1
|
Abera MB, Kazanietz MG. Protein kinase Cα mediates erlotinib resistance in lung cancer cells. Mol Pharmacol 2015; 87:832-41. [PMID: 25724832 DOI: 10.1124/mol.115.097725] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Overexpression and mutational activation of the epidermal growth factor receptor (EGFR) plays an important role in the pathogenesis of non-small cell lung cancer (NSCLC). EGFR tyrosine-kinase inhibitors (TKIs) are given as a primary therapy for advanced patients with EGFR-activating mutations; however, the majority of these tumors relapse and patients eventually develop resistance to TKIs. To address a potential role of protein kinase C (PKC) isozymes in the resistance to TKIs, we used the isogenic NSCLC H1650 cell line and its erlotinib-resistant derivative H1650-M3, a cell line that displays a mesenchymal-like morphology driven by transforming growth factor-β signaling. We found that H1650-M3 cells display remarkable PKCα upregulation and PKCδ downregulation. Notably, silencing PKCα from H1650-M3 cells using RNA interference caused a significant reduction in the expression of epithelial-to-mesenchymal transition (EMT) markers vimentin, Zeb2, Snail, and Twist. Moreover, pharmacological inhibition or PKCα RNA interference depletion and PKCδ restoring sensitized H1650-M3 cells to erlotinib. Whereas ectopic overexpression of PKCα in parental H1650 cells was not sufficient to alter the expression of EMT genes or to confer resistance to erlotinib, it caused downregulation of PKCδ expression, suggesting a unidirectional crosstalk. Finally, mechanistic studies revealed that PKCα upregulation in H1650-M3 cells is driven by transforming growth factor-β. Our results identified important roles for specific PKC isozymes in erlotinib resistance and EMT in lung cancer cells, and highlight PKCα as a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Mahlet B Abera
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Li YH, Bi HC, Huang L, Jin J, Zhong GP, Zhou XN, Huang M. Phorbol 12-myristate 13-acetate inhibits P-glycoprotein-mediated efflux of digoxin in MDCKII-MDR1 and Caco-2 cell monolayer models. Acta Pharmacol Sin 2014; 35:283-91. [PMID: 24362330 DOI: 10.1038/aps.2013.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/25/2013] [Indexed: 11/09/2022] Open
Abstract
AIM To investigate the effects of phorbol 12-myristate 13-acetate (PMA), a PKC activator, on P-glycoprotein-mediated efflux of digoxin in two cell transport models. METHODS Caco-2 cells, wild MDCKII cells (MDCKII-WT) and MDCKII cells transfected stably with human MDR1-gene encoding P-gp (MDCKII-MDR1) were examined. Cell viability was evaluated with MTT assay. Bidirectional transport of digoxin was evaluated in these cells. Intracellular ATP level was measured using ATP assay. P-gp ATPase activity was analyzed using a Pgp-Glo(TM) assay. RESULTS PMA (10 μmol/L) did not reduce the viability of the 3 types of cells. In Caco-2 and MDCKII-MDR1 cell monolayers, PMA (1, 10 and 100 nmol/L) dose-dependently inhibited the basolateral to apical transport of digoxin, but did not change the apical to basolateral transport. In addition, PMA did not affect both the basolateral to apical and apical to basolateral transport of digoxin in MDCKII-WT cell monolayer. In agreement with the above results, PMA dose-dependently reduced intracellular ATP level and stimulated P-gp ATPase activity in both Caco-2 and MDCKII-MDR1 cells. Verapamil (a positive control, 100 μmol/L) caused similar inhibition on digoxin efflux as PMA did, whereas 4α-PMA (a negative control, 100 nmol/L) had no effect. CONCLUSION PMA significantly inhibited P-gp-mediated efflux of digoxin in both Caco-2 and MDCKII-MDR1 cell monolayers via PKC activation.
Collapse
|
3
|
Li Y, Bi H, Zhong G, Huang L, Li G, Xia Y, Chen X, Huang M. Effect of phorbol 12-myristate 13-acetate on function and gene expression of P-glycoprotein in adriamycin-resistant K562/ADM cells. Pharmacology 2013; 92:121-30. [PMID: 24008321 DOI: 10.1159/000353774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/18/2013] [Indexed: 01/10/2023]
Abstract
BACKGROUND/AIMS Multidrug resistance (MDR) is a critical issue during chemotherapy of cancers. Phorbol 12-myristate 13-acetate (PMA), a diester of phorbol, is a typical activator of protein kinase C (PKC). In the present study, we investigated the effect of PMA on MDR and P-glycoprotein (P-gp) gene expression in K562/ADM cells. METHODS 3-(4,5-dimethylthiazol-2-thiazolyl)-2,5-diphenyltetrazolium bromide assay was used to assess adriamycin (Adr)-induced cytotoxicity towards K562/ADM cells in the absence or presence of PMA. The intracellular accumulation of Adr was measured by determining the mean fluorescence intensity. The effect of PMA on P-gp activity was investigated by rhodamine-123 accumulation and efflux experiment. Protein expression and mRNA expression of P-gp in K562/ADM cells were determined by Western blot analysis and real-time qPCR, respectively. RESULTS Adr-induced cytotoxicity towards K562/ADM cells was significantly decreased by PMA at 5 μmol/l. Furthermore, intracellular Adr-associated mean fluorescence intensity was attenuated by 53.8% 1 h after exposure to PMA at 5 μmol/l compared with the control group (p < 0.05). A dose-dependent decrease of intracellular rhodamine-123 and increase of efflux activity of P-gp were also observed in K562/ADM cells incubation with PMA. In addition, P-gp mRNA and protein expression were significantly induced by PMA. CONCLUSION Activation of PKC pathway by PMA can significantly induce expression and activity of P-gp, and thus decrease intracellular Adr level and strengthen MDR in K562/ADM cells.
Collapse
Affiliation(s)
- Yuhua Li
- Laboratory of Drug Metabolism and Pharmacokinetics, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Affiliation(s)
- Alberto Grossi
- U.O. Hematology, Azienda Ospedaliera Careggi, University of Florence, Italy.
| | | |
Collapse
|
5
|
Guo B, Hembruff SL, Villeneuve DJ, Kirwan AF, Parissenti AM. Potent Killing of Paclitaxel- and Doxorubicin-resistant Breast Cancer Cells by Calphostin C Accompanied by Cytoplasmic Vacuolization. Breast Cancer Res Treat 2003; 82:125-41. [PMID: 14692656 DOI: 10.1023/b:brea.0000003969.21267.81] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Drug resistance is a major impediment to the successful treatment of breast cancer using chemotherapy. The photoactivatable drug calphostin C has shown promise in killing select drug-resistant tumor cells lines in vitro. To assess the effectiveness of this agent in killing doxorubicin- or paclitaxel-resistant breast tumor cells and to explore its mode of action, MCF-7 cells were exposed to increasing concentrations of either doxorubicin or paclitaxel until maximum resistance was obtained. This resulted in the creation of isogenic drug-resistant MCF-7TAX and MCF-7DOX cell lines, which were approximately 50- and 65-fold resistant to paclitaxel and doxorubicin, respectively. Interestingly, calphostin C was able to kill MCF-7TAX cells as efficiently as wildtype MCF-7 cells (IC50s were 9.2 and 13.2 nM, respectively), while MCF-7DOX cells required a 5-fold higher concentration of calphostin C to achieve the same killing (IC50 = 64.2 nM). Consistent with their known mechanisms of action, paclitaxel killed tumor cells by inducing mitotic arrest and cell multinucleation, while doxorubicin induced plasma membrane blebbing and decreased nuclear staining with propidium iodide. In contrast, cytoplasmic vacuolization accompanied cell killing by calphostin C in these cell lines, without the induction of caspase-8 or PARP cleavage or the release of cytochrome c from mitochondria. Calphostin C had little effect on the uptake of either paclitaxel or doxorubicin by the cells. Taken together, the above data suggests that calphostin C is able to potently kill drug-resistant breast tumor cells through a mechanism that may involve the induction of cytoplasmic vacuolization, without activation of typical apoptotic pathways. Consequently, calphostin C may prove useful clinically to combat tumor growth in breast cancer patients whose tumors have become unresponsive to anthracyclines or taxanes, particularly in association with photodynamic therapy.
Collapse
Affiliation(s)
- Baoqing Guo
- Tumor Biology Research Program, Northeastern Ontario Regional Cancer Centre, Sudbury, Ont., Canada
| | | | | | | | | |
Collapse
|
6
|
Chen ZP, Yarosh D, Garcia Y, Tampieri D, Mohr G, Langleben A, Panasci LC. Clinical response of O6-methylguanine-DNA methyltransferase levels to 1,3-(2-chloroethyl)-1-nitrosourea chemotherapy in glioma patients. Neurosurg Focus 1998. [DOI: 10.3171/foc.1998.4.6.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Adjuvant nitrosourea chemotherapy fails to prolong patient survival significantly as many tumors demonstrate resistance to these drugs. It has been documented in cell lines that O6-methylguanine-DNA methyltransferase (MGMT) plays an important role in chloroethylnitrosourea (CENU) drug resistance.
The authors evaluated MGMT expression in 22 glioma specimens by using an immunofluorescence assay and compared the results with clinical response of the patients to CENU-based chemotherapy.
The patients were treated with CENU after evidence of progressive disease following surgery and radiotherapy. Eight tumor samples had no detectable MGMT, whereas other samples had from 9989 to 982,401 molecules/nucleus. In one group (12 patients), the tumor decreased in size or was stable (effective group), whereas in the other group (10 patients), the tumor demonstrated continuous growth during chemotherapy (progressive group). The median time to progression (TTP) was 6.7 months with a median survival of 13 months. The Mer− patients (MGMT < 60,000 molecules/nucleus) appeared to have more chance of stable disease or response to CENU therapy than the Mer+ patients (MGMT > 60,000 molecules/nucleus) (chi-square = 4.791, p = 0.0286). In patients with glioblastomas multiforme (GBMs), the TTP of Mer+ patients was shorter than that of Mer− patients (t = 2.04, p = 0.049). As a corollary, the MGMT levels were significantly higher in GBM tumors from the progressive group than those from the effective group (t = -2.26, p = 0.029). The TTP and survival time in the effective GBM group were also longer than those in the progressive GBM group. However, there was no significant correlation between MGMT levels and either the survival time (r = 0.04, p = 0.8595) or TTP (r = 0.107, p = 0.6444).
Results from this study suggested that MGMT positivity is indicative of more aggressive disease that progresses more rapidly when exposed to CENU therapy. However, MGMT-negative tumors are not always sensitive to CENU agents, suggesting that other factors may also be important.
Collapse
|
7
|
Blackburn RV, Galoforo SS, Berns CM, Motwani NM, Corry PM, Lee YJ. Differential induction of cell death in human glioma cell lines by sodium nitroprusside. Cancer 1998; 82:1137-45. [PMID: 9506361 DOI: 10.1002/(sici)1097-0142(19980315)82:6<1137::aid-cncr19>3.0.co;2-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND High grade gliomas represent very aggressive and lethal forms of human cancer, which often exhibit recurrence after surgical intervention and resistance to conventional chemotherapeutic and radiologic treatment. The clinically approved antihypertensive agent sodium nitroprusside (SNP) has been shown to induce cytotoxicity toward a number of carcinoma cell lines in vitro. METHODS Three human glioma cell lines were examined for susceptibility to the cytotoxic effects of SNP. The role of the protein kinase C (PKC)alpha gene in mediating resistance to SNP-induced killing in U343 cells was investigated using antisense oligonucleotide inhibition. Stable transfection and overexpression of the PKCalpha gene in the SNP-susceptible cell line U251 was performed to further implicate PKCalpha as a mediating factor in SNP cytotoxicity. In addition, the presence of bcl-2 protein in these cells was examined for possible correlation(s) with resistance to SNP. RESULTS Exposure of U251 cells and LN-Z308 cells to 0.5 mM SNP resulted in significant cytotoxicity over a 72-hour period. U343 cells were resistant to SNP killing. U343 cells were shown to exhibit higher basal levels of PKCalpha and bcl-2 than either U251 or LN-Z308 cells. bcl-2 expression and resistance to SNP toxicity both were decreased by the introduction of PKCalpha antisense oligonucleotides into U343 cells. Conversely, enhanced PKC activity in PKCalpha-transfected U251 clones was associated with increased bcl-2 expression and greater resistance to SNP-induced toxicity relative to control transfected cells. CONCLUSIONS SNP can induce cytotoxicity in glioma cells. The susceptibility of these glioma cells to nitroprusside-induced killing appears to be correlated inversely with bcl-2 and PKC activity. bcl-2 levels in these cells can be altered through modulation of PKC signaling, specifically, by induction or inhibition of PKCalpha. These in vitro results provide an interesting basis for further study into the potential use of SNP for treatment of human gliomas in patients receiving combination therapy with conventional chemotherapeutic agents that exhibit PKC inhibitory activity.
Collapse
Affiliation(s)
- R V Blackburn
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | | | | | | | | | |
Collapse
|
8
|
Gil-Salú J, González-Darder J. Consideraciones sobre la citogenética y los factores de proliferación celular en la oncogénesis de los astrocitomas anaplásicos y glioblastoma multiforme. Neurocirugia (Astur) 1998. [DOI: 10.1016/s1130-1473(98)70998-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Wielinga PR, Heijn M, Broxterman HJ, Lankelma J. P-glycoprotein-independent decrease in drug accumulation by phorbol ester treatment of tumor cells. Biochem Pharmacol 1997; 54:791-9. [PMID: 9353133 DOI: 10.1016/s0006-2952(97)00247-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of a change in the phosphorylation state of the drug transporter P-glycoprotein (P-gp) on its drug transport activity was studied for the substrates daunorubicin (DNR), etoposide (VP-16), and calcein acetoxymethyl ester (Cal-AM). Phorbol ester (PMA), added to stimulate phosphorylation of P-gp by protein kinase C (PKC), caused a decrease in the cellular accumulation of DNR and VP-16, both in multidrug-resistant (MDR) P-gp-overexpressing cells and in wild-type cells. Since treatment of cells with kinase inhibitor staurosporine (ST) reversed this effect of PMA and the non-PKC-stimulating phorbol ester 4alpha-phorbol, 12,13-didecanoate (4alphaPDD) did not result in a decreased DNR accumulation, we conclude that this effect is the result of kinase activity. The concentration dependence of the inhibition of P-gp by verapamil (Vp) was not influenced by PMA. Accumulation of the P-gp substrate Cal-AM was not influenced by PMA in wild-type cells. Therefore, Cal-AM was used to study the effect of PMA-induced phosphorylation of P-gp on its transport activity. Activation of PKC with PMA or inhibition of protein phosphatase 1/2A (PP1/PP2A) with okadaic acid (OA) did not affect the accumulation of Cal-AM in the MDR cells or wild-type cells. The kinase inhibitor ST increased the Cal-AM accumulation only in the MDR cells. Neither stimulating PKC with PMA nor inhibiting PP1/PP2A with OA led to a decreased inhibition of P-gp by ST, indicating that ST inhibits P-gp directly. From these experiments, we conclude that PKC and PP1/PP2A activity do not regulate the drug transport activity of P-gp. However, these studies provide evidence that PMA-induced PKC activity decreases cellular drug accumulation in a P-gp-independent manner.
Collapse
Affiliation(s)
- P R Wielinga
- University Hospital Vrije Universiteit, Department of Medical Oncology, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
10
|
Ikemoto H, Tani E, Matsumoto T, Nakano A, Furuyama J. Apoptosis of human glioma cells in response to calphostin C, a specific protein kinase C inhibitor. J Neurosurg 1995; 83:1008-16. [PMID: 7490614 DOI: 10.3171/jns.1995.83.6.1008] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Calphostin C acts at the regulatory domain as a highly selective inhibitor of protein kinase C (PKC), and staurosporine acts at the catalytic domain as a nonspecific PKC inhibitor. The authors investigated the capacity of calphostin C and staurosporine to promote apoptotic fragmentation of DNA in four human glioma cell lines. The exposure of glioma cell lines to 100 nM calphostin C for 2 to 8 hours induced a decrease in particulate PKC activities and exposure for 16 to 24 hours produced a concentration-dependent increase in internucleosomal DNA cleavage on agarose gel electrophoresis. In addition, the human glioma cells showed the classic morphological features of apoptosis: cell shrinkage, nuclear condensation, and the formation of apoptotic bodies. A 24-hour exposure to staurosporine failed to induce internucleosomal DNA fragmentation at concentrations generally used to achieve maximum inhibition of enzyme activity (50 nM) but promoted fragmentation at considerably higher concentration (more than 200 nM). Deoxyribonucleic acid fragments obtained from cells exposed to 100 nM calphostin C for 16 to 24 hours possessed predominantly 5'-phosphate termini, consistent with the action of a Ca++/Mg(++)-dependent endonuclease. Northern and Western blot analyses revealed that the exposure to 100 nM calphostin C for 4 hours failed to alter bcl-2 transcript and protein, but exposure for more than 8 hours decreased the amount of bcl-2 transcript and protein. Together, these observations suggest that calphostin C is capable of inducing apoptotic DNA fragmentation and cell death in a highly concentration dependent manner in human glioma cells and that the apoptosis is closely associated with the decrease in transcription and translation of bcl-2.
Collapse
Affiliation(s)
- H Ikemoto
- Department of Neurosurgery, Hyogo College of Medicine, Japan
| | | | | | | | | |
Collapse
|
11
|
Baltuch GH, Dooley NP, Villemure JG, Yong VW. Protein kinase C and growth regulation of malignant gliomas. Neurol Sci 1995; 22:264-71. [PMID: 8599768 DOI: 10.1017/s0317167100039457] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This article reviews the role of the signal transduction enzyme protein kinase C in the regulation of growth of malignant gliomas, and describes how targetting this enzyme clinically can provide a novel approach to glioma therapy.
Collapse
Affiliation(s)
- G H Baltuch
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Quebec, Canada
| | | | | | | |
Collapse
|