate increases murine glioblastoma survival. Sci Rep 2017; 7:13902. [PMID: 29066810 PMCID: PMC5654749 DOI: 10.1038/s41598-017-12584-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/08/2017] [Indexed: 02/06/2023] Open
Abstract
Immunotherapeutic strategies for glioblastoma, the most frequent malignant primary brain tumor, aim to improve its disastrous consequences. On top of the standard treatment, one strategy uses T cell activation by autologous dendritic cells (DC) ex vivo loaded with tumor lysate to attack remaining cancer cells. Wondering whether 'targeting' in vivo DCs could replace these ex vivo ones, immunogenic autologous tumor lysate was used to treat glioma-inoculated mice in the absence of ex vivo loaded DCs. Potential immune mechanisms were studied in two orthotopic, immunocompetent murine glioma models. Pre-tumoral subcutaneous lysate treatment resulted in a survival benefit comparable to subcutaneous DC therapy. Focussing on the immune response, glioma T cell infiltration was observed in parallel with decreased amounts of regulatory T cells. Moreover, these results were accompanied by the presence of strong tumor-specific immunological memory, shown by complete survival of a second glioblastoma tumor, inoculated 100 days after the first one. Finally, in combination with temozolomide, survival of established glioma in mice could be increased. Our results show the potential of immunogenic autologous tumor lysate used to treat murine glioblastoma, which will be worthwhile to study in clinical trials as it has potential as a cost-efficient adjuvant treatment strategy for gliomas.
Collapse
|
24
|
Co-delivery of tumor-derived exosomes with alpha-galactosylceramide on dendritic cell-based immunotherapy for glioblastoma. Cancer Lett 2017; 411:182-190. [PMID: 28947140 DOI: 10.1016/j.canlet.2017.09.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 01/21/2023]
Abstract
Dendritic cell (DC) vaccine-based immunotherapy for glioblastoma multiforme (GBM) has shown apparent benefit in animal experiments and early-phase clinical trials, but the survival benefit is variable. In this work, we analyzed the mechanism of the potent antitumor immune response induced in vivo by tumor-associated antigen (TAA)-specific DCs with an invariant natural killer T (iNKT) cell adjuvant in orthotopic glioblastoma-bearing rats vaccinated with tumor-derived exosomes and α-galactosylceramide (α-GalCer) -pulsed DCs. Compared with traditional tumor lysate, exosomes were utilized as a more potent antigen to load DCs. iNKT cells, as an effective cellular adjuvant activated by α-GalCer, strengthened TAA presentation through their interaction with DCs. Co-delivery of tumor-derived exosomes with α-GalCer on a DC-based vaccine showed powerful effects in glioblastoma immunotherapy. This vaccine induced strong activation and proliferation of tumor-specific cytotoxic T lymphocytes, synergistically breaking the immune tolerance and improving the immunosuppressive environment.
Collapse
|
25
|
Dejaegher J, Verschuere T, Vercalsteren E, Boon L, Cremer J, Sciot R, Van Gool SW, De Vleeschouwer S. Characterization of PD-1 upregulation on tumor-infiltrating lymphocytes in human and murine gliomas and preclinical therapeutic blockade. Int J Cancer 2017; 141:1891-1900. [DOI: 10.1002/ijc.30877] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 06/13/2017] [Accepted: 06/28/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Joost Dejaegher
- Research group Experimental Neurosurgery and Neuroanatomy, KU Leuven; Leuven Belgium
| | - Tina Verschuere
- Research group Experimental Neurosurgery and Neuroanatomy, KU Leuven; Leuven Belgium
| | - Ellen Vercalsteren
- Research group Experimental Neurosurgery and Neuroanatomy, KU Leuven; Leuven Belgium
| | | | - Jonathan Cremer
- Laboratory of Clinical Immunology; KU Leuven; Leuven Belgium
| | - Raf Sciot
- Department of Pathology; University Hospitals Leuven; Leuven Belgium
| | | | | |
Collapse
|
26
|
Nanoparticles for tumor immunotherapy. Eur J Pharm Biopharm 2017; 115:243-256. [DOI: 10.1016/j.ejpb.2017.03.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/01/2017] [Accepted: 03/17/2017] [Indexed: 12/21/2022]
|
27
|
Sensitization of glioblastoma tumor micro-environment to chemo- and immunotherapy by Galectin-1 intranasal knock-down strategy. Sci Rep 2017; 7:1217. [PMID: 28450700 PMCID: PMC5430862 DOI: 10.1038/s41598-017-01279-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 03/27/2017] [Indexed: 01/16/2023] Open
Abstract
In this study, we evaluated the consequences of reducing Galectin-1 (Gal-1) in the tumor micro-environment (TME) of glioblastoma multiforme (GBM), via nose-to-brain transport. Gal-1 is overexpressed in GBM and drives chemo- and immunotherapy resistance. To promote nose-to-brain transport, we designed siRNA targeting Gal-1 (siGal-1) loaded chitosan nanoparticles that silence Gal-1 in the TME. Intranasal siGal-1 delivery induces a remarkable switch in the TME composition, with reduced myeloid suppressor cells and regulatory T cells, and increased CD4+ and CD8+ T cells. Gal-1 knock-down reduces macrophages’ polarization switch from M1 (pro-inflammatory) to M2 (anti-inflammatory) during GBM progression. These changes are accompanied by normalization of the tumor vasculature and increased survival for tumor bearing mice. The combination of siGal-1 treatment with temozolomide or immunotherapy (dendritic cell vaccination and PD-1 blocking) displays synergistic effects, increasing the survival of tumor bearing mice. Moreover, we could confirm the role of Gal-1 on lymphocytes in GBM patients by matching the Gal-1 expression and their T cell signatures. These findings indicate that intranasal siGal-1 nanoparticle delivery could be a valuable adjuvant treatment to increase the efficiency of immune-checkpoint blockade and chemotherapy.
Collapse
|
28
|
Garg AD, Vandenberk L, Van Woensel M, Belmans J, Schaaf M, Boon L, De Vleeschouwer S, Agostinis P. Preclinical efficacy of immune-checkpoint monotherapy does not recapitulate corresponding biomarkers-based clinical predictions in glioblastoma. Oncoimmunology 2017; 6:e1295903. [PMID: 28507806 DOI: 10.1080/2162402x.2017.1295903] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is resistant to most multimodal therapies. Clinical success of immune-checkpoint inhibitors (ICIs) has spurred interest in applying ICIs targeting CTLA4, PD1 or IDO1 against GBM. This amplifies the need to ascertain GBM's intrinsic susceptibility (or resistance) toward these ICIs, through clinical biomarkers that may also "guide and prioritize" preclinical testing. Here, we interrogated the TCGA and/or REMBRANDT human patient-cohorts to predict GBM's predisposition toward ICIs. We exploited various broad clinical biomarkers, including mutational or predicted-neoantigen burden, pre-existing or basal levels of tumor-infiltrating T lymphocytes (TILs), differential expression of immune-checkpoints within the tumor and their correlation with particular TILs/Treg-associated functional signature and prognostic impact of differential immune-checkpoint expression. Based on these analyses, we found that predictive biomarkers of ICI responsiveness exhibited inconsistent patterns in GBM patients, i.e., they either predicted ICI resistance (as compared with typical ICI-responsive cancer-types like melanoma, lung cancer or bladder cancer) or susceptibility to therapeutic targeting of CTLA4 or IDO1. On the other hand, our comprehensive literature meta-analysis and preclinical testing of ICIs using an orthotopic GL261-glioma mice model, indicated significant antitumor properties of anti-PD1 antibody, whereas blockade of IDO1 or CTLA4 either failed or provided very marginal advantage. These trends raise the need to better assess the applicability of ICIs and associated biomarkers for GBM.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Lien Vandenberk
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven University of Leuven, Leuven, Belgium
| | - Matthias Van Woensel
- Research Group - Experimental Neurosurgery & Neuroanatomy, KU Leuven University of Leuven, Leuven, Belgium.,Laboratoire de Pharmacie Galenique et Biopharmacie, ULB, Bruxelles, Belgium
| | - Jochen Belmans
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven University of Leuven, Leuven, Belgium
| | - Marco Schaaf
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | | | - Steven De Vleeschouwer
- Research Group - Experimental Neurosurgery & Neuroanatomy, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
29
|
Zhang X, Zhu S, Li T, Liu YJ, Chen W, Chen J. Targeting immune checkpoints in malignant glioma. Oncotarget 2017; 8:7157-7174. [PMID: 27756892 PMCID: PMC5351697 DOI: 10.18632/oncotarget.12702] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Malignant glioma is the most common and a highly aggressive cancer in the central nervous system (CNS). Cancer immunotherapy, strategies to boost the body's anti-cancer immune responses instead of directly targeting tumor cells, recently achieved great success in treating several human solid tumors. Although once considered "immune privileged" and devoid of normal immunological functions, CNS is now considered a promising target for cancer immunotherapy, featuring the recent progresses in neurobiology and neuroimmunology and a highly immunosuppressive state in malignant glioma. In this review, we focus on immune checkpoint inhibitors, specifically, antagonizing monoclonal antibodies for programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and indoleamine 2,3-dioxygenase (IDO). We discuss advances in the working mechanisms of these immune checkpoint molecules, their status in malignant glioma, and current preclinical and clinical trials targeting these molecules in malignant glioma.
Collapse
Affiliation(s)
- Xuhao Zhang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Tete Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Sanofi Research and Development, Cambridge, MA, USA
| | - Wei Chen
- ADC Biomedical Research Institute, Saint Paul, MN, USA
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
30
|
Garg AD, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool SW, Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci Transl Med 2016; 8:328ra27. [PMID: 26936504 DOI: 10.1126/scitranslmed.aae0105] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The promise of dendritic cell (DC)-based immunotherapy has been established by two decades of translational research. Of the four malignancies most targeted with clinical DC immunotherapy, high-grade glioma (HGG) has shown the highest susceptibility. HGG-induced immunosuppression is a roadblock to immunotherapy, but may be overcome by the application of T helper 1 (T(H)1) immunity-biased, next-generation, DC immunotherapy. To this end, we combined DC immunotherapy with immunogenic cell death (ICD; a modality shown to induce T(H)1 immunity) induced by hypericin-based photodynamic therapy. In an orthotopic HGG mouse model involving prophylactic/curative setups, both biologically and clinically relevant versions of ICD-based DC vaccines provided strong anti-HGG survival benefit. We found that the ability of DC vaccines to elicit HGG rejection was significantly blunted if cancer cell-associated reactive oxygen species and emanating danger signals were blocked either singly or concomitantly, showing hierarchical effect on immunogenicity, or if DCs, DC-associated MyD88 signal, or the adaptive immune system (especially CD8(+) T cells) were depleted. In a curative setting, ICD-based DC vaccines synergized with standard-of-care chemotherapy (temozolomide) to increase survival of HGG-bearing mice by ~300%, resulting in ~50% long-term survivors. Additionally, DC vaccines also induced an immunostimulatory shift in the brain immune contexture from regulatory T cells to T(H)1/cytotoxic T lymphocyte/T(H)17 cells. Analysis of the The Cancer Genome Atlas glioblastoma cohort confirmed that increased intratumor prevalence of T(H)1/cytotoxic T lymphocyte/T(H)17 cells linked genetic signatures was associated with good patient prognosis. Therefore, pending final preclinical checks, ICD-based vaccines can be clinically translated for glioma treatment.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine, Katholieke Universiteit (KU) Leuven, Leuven 3000, Belgium
| | - Lien Vandenberk
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven 3000, Belgium
| | - Carolien Koks
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven 3000, Belgium
| | - Tina Verschuere
- Department of Neurosciences, Research Group-Neuroanatomy and Neurosurgery, KU Leuven, Leuven 3000, Belgium
| | - Louis Boon
- EPIRUS Biopharmaceuticals Netherlands BV, 3584 Utrecht, Netherlands
| | - Stefaan W Van Gool
- Laboratory of Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven 3000, Belgium.
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department of Cellular and Molecular Medicine, Katholieke Universiteit (KU) Leuven, Leuven 3000, Belgium.
| |
Collapse
|
31
|
Duinkerken S, van Kooyk Y, Garcia-Vallejo JJ. Human cytomegalovirus-based immunotherapy to treat glioblastoma: Into the future. Oncoimmunology 2016; 5:e1214791. [PMID: 27757314 DOI: 10.1080/2162402x.2016.1214791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor and median survival time with current therapies is only 14.6 mo. Although multiple immunotherapeutic strategies are being explored, efficacy remains poor. In order to improve immunotherapy for GBM, we propose to combine currently used endogenous with human cytomegalovirus (HCMV) specific antigens expressed on cancer cells.
Collapse
Affiliation(s)
- Sanne Duinkerken
- Department of Molecular Cell Biology and Immunology, VUmc , Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VUmc , Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VUmc , Amsterdam, the Netherlands
| |
Collapse
|
32
|
Van Woensel M, Wauthoz N, Rosière R, Mathieu V, Kiss R, Lefranc F, Steelant B, Dilissen E, Van Gool SW, Mathivet T, Gerhardt H, Amighi K, De Vleeschouwer S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J Control Release 2016; 227:71-81. [DOI: 10.1016/j.jconrel.2016.02.032] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/18/2016] [Accepted: 02/18/2016] [Indexed: 11/25/2022]
|
33
|
Kane JR, Miska J, Young JS, Kanojia D, Kim JW, Lesniak MS. Sui generis: gene therapy and delivery systems for the treatment of glioblastoma. Neuro Oncol 2015; 17 Suppl 2:ii24-ii36. [PMID: 25746089 DOI: 10.1093/neuonc/nou355] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Gene therapy offers a multidimensional set of approaches intended to treat and cure glioblastoma (GBM), in combination with the existing standard-of-care treatment (surgery and chemoradiotherapy), by capitalizing on the ability to deliver genes directly to the site of neoplasia to yield antitumoral effects. Four types of gene therapy are currently being investigated for their potential use in treating GBM: (i) suicide gene therapy, which induces the localized generation of cytotoxic compounds; (ii) immunomodulatory gene therapy, which induces or augments an enhanced antitumoral immune response; (iii) tumor-suppressor gene therapy, which induces apoptosis in cancer cells; and (iv) oncolytic virotherapy, which causes the lysis of tumor cells. The delivery of genes to the tumor site is made possible by means of viral and nonviral vectors for direct delivery of therapeutic gene(s), tumor-tropic cell carriers expressing therapeutic gene(s), and "intelligent" carriers designed to increase delivery, specificity, and tumoral toxicity against GBM. These vehicles are used to carry genetic material to the site of pathology, with the expectation that they can provide specific tropism to the desired site while limiting interaction with noncancerous tissue. Encouraging preclinical results using gene therapies for GBM have led to a series of human clinical trials. Although there is limited evidence of a therapeutic benefit to date, a number of clinical trials have convincingly established that different types of gene therapies delivered by various methods appear to be safe. Due to the flexibility of specialized carriers and genetic material, the technology for generating new and more effective therapies already exists.
Collapse
Affiliation(s)
- J Robert Kane
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jason Miska
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Jacob S Young
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Deepak Kanojia
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Julius W Kim
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| | - Maciej S Lesniak
- Brain Tumor Center, The University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
34
|
Vandenberk L, Garg AD, Verschuere T, Koks C, Belmans J, Beullens M, Agostinis P, De Vleeschouwer S, Van Gool SW. Irradiation of necrotic cancer cells, employed for pulsing dendritic cells (DCs), potentiates DC vaccine-induced antitumor immunity against high-grade glioma. Oncoimmunology 2015; 5:e1083669. [PMID: 27057467 PMCID: PMC4801426 DOI: 10.1080/2162402x.2015.1083669] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 12/05/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapy has yielded promising results against high-grade glioma (HGG). However, the efficacy of DC vaccines is abated by HGG-induced immunosuppression and lack of attention toward the immunogenicity of the tumor lysate/cells used for pulsing DCs. A literature analysis of DC vaccination clinical trials in HGG patients delineated the following two most predominantly applied methods for tumor lysate preparation: freeze-thaw (FT)-induced necrosis or FT-necrosis followed by X-ray irradiation. However, from the available clinical evidence, it is unclear which of both methodologies has superior immunogenic potential. Using an orthotopic HGG murine model (GL261-C57BL/6), we observed that prophylactic vaccination with DCs pulsed with irradiated FT-necrotic cells (compared to FT-necrotic cells only) prolonged overall survival by increasing tumor rejection in glioma-challenged mice. This was associated, both in prophylactic and curative vaccination setups, with an increase in brain-infiltrating Th1 cells and cytotoxic T lymphocytes (CTL), paralleled by a reduced accumulation of regulatory T cells, tumor-associated macrophages (TAM) and myeloid-derived suppressor cells (MDSC). Further analysis showed that irradiation treatment of FT-necrotic cells considerably increased the levels of carbonylated proteins — a surrogate-marker of oxidation-associated molecular patterns (OAMPs). Through further application of antioxidants and hydrogen peroxide, we found a striking correlation between the amount of lysate-associated protein carbonylation/OAMPs and DC vaccine-mediated tumor rejection capacity thereby suggesting for the first time a role for protein carbonylation/OAMPs in at least partially mediating antitumor immunity. Together, these data strongly advocate the use of protein oxidation-inducing modalities like irradiation for increasing the immunogenicity of tumor lysate/cells used for pulsing DC vaccines.
Collapse
Affiliation(s)
- Lien Vandenberk
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Abhishek D Garg
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Cell Death Research and Therapy , Leuven, Belgium
| | - Tina Verschuere
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Carolien Koks
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Jochen Belmans
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| | - Monique Beullens
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Biosignaling and Therapeutics , Leuven, Belgium
| | - Patrizia Agostinis
- KU Leuven - University of Leuven, Department of Cellular and Molecular Medicine, Laboratory of Cell Death Research and Therapy , Leuven, Belgium
| | - Steven De Vleeschouwer
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurosurgery and Neuroanatomy , Leuven, Belgium
| | - Stefaan W Van Gool
- KU Leuven - University of Leuven, Department of Microbiology and Immunology, Laboratory of Pediatric Immunology , Leuven, Belgium
| |
Collapse
|
35
|
Leten C, Trekker J, Struys T, Dresselaers T, Gijsbers R, Vande Velde G, Lambrichts I, Van Der Linden A, Verfaillie CM, Himmelreich U. Assessment of bystander killing-mediated therapy of malignant brain tumors using a multimodal imaging approach. Stem Cell Res Ther 2015; 6:163. [PMID: 26345383 PMCID: PMC4562202 DOI: 10.1186/s13287-015-0157-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/04/2014] [Accepted: 08/14/2015] [Indexed: 12/25/2022] Open
Abstract
Introduction In this study, we planned to assess if adult stem cell-based suicide gene therapy can efficiently eliminate glioblastoma cells in vivo. We investigated the therapeutic potential of mouse Oct4− bone marrow multipotent adult progenitor cells (mOct4− BM-MAPCs) in a mouse glioblastoma model, guided by multimodal in vivo imaging methods to identify therapeutic windows. Methods Magnetic resonance imaging (MRI) of animals, wherein 5 × 105 syngeneic enhanced green fluorescent protein-firefly luciferase-herpes simplex virus thymidine kinase (eGFP-fLuc-HSV-TK) expressing and superparamagnetic iron oxide nanoparticle labeled (1 % or 10 %) mOct4− BM-MAPCs were grafted in glioblastoma (GL261)-bearing animals, showed that labeled mOct4− BM-MAPCs were located in and in close proximity to the tumor. Subsequently, ganciclovir (GCV) treatment was commenced and the fate of both the MAPCs and the tumor were followed by multimodal imaging (MRI and bioluminescence imaging). Results In the majority of GCV-treated, but not phosphate-buffered saline-treated animals, a significant difference was found in mOct4− BM-MAPC viability and tumor size at the end of treatment. Noteworthy, in some phosphate-buffered saline-treated animals (33 %), a significant decrease in tumor size was seen compared to sham-operated animals, which could potentially also be caused by a synergistic effect of the immune-modulatory stem cells. Conclusions Suicide gene therapy using mOct4− BM-MAPCs as cellular carriers was effective in reducing the tumor size in the majority of the GCV-treated animals leading to a longer progression-free survival compared to sham-operated animals. This treatment could be followed and guided noninvasively in vivo by MRI and bioluminescence imaging. Noninvasive imaging is of particular interest for a rapid and efficient validation of stem cell-based therapeutic approaches for glioblastoma and hereby contributes to a better understanding and optimization of a promising therapeutic approach for glioblastoma patients. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0157-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cindy Leten
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Jesse Trekker
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Imec, Department of Life Science Technology, 3001, Leuven, Belgium.
| | - Tom Struys
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Biomedical Research Institute, Lab of Histology, Hasselt University, 3500, Hasselt, Belgium.
| | - Tom Dresselaers
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene therapy, KU Leuven, 3000, Leuven, Belgium. .,Leuven Viral Vector Core, KU Leuven, 3000, Leuven, Belgium.
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| | - Ivo Lambrichts
- Biomedical Research Institute, Lab of Histology, Hasselt University, 3500, Hasselt, Belgium.
| | - Annemie Van Der Linden
- BioImaging Laboratory, University of Antwerp, Campus Drie Eiken, 2610, Antwerpen, Belgium.
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, 3000, Leuven, Belgium.
| | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology, KU Leuven, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Center, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
36
|
Abstract
Glioblastoma multiforme (GBM) is the most common primary brain tumor and is notorious for its poor prognosis. The highly invasive nature of GBM and its inherent resistance to therapy lead to very high rates of recurrence. Recently, a small cohort of tumor cells, called cancer stem cells (CSCs), has been recognized as a subset of tumor cells with self-renewal ability and multilineage capacity. These properties, along with the remarkable tumorigenicity of CSCs, are thought to account for the high rates of tumor recurrence after treatment. Recent research has been geared toward understanding the unique biological characteristics of CSCs to enable development of targeted therapy. Strategies include inhibition of CSC-specific pathways and receptors; agents that increase sensitivity of CSCs to chemotherapy and radiotherapy; CSC differentiation agents; and CSC-specific immunotherapy, virotherapy, and gene therapy. These approaches could inform the development of newer therapeutics for GBM.
Collapse
|
37
|
Van Gool SW. Brain Tumor Immunotherapy: What have We Learned so Far? Front Oncol 2015; 5:98. [PMID: 26137448 PMCID: PMC4470276 DOI: 10.3389/fonc.2015.00098] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/13/2015] [Indexed: 12/17/2022] Open
Abstract
High grade glioma is a rare brain cancer, incurable in spite of modern neurosurgery, radiotherapy, and chemotherapy. Novel approaches are in research, and immunotherapy emerges as a promising strategy. Clinical experiences with active specific immunotherapy demonstrate feasibility, safety and most importantly, but incompletely understood, prolonged long-term survival in a fraction of the patients. In relapsed patients, we developed an immunotherapy schedule and we categorized patients into clinically defined risk profiles. We learned how to combine immunotherapy with standard multimodal treatment strategies for newly diagnosed glioblastoma multiforme patients. The developmental program allows further improvements related to newest scientific insights. Finally, we developed a mode of care within academic centers to organize cell-based therapies for experimental clinical trials in a large number of patients.
Collapse
|
38
|
Dendritic Cell-Based Immunotherapy Treatment for Glioblastoma Multiforme. BIOMED RESEARCH INTERNATIONAL 2015; 2015:717530. [PMID: 26167495 PMCID: PMC4488155 DOI: 10.1155/2015/717530] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/08/2015] [Indexed: 12/23/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma and patients diagnosed with this disease had poor outcomes even treated with the combination of conventional treatment (surgery, chemotherapy, and radiation). Dendritic cells (DCs) are the most powerful antigen presenting cells and DC-based vaccination has the potential to target and eliminate GBM cells and enhance the responses of these cells to the existing therapies with minimal damage to the healthy tissues around them. It can enhance recognition of GBM cells by the patients' immune system and activate vast, potent, and long-lasting immune reactions to eliminate them. Therefore, this therapy can prolong the survival of GBM patients and has wide and bright future in the treatment of GBM. Also, the efficacy of this therapy can be strengthened in several ways at some degree: the manipulation of immune regulatory components or costimulatory molecules on DCs; the appropriate choices of antigens for loading to enhance the effectiveness of the therapy; regulation of positive regulators or negative regulators in GBM microenvironment.
Collapse
|
39
|
Renner DN, Jin F, Litterman AJ, Balgeman AJ, Hanson LM, Gamez JD, Chae M, Carlson BL, Sarkaria JN, Parney IF, Ohlfest JR, Pirko I, Pavelko KD, Johnson AJ. Effective Treatment of Established GL261 Murine Gliomas through Picornavirus Vaccination-Enhanced Tumor Antigen-Specific CD8+ T Cell Responses. PLoS One 2015; 10:e0125565. [PMID: 25933216 PMCID: PMC4416934 DOI: 10.1371/journal.pone.0125565] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/25/2015] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is among the most invasive and lethal of cancers, frequently infiltrating surrounding healthy tissue and giving rise to rapid recurrence. It is therefore critical to establish experimental model systems and develop therapeutic approaches that enhance anti-tumor immunity. In the current study, we have employed a newly developed murine glioma model to assess the efficacy of a novel picornavirus vaccination approach for the treatment of established tumors. The GL261-Quad system is a variation of the GL261 syngeneic glioma that has been engineered to expresses model T cell epitopes including OVA257-264. MRI revealed that both GL261 and GL261-Quad tumors display characteristic features of human gliomas such as heterogeneous gadolinium leakage and larger T2 weighted volumes. Analysis of brain-infiltrating immune cells demonstrated that GL261-Quad gliomas generate detectable CD8+ T cell responses toward the tumor-specific Kb:OVA257-264 antigen. Enhancing this response via a single intracranial or peripheral vaccination with picornavirus expressing the OVA257-264 antigen increased anti-tumor CD8+ T cells infiltrating the brain, attenuated progression of established tumors, and extended survival of treated mice. Importantly, the efficacy of the picornavirus vaccination is dependent on functional cytotoxic activity of CD8+ T cells, as the beneficial response was completely abrogated in mice lacking perforin expression. Therefore, we have developed a novel system for evaluating mechanisms of anti-tumor immunity in vivo, incorporating the GL261-Quad model, 3D volumetric MRI, and picornavirus vaccination to enhance tumor-specific cytotoxic CD8+ T cell responses and track their effectiveness at eradicating established gliomas in vivo.
Collapse
Affiliation(s)
- Danielle N. Renner
- Neurobiology of Disease Graduate Program, Mayo Clinic, Rochester, MN, United States of America
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
| | - Fang Jin
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
| | - Adam J. Litterman
- Department of Neurosurgery, University of Minnesota, Minneapolis MN, United States of America
| | - Alexis J. Balgeman
- Summer Undergraduate Research Fellowship, Mayo Clinic, Rochester, MN, United States of America
| | - Lisa M. Hanson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
| | - Jeffrey D. Gamez
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Michael Chae
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - Brett L. Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States of America
| | - Ian F. Parney
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
| | - John R. Ohlfest
- Department of Neurosurgery, University of Minnesota, Minneapolis MN, United States of America
| | - Istvan Pirko
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Kevin D. Pavelko
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
- * E-mail: (AJJ); (KDP)
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States of America
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- * E-mail: (AJJ); (KDP)
| |
Collapse
|
40
|
Qiao J, Dey M, Chang AL, Kim JW, Miska J, Ling A, M Nettlebeck D, Han Y, Zhang L, Lesniak MS. Intratumoral oncolytic adenoviral treatment modulates the glioma microenvironment and facilitates systemic tumor-antigen-specific T cell therapy. Oncoimmunology 2015; 4:e1022302. [PMID: 26405578 DOI: 10.1080/2162402x.2015.1022302] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of primary brain tumor and is associated with poor survival. Virotherapy is a promising candidate for the development of effective, novel treatments for GBM. Recent studies have underscored the potential of virotherapy in enhancing antitumor immunity despite the fact that its mechanisms remain largely unknown. Here, using a syngeneic GBM mouse model, we report that intratumoral virotherapy significantly modulates the tumor microenvironment. We found that intratumoral administration of an oncolytic adenovirus, AdCMVdelta24, decreased tumor-infiltrating CD4+ Foxp3+ regulatory T cells (Tregs) and increased IFNγ-producing CD8+ T cells in treated tumors, even in late stage disease in which a highly immunosuppressive tumor microenvironment is considered to be a significant barrier to immunotherapy. Importantly, intratumoral AdCMVdelta24 treatment augmented systemically transferred tumor-antigen-specific T cell therapy. Furthermore, mechanistic studies showed (1) downregulation of Foxp3 in Tregs that were incubated with media conditioned by virus-infected tumor cells, (2) downregulation of indoleamine 2,3 dioxygenase 1 (IDO) in glioma cells upon infection by AdCMVdelta24, and (3) reprograming of Tregs from an immunosuppressive to a stimulatory state. Taken together, our findings demonstrate the potency of intratumoral oncolytic adenoviral treatment in enhancing antitumor immunity through the regulation of multiple aspects of immune suppression in the context of glioma, supporting further clinical development of oncolytic adenovirus-based immune therapies for malignant brain cancer.
Collapse
Affiliation(s)
- Jian Qiao
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Mahua Dey
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Alan L Chang
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Julius W Kim
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Jason Miska
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Alex Ling
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Dirk M Nettlebeck
- Oncolytic Adenovirus Group; German Cancer Research Center (DKFZ) ; Heidelberg, Germany
| | - Yu Han
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Lingjiao Zhang
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| | - Maciej S Lesniak
- The Brain Tumor Center; Pritzker School of Medicine; The University of Chicago ; Chicago, IL USA
| |
Collapse
|
41
|
He XZ, Wang QF, Han S, Wang HQ, Ye YY, Zhu ZY, Zhang SZ. Cryo-ablation improves anti-tumor immunity through recovering tumor educated dendritic cells in tumor-draining lymph nodes. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1449-58. [PMID: 25792805 PMCID: PMC4362656 DOI: 10.2147/dddt.s76592] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Background In addition to minimally invasive destruction of tumors, cryo-ablation of tumors to some extent modulated anti-tumor immunity. Cryo-ablated tumors in glioma mice models induced anti-tumor cellular immunologic response which increases the percentage of CD3+ and CD4+T cells in blood as well as natural killer cells. As a crucial role in triggering anti-tumor immunity, dendritic cells (DCs) were educated by tumors to adopt a tolerance phenotype which helps the tumor escape from immune monitoring. This study aims to study whether cryo-ablation could influence the tolerogenic DCs, and influence anti-tumor immunity in tumor-draining lymph nodes (TDLNs). Methods Using the GL261 subcutaneous glioma mouse model, we created a tumor bearing group, cryo-ablation group, and surgery group. We analyzed alteration in phenotype and function of tolerogenic DCs, and evaluated the factors of anti-tumor immunity inhibition. Results DCs in TDLNs in GL261 subcutaneous glioma mouse model expressed tolerogenic phenotype. In contrast to surgery, cryo-ablation improved the quantity and quality of these tolerogenic DCs. Moreover, the DCs decreased the expression of intracellular interleukin-10 (IL-10) and extra-cellular IL-10. In vitro, DCs from the cryo-ablation group recovered their specific function and induced potent anti-tumor immunity through triggering T cells. In vivo, cryo-ablation showed weak anti-tumor immunity, only inhibiting the growth of rechallenged tumors. But many IL-10-low DCs, rather than IL-10-high DCs, infiltrated the tumors. More importantly, Tregs inhibited the performance of these DCs; and depletion of Tregs greatly improved anti-tumor immunity in vivo. Conclusion Cryo-ablation could recover function of tumor induced tolerogenic DCs in vitro; and depletion of Tregs could improve this anti-tumor effect in vivo. The Tregs/CD4+T and Tregs/CD25+T cells in TDLNs inhibit DCs’ activity and function.
Collapse
Affiliation(s)
- Xiao-Zheng He
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China ; The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, People's Republic of China
| | - Qi-Fu Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China ; The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, People's Republic of China
| | - Shuai Han
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China
| | - Hui-Qing Wang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China ; The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, People's Republic of China
| | - Yong-Yi Ye
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China ; The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, People's Republic of China
| | - Zhi-Yuan Zhu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China ; The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, People's Republic of China
| | - Shi-Zhong Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, People's Republic of China ; The National Key Clinic Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, People's Republic of China
| |
Collapse
|
42
|
Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma. Cytotherapy 2015; 17:310-9. [DOI: 10.1016/j.jcyt.2014.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/08/2014] [Accepted: 09/13/2014] [Indexed: 11/22/2022]
|
43
|
Biomarkers for glioma immunotherapy: the next generation. J Neurooncol 2015; 123:359-72. [PMID: 25724916 DOI: 10.1007/s11060-015-1746-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/16/2015] [Indexed: 12/11/2022]
Abstract
The term "biomarker" historically refers to a single parameter, such as the expression level of a gene or a radiographic pattern, used to indicate a broader biological state. Molecular indicators have been applied to several aspects of cancer therapy: to describe the genotypic and phenotypic state of neoplastic tissue for prognosis, to predict susceptibility to anti-proliferative agents, to validate the presence of specific drug targets, and to evaluate responsiveness to therapy. For glioblastoma (GBM), immunohistochemical and radiographic biomarkers accessible to the clinical lab have informed traditional regimens, but while immunotherapies have emerged as potentially disruptive weapons against this diffusely infiltrating, heterogeneous tumor, biomarkers with strong predictive power have not been fully established. The cancer immunotherapy field, through the recently accelerated expansion of trials, is currently leveraging this wealth of clinical and biological data to define and revise the use of biomarkers for improving prognostic accuracy, personalization of therapy, and evaluation of responses across the wide variety of tumors. Technological advancements in DNA sequencing, cytometry, and microscopy have facilitated the exploration of more integrated, high-dimensional profiling of the disease system-incorporating both immune and tumor parameters-rather than single metrics, as biomarkers for therapeutic sensitivity. Here we discuss the utility of traditional GBM biomarkers in immunotherapy and how the impending transformation of the biomarker paradigm-from single markers to integrated profiles-may offer the key to bringing predictive, personalized immunotherapy to GBM patients.
Collapse
|
44
|
Emerging Strategies for the Treatment of Tumor Stem Cells in Central Nervous System Malignancies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 853:167-87. [DOI: 10.1007/978-3-319-16537-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Calinescu AA, Kamran N, Baker G, Mineharu Y, Lowenstein PR, Castro MG. Overview of current immunotherapeutic strategies for glioma. Immunotherapy 2015; 7:1073-104. [PMID: 26598957 PMCID: PMC4681396 DOI: 10.2217/imt.15.75] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In the last decade, numerous studies of immunotherapy for malignant glioma (glioblastoma multiforme) have brought new knowledge and new hope for improving the prognosis of this incurable disease. Some clinical trials have reached Phase III, following positive outcomes in Phase I and II, with respect to safety and immunological end points. Results are encouraging especially when considering the promise of sustained efficacy by inducing antitumor immunological memory. Progress in understanding the mechanisms of tumor-induced immune suppression led to the development of drugs targeting immunosuppressive checkpoints, which are used in active clinical trials for glioblastoma multiforme. Insights related to the heterogeneity of the disease bring new challenges for the management of glioma and underscore a likely cause of therapeutic failure. An emerging therapeutic strategy is represented by a combinatorial, personalized approach, including the standard of care: surgery, radiation, chemotherapy with added active immunotherapy and multiagent targeting of immunosuppressive checkpoints.
Collapse
Affiliation(s)
| | - Neha Kamran
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Gregory Baker
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University, Kyoto, Japan
| | - Pedro Ricardo Lowenstein
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Chae M, Peterson TE, Balgeman A, Chen S, Zhang L, Renner DN, Johnson AJ, Parney IF. Increasing glioma-associated monocytes leads to increased intratumoral and systemic myeloid-derived suppressor cells in a murine model. Neuro Oncol 2014; 17:978-91. [PMID: 25537019 DOI: 10.1093/neuonc/nou343] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 10/31/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Patients with glioblastoma multiforme (GBM) exhibit marked intratumoral and systemic immunosuppression. GBM is heavily infiltrated with monocytic cells. Monocytes contacting GBM cells develop features of immunosuppressive myeloid-derived suppressor cells (MDSCs), which are elevated in GBM patients. Therefore, we hypothesized that circulating MDSC levels could be raised in vivo by increasing glioma-associated macrophages. METHODS GL261-luciferase glioma was implanted intracranially in C57BL/6 mice with or without additional normal syngeneic CD11b+ monocytes. Tumor growth and intratumoral and systemic MDSC (CD11b+/Gr-1+) levels were determined. Green fluorescent protein (GFP)-transgenic monocytes were coinjected intracranially with GL261-luciferase cells. GFP+ cell frequency among splenic and bone marrow MDSCs was determined. Impact of increased MDSC's on spontaneous immune responses to tumor cells expressing a model antigen (ovalbumin [OVA]) was determined. RESULTS Tumors grew faster and MDSC's were increased in tumor, spleen, and bone marrow in mice receiving GL261-Luc plus monocytes. Many (30%-50%) systemic MDSC's were GFP+ in mice receiving intracranial tumor plus GFP-transgenic monocytes, suggesting that they originated from glioma-associated monocytes. Tumor-infiltrating OVA-specific CD8+ T cells were markedly reduced in mice receiving GL261-OVA and monocytes compared with mice receiving GL261-OVA alone. CONCLUSIONS Increasing glioma-associated macrophages in intracranial GL261 glioma decreases survival and markedly increases intratumoral and systemic MDSC's, many of which originate directly from glioma-associated macrophages. This is associated with decreased spontaneous immune responses to a model antigen. To our knowledge, this is the first evidence in cancer that systemic MDSC's can arise directly from normal monocytes that have undergone intratumoral immunosuppressive education.
Collapse
Affiliation(s)
- Michael Chae
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| | - Timothy E Peterson
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| | - Alexis Balgeman
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| | - Selby Chen
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| | - Lei Zhang
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| | - Danielle N Renner
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| | - Aaron J Johnson
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| | - Ian F Parney
- Department of Neurological Surgery (M.C., T.E.P., A.B., S.C., L.Z., I.F.P.) and Department of Immunology, Mayo Clinic, Rochester, Minnesota (D.N.R., A.J.J.)
| |
Collapse
|
47
|
Leten C, Roobrouck VD, Struys T, Burns TC, Dresselaers T, Vande Velde G, Santermans J, Lo Nigro A, Ibrahimi A, Gijsbers R, Eggermont K, Lambrichts I, Verfaillie CM, Himmelreich U. Controlling and Monitoring Stem Cell Safety In Vivo in an Experimental Rodent Model. Stem Cells 2014; 32:2833-44. [DOI: 10.1002/stem.1819] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 05/13/2014] [Accepted: 06/23/2014] [Indexed: 01/12/2023]
Affiliation(s)
- Cindy Leten
- Biomedical MRI, Department of Imaging and Pathology; KU Leuven; Belgium
- Molecular Small Animal Imaging Center; KU Leuven; Belgium
| | - Valerie D. Roobrouck
- Department of Development and Regeneration, Stem Cell Institute Leuven; KU Leuven; Belgium
| | - Tom Struys
- Biomedical MRI, Department of Imaging and Pathology; KU Leuven; Belgium
- Biomedical Research Institute, Lab of Histology; University of Hasselt; Belgium
| | - Terry C. Burns
- Department of Neurosurgery; Stanford University; California USA
| | - Tom Dresselaers
- Biomedical MRI, Department of Imaging and Pathology; KU Leuven; Belgium
- Molecular Small Animal Imaging Center; KU Leuven; Belgium
| | - G. Vande Velde
- Biomedical MRI, Department of Imaging and Pathology; KU Leuven; Belgium
- Molecular Small Animal Imaging Center; KU Leuven; Belgium
| | - Jeanine Santermans
- Biomedical Research Institute, Lab of Histology; University of Hasselt; Belgium
| | - Antonio Lo Nigro
- Department of Development and Regeneration, Stem Cell Institute Leuven; KU Leuven; Belgium
| | - Abdelilah Ibrahimi
- Laboratory for Molecular Virology and Gene Therapy; KU Leuven; Belgium
- Leuven Viral Vector Core; KU Leuven; Belgium
| | - Rik Gijsbers
- Laboratory for Molecular Virology and Gene Therapy; KU Leuven; Belgium
- Leuven Viral Vector Core; KU Leuven; Belgium
| | - Kristel Eggermont
- Department of Development and Regeneration, Stem Cell Institute Leuven; KU Leuven; Belgium
| | - Ivo Lambrichts
- Biomedical Research Institute, Lab of Histology; University of Hasselt; Belgium
| | | | - Uwe Himmelreich
- Biomedical MRI, Department of Imaging and Pathology; KU Leuven; Belgium
- Molecular Small Animal Imaging Center; KU Leuven; Belgium
| |
Collapse
|
48
|
Koks CA, Garg AD, Ehrhardt M, Riva M, Vandenberk L, Boon L, De Vleeschouwer S, Agostinis P, Graf N, Van Gool SW. Newcastle disease virotherapy induces long-term survival and tumor-specific immune memory in orthotopic glioma through the induction of immunogenic cell death. Int J Cancer 2014; 136:E313-25. [PMID: 25208916 DOI: 10.1002/ijc.29202] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/23/2014] [Accepted: 08/27/2014] [Indexed: 12/14/2022]
Abstract
The oncolytic features of several naturally oncolytic viruses have been shown on Glioblastoma Multiforme cell lines and in xenotransplant models. However, orthotopic glioma studies in immunocompetent animals are lacking. Here we investigated Newcastle disease virus (NDV) in the orthotopic, syngeneic murine GL261 model. Seven days after tumor induction, mice received NDV intratumorally. Treatment significantly prolonged median survival and 50% of animals showed long-term survival. We demonstrated immunogenic cell death (ICD) induction in GL261 cells after NDV infection, comprising calreticulin surface exposure, release of HMGB1 and increased PMEL17 cancer antigen expression. Uniquely, we found absence of secreted ATP. NDV-induced ICD occurred independently of caspase signaling and was blocked by Necrostatin-1, suggesting the contribution of necroptosis. Autophagy induction following NDV infection of GL261 cells was demonstrated as well. In vivo, elevated infiltration of IFN-γ(+) T cells was observed in NDV-treated tumors, along with reduced accumulation of myeloid derived suppressor cells. The importance of a functional adaptive immune system in this paradigm was demonstrated in immunodeficient Rag2(-/-) mice and in CD8(+) T cell depleted animals, where NDV slightly prolonged survival, but failed to induce long-term cure. Secondary tumor induction with GL261 cells or LLC cells in mice surviving long-term after NDV treatment, demonstrated the induction of a long-term, tumor-specific immunological memory response by ND virotherapy. For the first time, we describe the therapeutic activity of NDV against GL261 tumors, evidenced in an orthotopic mouse model. The therapeutic effect relies on the induction of ICD in the tumor cells, which primes adaptive antitumor immunity.
Collapse
Affiliation(s)
- Carolien A Koks
- Pediatric Immunology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
In vivo and ex vivo assessment of the blood brain barrier integrity in different glioblastoma animal models. J Neurooncol 2014; 119:297-306. [PMID: 24990826 DOI: 10.1007/s11060-014-1514-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/18/2014] [Indexed: 01/04/2023]
Abstract
Blood brain barrier (BBB) disruption is used (pre)clinically as a measure for brain tumor malignancy and grading. During treatment it is one of the parameters followed rigorously to assess therapeutic efficacy. In animal models, both invasive and non-invasive methods are used to determine BBB disruption, among them Evans blue injection prior to sacrifice and T1-weighted magnetic resonance imaging (MRI) post contrast injection. In this study, we have assessed the BBB integrity with the methods mentioned above in two experimental high grade glioma models, namely the GL261 mouse glioblastoma model and the Hs683 human oligodendroglioma model. The GL261 model showed clear BBB integrity loss with both, contrast-enhanced (CE) MRI and Evans blue staining. In contrast, the Hs683 model only displayed BBB disruption with CE-MRI, which was not evident on Evans blue staining, indicating a limited BBB disruption. These results clearly indicate the importance of assessing the BBB integrity status using appropriate methods. Especially when using large therapeutic molecules that have difficulties crossing the BBB, care should be taken with the appropriate BBB disruption assessment studies.
Collapse
|
50
|
Immunocompetent murine models for the study of glioblastoma immunotherapy. J Transl Med 2014; 12:107. [PMID: 24779345 PMCID: PMC4012243 DOI: 10.1186/1479-5876-12-107] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 04/16/2014] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma remains a lethal diagnosis with a 5-year survival rate of less than 10%. (NEJM 352:987-96, 2005) Although immunotherapy-based approaches are capable of inducing detectable immune responses against tumor-specific antigens, improvements in clinical outcomes are modest, in no small part due to tumor-induced immunosuppressive mechanisms that promote immune escape and immuno-resistance. Immunotherapeutic strategies aimed at bolstering the immune response while neutralizing immunosuppression will play a critical role in improving treatment outcomes for glioblastoma patients. In vivo murine models of glioma provide an invaluable resource to achieving that end, and their use is an essential part of the preclinical workup for novel therapeutics that need to be tested in animal models prior to testing experimental therapies in patients. In this article, we review five contemporary immunocompetent mouse models, GL261 (C57BL/6), GL26 (C57BL/6) CT-2A (C57BL/6), SMA-560 (VM/Dk), and 4C8 (B6D2F1), each of which offer a suitable platform for testing novel immunotherapeutic approaches.
Collapse
|