1
|
Billet B, Goudman L, Rigoard P, Billot M, Roulaud M, Verstraete S, Nagels W, Moens M. Effect of neuromodulation for chronic pain on the autonomic nervous system: a systematic review. BJA OPEN 2024; 11:100305. [PMID: 39319097 PMCID: PMC11419894 DOI: 10.1016/j.bjao.2024.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/25/2024] [Indexed: 09/26/2024]
Abstract
Background In recent years, there has been a growing interest in the use of neuromodulation as an alternative treatment option for chronic pain. Neuromodulation techniques, such as spinal cord stimulation (SCS), dorsal root ganglion (DRG) stimulation, deep brain stimulation (DBS), and peripheral nerve stimulation, have shown promising results in the management of various chronic pain conditions and involve targeted modulation of neural activity to alleviate pain and restore functional capacity. The autonomic nervous system (ANS) plays a crucial role in the regulation of various bodily functions including pain perception. However, the effects of neuromodulation on the ANS in the context of chronic pain remain poorly understood. This systematic review aimed to comprehensively assess the existing literature about the effects of neuromodulation on the ANS in chronic pain settings. Methods Searches were conducted using four electronic databases (PubMed, EMBASE, SCOPUS, and Web of Science). The study protocol was registered before initiation of the review process. The Office of Health Assessment and Translation (OHAT) Risk of Bias tool was used to evaluate risk of bias. Results A total of 43 studies were included, of which only one was an animal study. Several studies have reported more than one outcome parameter in the same population of chronic pain patients. Cardiovascular parameters were the most frequently used outcomes. More specifically, 18 outcome parameters were revealed to evaluate the function of the ANS, namely heart rate variability (n=17), arterial blood pressure (n=15), tissue oxygenation/perfusion (n=5), blood markers (n=6), multiunit postganglionic sympathetic nerve activity (n=4), skin temperature (n=3), skin conductance (n=3), cephalic autonomic symptoms (n=2), ventilatory frequency (n=2), vasomotor tone (n=1), baroreflex sensitivity (n=1), sympathetic innervation of the heart, neural activity of intrinsic cardiac neurons (n=1), vascular conductance (n=1), arterial diameter (n=1), blood pulse volume (n=1), and vagal efficiency (n=1). Most studies evaluated SCS (62.79%), followed by DBS (18.6%), peripheral nerve stimulation (9.3%), DRG stimulation (4.65%), and vagus nerve stimulation (4.65%). Overall, inconsistent results were revealed towards contribution of SCS, DBS, and peripheral nerve stimulation on ANS parameters. For DRG stimulation, included studies pointed towards a decrease in sympathetic activity. Conclusions There are indications that neuromodulation alters the ANS, supported by high or moderate confidence in the body of evidence, however, heterogeneity in ANS outcome measures drives towards inconclusive results. Further research is warranted to elucidate the indirect or direct mechanisms of action on the ANS, with a potential benefit for optimisation of patient selection for these interventions. Systematic review protocol PROSPERO (CRD42021297287).
Collapse
Affiliation(s)
- Bart Billet
- Pain Clinic, AZ Delta, Roeselare, Belgium
- STIMULUS Research Group, Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Anesthesia, AZ Delta, Roeselare, Belgium
| | - Lisa Goudman
- STIMULUS Research Group, Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Research Foundation-Flanders (FWO), Brussels, Belgium
- Charles E. Schmidt College of Medicine, Faculty Affairs Department, Florida Atlantic University, Boca Raton, FL, USA
| | - Philippe Rigoard
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery) and Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
- Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
- Pprime Institute UPR 3346, CNRS, ISAE-ENSMA, University of Poitiers, Chasseneuil-du-Poitou, France
| | - Maxime Billot
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery) and Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
| | - Manuel Roulaud
- PRISMATICS Lab (Predictive Research in Spine/Neuromodulation Management and Thoracic Innovation/Cardiac Surgery) and Department of Spine Surgery & Neuromodulation, Poitiers University Hospital, Poitiers, France
| | | | - Werner Nagels
- Pain Clinic, AZ Delta, Roeselare, Belgium
- Department of Anesthesia, AZ Delta, Roeselare, Belgium
| | - Maarten Moens
- STIMULUS Research Group, Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Brussels, Belgium
- Cluster Neurosciences, Center for Neurosciences (C4N) and Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Pain in Motion (PAIN) Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Radiology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Deep Brain Stimulation for Chronic Pain. Neurosurg Clin N Am 2022; 33:311-321. [DOI: 10.1016/j.nec.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Sverrisdottir YB, Martin SC, Hadjipavlou G, Kent AR, Paterson DJ, FitzGerald JJ, Green AL. Human Dorsal Root Ganglion Stimulation Reduces Sympathetic Outflow and Long-Term Blood Pressure. ACTA ACUST UNITED AC 2020; 5:973-985. [PMID: 33145461 PMCID: PMC7591825 DOI: 10.1016/j.jacbts.2020.07.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
Abstract
DRGS at upper lumbar levels significantly reduces sympathetic nerve firing Reduction in sympathetic activity appears to be independent to pain relief DRGS significantly reduced BP at 6 months and 2 years BP reduction was lateralized to DRGS on the left side Three refractory hypertensives became normotensive after chronic stimulation.
This study hypothesized that dorsal root ganglion (DRG) stimulation would reduce sympathetic nerve activity and would alter hemodynamic variables. This study directly recorded muscle sympathetic nerve activity during ON and OFF stimulation of the DRG while measuring hemodynamic parameters. DRG stimulation significantly reduced the firing frequency of sympathetic nerves, as well as significantly reducing blood pressure, with greater reductions evident when stimulation was left-sided. Left-sided DRG stimulation lowers sympathetic nerve activity, leading to long-term phenotypic changes. This raises the potential of DRG stimulation being used to treat de novo autonomic disorders such as hypertension or heart failure.
Collapse
Key Words
- BF, burst frequency
- BI, burst incidence
- BP, blood pressure
- DBP, diastolic blood pressure
- DRG stimulation
- DRG, dorsal root ganglion
- DRGS, dorsal root ganglion stimulation
- HR, heart rate
- MAP, mean arterial pressure
- MME, morphine milligram equivalent
- MRBA%, median relative burst amplitude
- MSNA, muscle sympathetic nerve activity
- SBP, systolic blood pressure
- SCS, spinal cord stimulation
- VAS, visual analogue score of pain
- blood pressure
- hypertension
- neuromodulation
- sympathetic nerve activity
Collapse
Affiliation(s)
- Yrsa B Sverrisdottir
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Sean C Martin
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - George Hadjipavlou
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | | - David J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - James J FitzGerald
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Green AL, Paterson DJ. Using Deep Brain Stimulation to Unravel the Mysteries of Cardiorespiratory Control. Compr Physiol 2020; 10:1085-1104. [PMID: 32941690 DOI: 10.1002/cphy.c190039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article charts the history of deep brain stimulation (DBS) as applied to alleviate a number of neurological disorders, while in parallel mapping the electrophysiological circuits involved in generating and integrating neural signals driving the cardiorespiratory system during exercise. With the advent of improved neuroimaging techniques, neurosurgeons can place small electrodes into deep brain structures with a high degree accuracy to treat a number of neurological disorders, such as movement impairment associated with Parkinson's disease and neuropathic pain. As well as stimulating discrete nuclei and monitoring autonomic outflow, local field potentials can also assess how the neurocircuitry responds to exercise. This technique has provided an opportunity to validate in humans putative circuits previously identified in animal models. The central autonomic network consists of multiple sites from the spinal cord to the cortex involved in autonomic control. Important areas exist at multiple evolutionary levels, which include the anterior cingulate cortex (telencephalon), hypothalamus (diencephalon), periaqueductal grey (midbrain), parabrachial nucleus and nucleus of the tractus solitaries (brainstem), and the intermediolateral column of the spinal cord. These areas receive afferent input from all over the body and provide a site for integration, resulting in a coordinated efferent autonomic (sympathetic and parasympathetic) response. In particular, emerging evidence from DBS studies have identified the basal ganglia as a major sub-cortical cognitive integrator of both higher center and peripheral afferent feedback. These circuits in the basal ganglia appear to be central in coupling movement to the cardiorespiratory motor program. © 2020 American Physiological Society. Compr Physiol 10:1085-1104, 2020.
Collapse
Affiliation(s)
- Alexander L Green
- Division of Medical Sciences, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - David J Paterson
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Farrell SM, Green A, Aziz T. The Use of Neuromodulation for Symptom Management. Brain Sci 2019; 9:brainsci9090232. [PMID: 31547392 PMCID: PMC6769574 DOI: 10.3390/brainsci9090232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
Pain and other symptoms of autonomic dysregulation such as hypertension, dyspnoea and bladder instability can lead to intractable suffering. Incorporation of neuromodulation into symptom management, including palliative care treatment protocols, is becoming a viable option scientifically, ethically, and economically in order to relieve suffering. It provides further opportunity for symptom control that cannot otherwise be provided by pharmacology and other conventional methods.
Collapse
Affiliation(s)
- Sarah Marie Farrell
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Alexander Green
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
6
|
Cardiovascular autonomic responses in patients with Parkinson disease to pedunculopontine deep brain stimulation. Clin Auton Res 2019; 29:615-624. [DOI: 10.1007/s10286-019-00634-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/22/2019] [Indexed: 11/26/2022]
|
7
|
Atypical presentation of a forgotten disease: refractory hypotension in beriberi. Eur J Clin Nutr 2019; 73:1598-1600. [PMID: 31285553 DOI: 10.1038/s41430-019-0469-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 11/08/2022]
Abstract
BACKGROUND/OBJECTIVES Thiamine deficiency is a treatable disease with an excellent prognosis. However, it is often unrecognized because of the diversity of its clinical presentations. SUBJECTS/METHODS Herein, we report two atypical cases of nonalcoholic thiamine deficiency that presented with refractory hypotension in the absence of lactic acidosis. RESULTS Case 1 developed recurrent hypotension, right-sided heart failure, and a classic triad of Wernicke's encephalopathy (WE) after gastrointestinal surgery. Case 2 had decreased dietary intake and diuretic abuse, and had multiple episodes of syncope prior to present admission with refractory hypotension and mental status changes. The diagnosis of both cases was confirmed by undetectable pretreatment serum thiamine and dramatic improvement with thiamine replacement. CONCLUSIONS In this report, we highlight refractory hypotension as a complication of, not only cardiovascular, but also neurologic beriberi. Moreover, thiamine replacement should be considered without delay in hypotensive patients with signs of WE and/or risk factors for beriberi.
Collapse
|
8
|
Germano-Soares AH, Montenegro RA, Cavalcante BR, Domingues WJ, de Lima PF, Menêses AL, Almeida TR, Okano AH, Ritti-Dias RM. Hemodynamic and autonomic responses after a single session of resistance exercise following anodal motor cortex tDCS. ISOKINET EXERC SCI 2017. [DOI: 10.3233/ies-160653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Antonio H. Germano-Soares
- Associated Graduated Program UPE/UFPB, Pernambuco, Brazil
- Department of Physical Education, University of Pernambuco, Pernambuco, Brazil
| | - Rafael A. Montenegro
- Physical Activity and Health Promotion Laboratory, Physical Education and Sports Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Bruno R. Cavalcante
- Associated Graduated Program UPE/UFPB, Pernambuco, Brazil
- Department of Physical Education, University of Pernambuco, Pernambuco, Brazil
| | | | | | - Annelise L. Menêses
- School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| | | | - Alexandre H. Okano
- Research Group of Integrative Biology of Exercise, Physical Education Department, Rio Grande do Norte Federal University, Rio Grande do Norte, Brazil
| | - Raphael M. Ritti-Dias
- Associated Graduated Program UPE/UFPB, Pernambuco, Brazil
- Albert Einstein Hospital, São Paulo, Brazil
| |
Collapse
|
9
|
Roy HA, Green AL, Aziz TZ. State of the Art: Novel Applications for Deep Brain Stimulation. Neuromodulation 2017; 21:126-134. [DOI: 10.1111/ner.12604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Holly A. Roy
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| | - Alexander L. Green
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| | - Tipu Z. Aziz
- Nuffield Department of Surgical Sciences; Oxford University; Oxford UK
- Neurosurgery Department; Oxford University Hospitals; Oxford UK
| |
Collapse
|
10
|
Surgical Neurostimulation for Spinal Cord Injury. Brain Sci 2017; 7:brainsci7020018. [PMID: 28208601 PMCID: PMC5332961 DOI: 10.3390/brainsci7020018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 01/07/2023] Open
Abstract
Traumatic spinal cord injury (SCI) is a devastating neurological condition characterized by a constellation of symptoms including paralysis, paraesthesia, pain, cardiovascular, bladder, bowel and sexual dysfunction. Current treatment for SCI involves acute resuscitation, aggressive rehabilitation and symptomatic treatment for complications. Despite the progress in scientific understanding, regenerative therapies are lacking. In this review, we outline the current state and future potential of invasive and non-invasive neuromodulation strategies including deep brain stimulation (DBS), spinal cord stimulation (SCS), motor cortex stimulation (MCS), transcutaneous direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS) in the context of SCI. We consider the ability of these therapies to address pain, sensorimotor symptoms and autonomic dysregulation associated with SCI. In addition to the potential to make important contributions to SCI treatment, neuromodulation has the added ability to contribute to our understanding of spinal cord neurobiology and the pathophysiology of SCI.
Collapse
|
11
|
Basiago A, Binder DK. Effects of Deep Brain Stimulation on Autonomic Function. Brain Sci 2016; 6:brainsci6030033. [PMID: 27537920 PMCID: PMC5039462 DOI: 10.3390/brainsci6030033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022] Open
Abstract
Over the course of the development of deep brain stimulation (DBS) into a well-established therapy for Parkinson's disease, essential tremor, and dystonia, its utility as a potential treatment for autonomic dysfunction has emerged. Dysfunction of autonomic processes is common in neurological diseases. Depending on the specific target in the brain, DBS has been shown to raise or lower blood pressure, normalize the baroreflex, to alter the caliber of bronchioles, and eliminate hyperhidrosis, all through modulation of the sympathetic nervous system. It has also been shown to improve cortical control of the bladder, directly induce or inhibit the micturition reflex, and to improve deglutition and gastric emptying. In this review, we will attempt to summarize the relevant available studies describing these effects of DBS on autonomic function, which vary greatly in character and magnitude with respect to stimulation target.
Collapse
Affiliation(s)
- Adam Basiago
- School of Medicine, University of California, Riverside, CA 92521, USA.
| | - Devin K Binder
- Division of Biomedical Sciences, School of Medicine, University of California, 1247 Webber Hall, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Fluri F, Bieber M, Volkmann J, Kleinschnitz C. Microelectrode Guided Implantation of Electrodes into the Subthalamic Nucleus of Rats for Long-term Deep Brain Stimulation. J Vis Exp 2015. [PMID: 26485522 DOI: 10.3791/53066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Deep brain stimulation (DBS) is a widely used and effective therapy for several neurologic disorders, such as idiopathic Parkinson's disease, dystonia or tremor. DBS is based on the delivery of electrical stimuli to specific deep anatomic structures of the central nervous system. However, the mechanisms underlying the effect of DBS remain enigmatic. This has led to an interest in investigating the impact of DBS in animal models, especially in rats. As DBS is a long-term therapy, research should be focused on molecular-genetic changes of neural circuits that occur several weeks after DBS. Long-term DBS in rats is challenging because the rats move around in their cage, which causes problems in keeping in place the wire leading from the head of the animal to the stimulator. Furthermore, target structures for stimulation in the rat brain are small and therefore electrodes cannot easily be placed at the required position. Thus, a set-up for long-lasting stimulation of rats using platinum/iridium electrodes with an impedance of about 1 MΩ was developed for this study. An electrode with these specifications allows for not only adequate stimulation but also recording of deep brain structures to identify the target area for DBS. In our set-up, an electrode with a plug for the wire was embedded in dental cement with four anchoring screws secured onto the skull. The wire from the plug to the stimulator was protected by a stainless-steel spring. A swivel was connected to the circuit to prevent the wire from becoming tangled. Overall, this stimulation set-up offers a high degree of free mobility for the rat and enables the head plug, as well as the wire connection between the plug and the stimulator, to retain long-lasting strength.
Collapse
Affiliation(s)
- Felix Fluri
- Department of Neurology, University Hospital Wuerzburg
| | | | - Jens Volkmann
- Department of Neurology, University Hospital Wuerzburg
| | | |
Collapse
|
13
|
Pereira EAC, Boccard SG, Aziz TZ. Deep brain stimulation for pain: distinguishing dorsolateral somesthetic and ventromedial affective targets. Neurosurgery 2015; 61 Suppl 1:175-81. [PMID: 25032548 DOI: 10.1227/neu.0000000000000397] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Erlick A C Pereira
- *Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, United Kingdom; ‡Department of Neurosciences and Mental Health, Faculty of Medicine, University of Porto, Portugal
| | | | | |
Collapse
|
14
|
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention the efficacy, safety, and utility of which are established in the treatment of Parkinson's disease. For the treatment of chronic, neuropathic pain refractory to medical therapies, many prospective case series have been reported, but few have published findings from patients treated with current standards of neuroimaging and stimulator technology over the last decade . We summarize the history, science, selection, assessment, surgery, programming, and personal clinical experience of DBS of the ventral posterior thalamus, periventricular/periaqueductal gray matter, and latterly rostral anterior cingulate cortex (Cg24) in 113 patients treated at 2 centers (John Radcliffe, Oxford, UK, and Hospital de São João, Porto, Portugal) over 13 years. Several experienced centers continue DBS for chronic pain, with success in selected patients, in particular those with pain after amputation, brachial plexus injury, stroke, and cephalalgias including anesthesia dolorosa. Other successes include pain after multiple sclerosis and spine injury. Somatotopic coverage during awake surgery is important in our technique, with cingulate DBS under general anesthesia considered for whole or hemibody pain, or after unsuccessful DBS of other targets. Findings discussed from neuroimaging modalities, invasive neurophysiological insights from local field potential recording, and autonomic assessments may translate into improved patient selection and enhanced efficacy, encouraging larger clinical trials.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, OX3 9DU, UK,
| | | |
Collapse
|
15
|
Pereira EAC, Green AL, Nandi D, Aziz TZ. Deep brain stimulation: indications and evidence. Expert Rev Med Devices 2014; 4:591-603. [PMID: 17850194 DOI: 10.1586/17434440.4.5.591] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Deep brain stimulation is a minimally invasive targeted neurosurgical intervention that enables structures deep in the brain to be stimulated electrically by an implanted pacemaker. It has become the treatment of choice for Parkinson's disease, refractory to, or complicated by, drug therapy. Its efficacy has been demonstrated robustly by randomized, controlled clinical trials, with multiple novel brain targets having been discovered in the last 20 years. Multifarious clinical indications for deep brain stimulation now exist, including dystonia and tremor in movement disorders; depression, obsessive-compulsive disorder and Tourette's syndrome in psychiatry; epilepsy, cluster headache and chronic pain, including pain from stroke, amputation, trigeminal neuralgia and multiple sclerosis. Current research argues for novel indications, including hypertension and orthostatic hypotension. The development, principles, indications and effectiveness of the technique are reviewed here. While deep brain stimulation is a standard and widely accepted treatment for Parkinson's disease after 20 years of experience, in chronic pain it remains restricted to a handful of experienced, specialist centers willing to publish outcomes despite its use for over 50 years. Reasons are reviewed and novel approaches to appraising clinical evidence in functional neurosurgery are suggested.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery, Nuffield Department of Surgery and Department of Neurological Surgery, The West Wing, The John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | | | | | | |
Collapse
|
16
|
Hyam JA, Aziz TZ, Green AL. Control of the lungs via the human brain using neurosurgery. PROGRESS IN BRAIN RESEARCH 2014; 209:341-66. [PMID: 24746057 DOI: 10.1016/b978-0-444-63274-6.00018-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Neurosurgery can alter cardiorespiratory performance via central networks and includes deep brain stimulation (DBS), a routinely employed therapy for movement disorders and chronic pain syndromes. We review the established cardiovascular effects of DBS and the presumed mechanism by which they are produced via the central autonomic network. We then review the respiratory effects of DBS, including modulation of respiratory rate and lung function indices, and the mechanisms via which these may occur. We conclude by highlighting the potential future therapeutic applications of DBS for intractable airway diseases.
Collapse
Affiliation(s)
- Jonathan A Hyam
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| | - Tipu Z Aziz
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alexander L Green
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK; Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Wu D, Wang S, Stein JF, Aziz TZ, Green AL. Reciprocal interactions between the human thalamus and periaqueductal gray may be important for pain perception. Exp Brain Res 2013; 232:527-34. [PMID: 24217977 DOI: 10.1007/s00221-013-3761-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 10/29/2013] [Indexed: 12/18/2022]
Abstract
Pain perception can be altered by activity in the periaqueductal gray (PAG). The PAG can decrease the incoming nociceptive signals at the level of the spinal dorsal horn, but it is not clear whether the PAG can also affect the sensory thalamus, ventral posterolateral and ventral posteromedial thalamic nuclei, to modulate pain. However, the PAG and the thalamus have direct connections with each other; so we postulated that the PAG may also modulate pain by inhibiting the sensory nuclei in the thalamus, and that these may also reciprocally influence the PAG. Here, by analyzing the local field potentials recorded from the sensory thalamus and the PAG in chronic pain patients with deep brain stimulation electrodes, we show that PAG stimulation inhibited the sensory thalamus with decreasing thalamic delta, theta, alpha and beta power, and sensory thalamus stimulation excited the PAG with increasing PAG delta and theta power. We demonstrate that the PAG and the sensory thalamus interact reciprocally at short latency, which may be related to pain modulation.
Collapse
Affiliation(s)
- Dali Wu
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK,
| | | | | | | | | |
Collapse
|
18
|
Affiliation(s)
- Thelma Lovick
- Physiology and Pharmacology; University of Bristol; Bristol BS8 1TD UK
| |
Collapse
|
19
|
Sitsapesan H, Green AL, Aziz TZ, Pereira EAC. The periaqueductal grey area and control of blood pressure in neurodegeneration. Clin Auton Res 2013; 23:215-9. [PMID: 23812562 DOI: 10.1007/s10286-013-0206-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 06/14/2013] [Indexed: 11/29/2022]
Abstract
The periaqueductal/periventricular grey area (PAG/PVG) is a midbrain nucleus with an important role in pain signalling and autonomic control. We present the case of an initially hypertensive man who developed a presumed neurodegenerative disorder over a decade, characterised by progressive right-sided chronic pain, extra-pyramidal symptoms and autonomic dysfunction including postural hypotension, sleep apnoea, and bladder instability. He underwent a variety of treatments for his symptoms, including deep brain stimulation (DBS) of the PAG/PVG. 24-h blood pressure monitoring was carried out 1 and 5 years after implantation. Although the DBS initially produced a significant reduction in blood pressure, the effect was significantly reversed when the same tests were repeated 5 years after surgery. This may imply a functional involvement of the PAG/PVG in the neurodegenerative process.
Collapse
Affiliation(s)
- Holly Sitsapesan
- Nuffield Department of Surgical Science, University of Oxford, Level 3, West Wing, Oxford, OX3 9DU, UK.
| | | | | | | |
Collapse
|
20
|
Abstract
Deep brain stimulation (DBS) is a neurosurgical intervention whose efficacy, safety, and utility have been shown in the treatment of movement disorders. For the treatment of chronic pain refractory to medical therapies, many prospective case series have been reported, but few have published findings from patients treated during the past decade using current standards of neuroimaging and stimulator technology. We summarize the history, science, selection, assessment, surgery, and personal clinical experience of DBS of the ventral posterior thalamus, periventricular/periaqueductal gray matter, and, latterly, the rostral anterior cingulate cortex (Cg24) in 100 patients treated now at two centers (John Radcliffe Hospital, Oxford, UK, and Hospital de São João, Porto, Portugal) over 12 years. Several experienced centers continue DBS for chronic pain with success in selected patients, in particular those with pain after amputation, brachial plexus injury, stroke, and cephalalgias including anesthesia dolorosa. Other successes include pain after multiple sclerosis and spine injury. Somatotopic coverage during awake surgery is important in our technique, with cingulate DBS considered for whole-body pain or after unsuccessful DBS of other targets. Findings discussed from neuroimaging modalities, invasive neurophysiological insights from local field potential recording, and autonomic assessments may translate into improved patient selection and enhanced efficacy, encouraging larger clinical trials.
Collapse
Affiliation(s)
- Erlick A C Pereira
- Oxford Functional Neurosurgery and Experimental Neurology Group, Department of Neurological Surgery and Nuffield Department of Surgical Sciences, Oxford University, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
21
|
Pereira EA, Wang S, Peachey T, Lu G, Shlugman D, Stein JF, Aziz TZ, Green AL. Elevated gamma band power in humans receiving naloxone suggests dorsal periaqueductal and periventricular gray deep brain stimulation produced analgesia is opioid mediated. Exp Neurol 2013; 239:248-55. [DOI: 10.1016/j.expneurol.2012.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 10/03/2012] [Accepted: 10/24/2012] [Indexed: 11/29/2022]
|
22
|
Ewing GW. Mathematical modeling the neuroregulation of blood pressure using a cognitive top-down approach. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2012; 2:341-52. [PMID: 22737671 PMCID: PMC3339057 DOI: 10.4297/najms.2010.2341] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background: The body′s physiological stability is maintained by the influence of the autonomic nervous system upon the dynamic interaction of multiple systems. These physiological systems, their nature and structure, and the factors which influence their function have been poorly defined. A greater understanding of such physiological systems leads to an understanding of the synchronised function of organs in each neural network i.e. there is a fundamental relationship involving sensory input and/or sense perception, neural function and neural networks, and cellular and molecular biology. Such an approach compares with the bottom-up systems biology approach in which there may be an almost infinite degree of biochemical complexity to be taken into account. Aims: The purpose of this article is to discuss a novel cognitive, top-down, mathematical model of the physiological systems, in particular its application to the neuroregulation of blood pressure. Results: This article highlights the influence of sensori-visual input upon the function of the autonomic nervous system and the coherent function of the various organ networks i.e. the relationship which exists between visual perception and pathology. Conclusions: The application of Grakov′s model may lead to a greater understanding of the fundamental role played by light e.g. regulating acidity, levels of Magnesium, activation of enzymes, and the various factors which contribute to the regulation of blood pressure. It indicates that the body′s regulation of blood pressure does not reside in any one neural or visceral component but instead is a measure of the brain′s best efforts to maintain its physiological stability.
Collapse
Affiliation(s)
- Graham Wilfred Ewing
- Montague Healthcare, Mulberry House, 6 Vine Farm Close, Cotgrave, Nottingham NG12 3TU, United Kingdom
| |
Collapse
|
23
|
Hyam JA, Kringelbach ML, Silburn PA, Aziz TZ, Green AL. The autonomic effects of deep brain stimulation--a therapeutic opportunity. Nat Rev Neurol 2012; 8:391-400. [PMID: 22688783 DOI: 10.1038/nrneurol.2012.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Deep brain stimulation (DBS) is an expanding field in neurosurgery and has already provided important insights into the fundamental mechanisms underlying brain function. One of the most exciting emerging applications of DBS is modulation of blood pressure, respiration and micturition through its effects on the autonomic nervous system. DBS stimulation at various sites in the central autonomic network produces rapid changes in the functioning of specific organs and physiological systems that are distinct from its therapeutic effects on central nervous motor and sensory systems. For example, DBS modulates several parameters of cardiovascular function, including heart rate, blood pressure, heart rate variability, baroreceptor sensitivity and blood pressure variability. The beneficial effects of DBS also extend to improvements in lung function. This article includes an overview of the anatomy of the central autonomic network, which consists of autonomic nervous system components in the cortex, diencephalon and brainstem that project to the spinal cord or cranial nerves. The effects of DBS on physiological functioning (particularly of the cardiovascular and respiratory systems) are discussed, and the potential for these findings to be translated into therapies for patients with autonomic diseases is examined.
Collapse
Affiliation(s)
- Jonathan A Hyam
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, Department of Psychiatry, University of Oxford, Headley Way, Headington, Oxford OX3 9DU, UK.
| | | | | | | | | |
Collapse
|
24
|
Cheshire WP. Highlights in clinical autonomic neuroscience: Progress in electromagnetic stimulation of the autonomic nervous system. Auton Neurosci 2011. [DOI: 10.1016/j.autneu.2011.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Hyam JA, Brittain JS, Paterson DJ, Davies RJO, Aziz TZ, Green AL. Controlling the Lungs Via the Brain: A Novel Neurosurgical Method to Improve Lung Function in Humans. Neurosurgery 2011; 70:469-77; discussion 477-8. [DOI: 10.1227/neu.0b013e318231d789] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
BACKGROUND:
Deep brain stimulation (DBS) of subcortical brain areas such as the periaqueductal grey and subthalamic nucleus has been shown to alter cardiovascular autonomic performance. The supramedullary circuitry controlling respiratory airways is not well defined and has not been tested in humans.
OBJECTIVE:
To use direct electric stimulation via DBS macroelectrodes to test whether airway resistance could be manipulated by these areas in awake humans.
METHODS:
Thirty-seven patients with in-dwelling deep brain electrodes for movement disorders or chronic pain underwent spirometry according to the European Respiratory Society guidelines. Testing was performed randomly 3 times on stimulation and 3 times off stimulation; patients were blinded to the test. Thoracic diameter changes were measured by a circumferential pressure-sensitive thoracic band. Ten periaqueductal grey and 10 subthalamic nucleus patients were tested. To control for confounding pain and movement disorder relief, the sensory thalamus in 7 patients and globus pallidus interna in 10 patients, respectively, were also tested.
RESULTS:
Peak expiratory flow rate (PEFR) increased significantly with periaqueductal grey and subthalamic nucleus stimulation by up to 14% (P = .02 and .005, respectively, paired-samples Student t tests). Stimulation of control nuclei produced no significant PEFR change. Similarly, changes in thoracic diameter reflecting skeletal activity rather than airway caliber did not correlate with the improvement in PEFR. Forced expiratory volume in 1 second was unchanged by stimulation.
CONCLUSION:
DBS can improve PEFR in chronic pain and movement disorder patients. This finding provides insights into the neural modulation of respiratory performance and may explain some of the subjective benefits of DBS.
Collapse
Affiliation(s)
- Jonathan A. Hyam
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
| | | | - David J. Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Robert J. O. Davies
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, United Kingdom
| | - Tipu Z. Aziz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
| | - Alexander L. Green
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
26
|
Montenegro RA, Farinatti PDTV, Fontes EB, Soares PPDS, Cunha FAD, Gurgel JL, Porto F, Cyrino ES, Okano AH. Transcranial direct current stimulation influences the cardiac autonomic nervous control. Neurosci Lett 2011; 497:32-6. [DOI: 10.1016/j.neulet.2011.04.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/06/2011] [Accepted: 04/08/2011] [Indexed: 12/12/2022]
|
27
|
Pereira EAC, Lu G, Wang S, Schweder PM, Hyam JA, Stein JF, Paterson DJ, Aziz TZ, Green AL. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol 2010; 223:574-81. [PMID: 20178783 DOI: 10.1016/j.expneurol.2010.02.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2009] [Revised: 02/06/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND The midbrain periaqueductal grey (PAG) area is important for both pain modulation and cardiovascular control via the autonomic nervous system (ANS). While changes in blood pressure dependent upon dorsal or ventral electrode positioning have been described with PAG deep brain stimulation (DBS), little is known mechanistically about the relationships between pain and cardiovascular regulation in humans. Heart rate variability (HRV) is an established measure of cardiovascular regulation, and an index of autonomic function. METHODS AND RESULTS 16 patients undergoing DBS of the rostral PAG for chronic neuropathic pain were investigated post-operatively to determine whether PAG stimulation would alter HRV, and the subjects' perception of pain. Mean heart rate together with HRV, time and frequency domain measures, low frequency (LF) and high frequency (HF) power components of heart rate and the ratio of LF to HF were calculated before and during DBS. Ventral but not dorsal PAG DBS significantly decreased the ratio of LF to HF power (p<0.05, n=8) with HF power significantly increased. Changes in LF/HF ratio correlated significantly with subjective reporting of analgesic efficacy using a visual analogue score (VAS; gamma(2)=0.36, p=0.01, n=16). Diffusion tensor imaging and probabilistic tractography of 17 normal controls' seeding voxels from the mean ventral and dorsal PAG stimulation sites of the 16 patient cohort revealed significant differences between rostral tract projections and separate, adjacent projections to ipsilateral dorsolateral medulla. CONCLUSIONS Ventral PAG DBS may increase parasympathetic activity to reduce pain via anatomical connections distinct from dorsal PAG DBS, which may act by sympathetic mechanisms.
Collapse
|
28
|
Green AL, Hyam JA, Williams C, Wang S, Shlugman D, Stein JF, Paterson DJ, Aziz TZ. Intra-Operative Deep Brain Stimulation of the Periaqueductal Grey Matter Modulates Blood Pressure and Heart Rate Variability in Humans. Neuromodulation 2010; 13:174-81. [DOI: 10.1111/j.1525-1403.2010.00274.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Cogiamanian F, Brunoni A, Boggio P, Fregni F, Ciocca M, Priori A. Non-invasive brain stimulation for the management of arterial hypertension. Med Hypotheses 2010; 74:332-6. [DOI: 10.1016/j.mehy.2009.08.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 08/23/2009] [Indexed: 11/15/2022]
|
30
|
Pereira EA, Green AL, Aziz TZ. Deep Brain Stimulation for Blood Pressure Control. Neuromodulation 2009. [DOI: 10.1016/b978-0-12-374248-3.00081-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Pereira EA, Green AL, Nandi D, Aziz TZ. Stereotactic Neurosurgery in the United Kingdom: The Hundred Years from Horsley to Hariz. Neurosurgery 2008; 63:594-606; discussion 606-7. [DOI: 10.1227/01.neu.0000316854.29571.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
32
|
Laćan G, De Salles AAF, Gorgulho AA, Krahl SE, Frighetto L, Behnke EJ, Melega WP. Modulation of food intake following deep brain stimulation of the ventromedial hypothalamus in the vervet monkey. J Neurosurg 2008; 108:336-42. [DOI: 10.3171/jns/2008/108/2/0336] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Object
Deep brain stimulation (DBS) has become an effective therapy for an increasing number of brain disorders. Recently demonstrated DBS of the posterior hypothalamus as a safe treatment for chronic intractable cluster headaches has drawn attention to this target, which is involved in the regulation of diverse autonomic functions and feeding behavior through complex integrative mechanisms. In this study, the authors assessed the feasibility of ventromedial hypothalamus (VMH) DBS in freely moving vervet monkeys to modulate food intake as a model for the potential treatment of eating disorders.
Methods
Deep brain stimulation electrodes were bilaterally implanted into the VMH of 2 adult male vervet monkeys by using the stereotactic techniques utilized in DBS in humans. Stimulators were implanted subcutaneously on the upper back, allowing ready access to program stimulation parameters while the animal remained conscious and freely moving. In anesthetized animals, intraoperatively and 6–10 weeks postsurgery, VMH DBS parameters were selected according to minimal cardiovascular and autonomic nervous system responses. Thereafter, conscious animals were subjected to 2 cycles of VMH DBS for periods of 8 and 3 days, and food intake and behavior were monitored. Animals were then killed for histological verification of probe placement.
Results
During VMH DBS, total food consumption increased. The 3-month bilateral implant of electrodes and subsequent periods of high-frequency VMH stimulation did not result in significant adverse behavioral effects.
Conclusions
This is the first study in which techniques of hypothalamic DBS in humans have been applied in freely moving nonhuman primates. Future studies can now be conducted to determine whether VMH DBS can change hypothalamic responsivity to endocrine signals associated with adiposity for long-term modulation of food intake.
Collapse
Affiliation(s)
- Goran Laćan
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA and
| | - Antonio A. F. De Salles
- 2Division of Neurosurgery, Department of Surgery
- 3VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | - Scott E. Krahl
- 2Division of Neurosurgery, Department of Surgery
- 3VA Greater Los Angeles Healthcare System, Los Angeles, California
| | | | | | - William P. Melega
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA and
| |
Collapse
|
33
|
Autonomic neurosurgery: from microvascular decompression to image guided stimulation. Biomed Imaging Interv J 2007; 3:e14. [PMID: 21614256 PMCID: PMC3097652 DOI: 10.2349/biij.3.1.e14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Accepted: 01/28/2007] [Indexed: 11/17/2022] Open
Abstract
The paper reviews mechanisms underlying autonomic disorders, with a focus on cardiovascular dysfunction. Neurosurgical approaches are described for medically refractory hypertension and orthostatic hypotension. After review of microvascular decompression of the rostral ventrolateral medulla, stereotactic CT and MRI guided deep brain stimulation of the periaqueductal grey matter (PAG) is evaluated. Results are presented from patient studies showing reductions in blood pressure with ventral PAG stimulation and increases in blood pressure with dorsal PAG stimulation. A rationale for the treatment of autonomic disorders by neurosurgical intervention is discussed.
Collapse
|
34
|
Chomiak T, Hu B. Axonal and somatic filtering of antidromically evoked cortical excitation by simulated deep brain stimulation in rat brain. J Physiol 2006; 579:403-12. [PMID: 17170044 PMCID: PMC2075404 DOI: 10.1113/jphysiol.2006.124057] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antidromic cortical excitation has been implicated as a contributing mechanism for high-frequency deep brain stimulation (DBS). Here, we examined the reliability of antidromic responses of type 2 corticofugal fibres in rat over a stimulation frequency range compatible to the DBS used in humans. We activated antidromically individual layer V neurones by stimulating their two subcortical axonal branches. We found that antidromic cortical excitation is not as reliable as generally assumed. Whereas the fast conducting branches of a type 2 axon in the highly myelinated brainstem region follow high-frequency stimulation, the slower conducting fibres in the poorly myelinated thalamic region function as low-pass filters. These fibres fail to transmit consecutive antidromic spikes at the beginning of high-frequency stimulation, but are able to maintain a steady low-frequency (6-12 Hz) spike output during the stimulation. In addition, antidromic responses evoked from both branches are rarely present in cortical neurones with a more hyperpolarized membrane potential. Our data indicate that axon-mediated antidromic excitation in the cortex is strongly influenced by the myelo-architecture of the stimulation site and the excitability of individual cortical neurones.
Collapse
Affiliation(s)
- T Chomiak
- Division of Experimental Neurosciences, Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|