1
|
Mayer R, Desai K, Aguiar RSDT, McClure JJ, Kato N, Kalman C, Pilitsis JG. Evolution of Deep Brain Stimulation Techniques for Complication Mitigation. Oper Neurosurg (Hagerstown) 2024; 27:148-157. [PMID: 38315020 DOI: 10.1227/ons.0000000000001071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/07/2023] [Indexed: 02/07/2024] Open
Abstract
Complication mitigation in deep brain stimulation has been a topic matter of much discussion in the literature. In this article, we examine how neurosurgeons as individuals and as a field generated and adapted techniques to prevent infection, lead fracture/lead migration, and suboptimal outcomes in both the acute period and longitudinally. The authors performed a MEDLINE search inclusive of articles from 1987 to June 2023 including human studies written in English. Using the Rayyan platform, two reviewers (J.P. and R.M.) performed a title screen. Of the 776 articles, 252 were selected by title screen and 172 from abstract review for full-text evaluation. Ultimately, 124 publications were evaluated. We describe the initial complications and inefficiencies at the advent of deep brain stimulation and detail changes instituted by surgeons that reduced them. Furthermore, we discuss the trend in both undesired short-term and long-term outcomes with emphasis on how surgeons recognized and modified their practice to provide safer and better procedures. This scoping review adds to the literature as a guide to both new neurosurgeons and seasoned neurosurgeons alike to understand better what innovations have been trialed over time as we embark on novel targets and neuromodulatory technologies.
Collapse
Affiliation(s)
- Ryan Mayer
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton , Florida , USA
| | | | | | | | | | | | | |
Collapse
|
2
|
Sajonz BEA, Brugger TS, Reisert M, Büchsel M, Schröter N, Rau A, Egger K, Reinacher PC, Urbach H, Coenen VA, Kaller CP. Cerebral Intraparenchymal Hemorrhage due to Implantation of Electrodes for Deep Brain Stimulation: Insights from a Large Single-Center Retrospective Cross-Sectional Analysis. Brain Sci 2024; 14:612. [PMID: 38928612 PMCID: PMC11201406 DOI: 10.3390/brainsci14060612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cerebral intraparenchymal hemorrhage due to electrode implantation (CIPHEI) is a rare but serious complication of deep brain stimulation (DBS) surgery. This study retrospectively investigated a large single-center cohort of DBS implantations to calculate the frequency of CIPHEI and identify patient- and procedure-related risk factors for CIPHEI and their potential interactions. We analyzed all DBS implantations between January 2013 and December 2021 in a generalized linear model for binomial responses using bias reduction to account for sparse sampling of CIPHEIs. As potential risk factors, we considered age, gender, history of arterial hypertension, level of invasivity, types of micro/macroelectrodes, and implanted DBS electrodes. If available, postoperative coagulation and platelet function were exploratorily assessed in CIPHEI patients. We identified 17 CIPHEI cases across 839 electrode implantations in 435 included procedures in 418 patients (3.9%). Exploration and cross-validation analyses revealed that the three-way interaction of older age (above 60 years), high invasivity (i.e., use of combined micro/macroelectrodes), and implantation of directional DBS electrodes accounted for 82.4% of the CIPHEI cases. Acquired platelet dysfunction was present only in one CIPHEI case. The findings at our center suggested implantation of directional DBS electrodes as a new potential risk factor, while known risks of older age and high invasivity were confirmed. However, CIPHEI risk is not driven by the three factors alone but by their combined presence. The contributions of the three factors to CIPHEI are hence not independent, suggesting that potentially modifiable procedural risks should be carefully evaluated when planning DBS surgery in patients at risk.
Collapse
Affiliation(s)
- Bastian E. A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Timo S. Brugger
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Institute for Evidence in Medicine, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79110 Freiburg, Germany
- Cochrane Germany, Cochrane Germany Foundation, 79110 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Medical Physics, Department of Radiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Büchsel
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Nils Schröter
- Department of Neurology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Radiology, Tauernklinikum, 5700 Zell am See, Austria
- Paracelsus Medical Private University (PMU), 5020 Salzburg, Austria
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology (ILT), 52074 Aachen, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Center for Deep Brain Stimulation, University of Freiburg, 79106 Freiburg, Germany
| | - Christoph P. Kaller
- Department of Neuroradiology, Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Freiburg Optical NeuroImaging [FrONI], Medical Center — University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
3
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
Dos Santos B, Vaz R, Braga AC, Rito M, Lucas D, Chamadoira C. Intracerebral hemorrhage after deep brain stimulation surgery guided with microelectrode recording: analysis of 297 procedures. NEUROCIRUGIA (ENGLISH EDITION) 2024; 35:79-86. [PMID: 37865159 DOI: 10.1016/j.neucie.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES Report the incidence of symptomatic and asymptomatic intracerebral hemorrhage (ICH) in patients submitted to deep brain stimulation (DBS) guided with microelectrode recording (MER) with further analysis of potential risk factors, both inherent to the patient and related to the pathology and surgical technique. METHODS We performed a retrospective observational study. 297 DBS procedures were concluded in 277 patients in a single hospital centre between January 2010 and December 2020. All surgeries were guided with MER. We analysed the incidence of symptomatic and asymptomatic ICH and its correlation to age, sex, diagnosis, hypertension and perioperative hypertension, diabetes, dyslipidaemia, antiplatelet drugs, anatomic target, and number of MER trajectories. RESULTS There were a total of 585 electrodes implanted in 277 patients. 16 ICH were observed, of which 6 were symptomatic and 10 asymptomatic, none of which incurred in permanent neurological deficit. The location of the hemorrhage varied between cortical and subcortical plans, always in relation with the trajectory or the final position of the electrode. The incidence of symptomatic ICH per lead-implantation was 1%, and the CT-scan demonstrated asymptomatic ICH in 1.7% more patients. Male patients or with hypertension are 2.7 and 2.2 times more likely to develop ICH, respectively. However, none of these characteristics has been shown to have a statistically significant association with the occurrence of ICH, as well as age, diagnosis, diabetes, dyslipidaemia, antiplatelet drugs, anatomic target, number of MER trajectories and perioperative hypertension. CONCLUSIONS MER-guided DBS is a safe technique, with low incidence of ICH and no permanent deficits in our study. Hypertension and male sex seem to be risk factors for the development of ICH in this surgery. Nevertheless, no statistically significant factors were found for the occurrence of this complication.
Collapse
Affiliation(s)
| | - Rui Vaz
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | | | - Manuel Rito
- Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Diana Lucas
- Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| | - Clara Chamadoira
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal; Neurosurgery Department, Centro Hospitalar Universitário de São João (CHUSJ), Porto, Portugal
| |
Collapse
|
5
|
Ferreira Felloni Borges Y, Cheyuo C, Lozano AM, Fasano A. Essential Tremor - Deep Brain Stimulation vs. Focused Ultrasound. Expert Rev Neurother 2023; 23:603-619. [PMID: 37288812 DOI: 10.1080/14737175.2023.2221789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
INTRODUCTION Essential Tremor (ET) is one of the most common tremor syndromes typically presented as action tremor, affecting mainly the upper limbs. In at least 30-50% of patients, tremor interferes with quality of life, does not respond to first-line therapies and/or intolerable adverse effects may occur. Therefore, surgery may be considered. AREAS COVERED In this review, the authors discuss and compare unilateral ventral intermedius nucleus deep brain stimulation (VIM DBS) and bilateral DBS with Magnetic Resonance-guided Focused Ultrasound (MRgFUS) thalamotomy, which comprises focused acoustic energy generating ablation under real-time MRI guidance. Discussion includes their impact on tremor reduction and their potential complications. Finally, the authors provide their expert opinion. EXPERT OPINION DBS is adjustable, potentially reversible and allows bilateral treatments; however, it is invasive requires hardware implantation, and has higher surgical risks. Instead, MRgFUS is less invasive, less expensive, and requires no hardware maintenance. Beyond these technical differences, the decision should also involve the patient, family, and caregivers.
Collapse
Affiliation(s)
- Yuri Ferreira Felloni Borges
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
| | - Cletus Cheyuo
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto, ON, Canada
- Center for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
- Department of Parkinson's Disease & Movement Disorders Rehabilitation, Moriggia-Pelascini Hospital, Gravedona Ed Uniti, Como, Italy
| |
Collapse
|
6
|
Rasiah NP, Maheshwary R, Kwon CS, Bloomstein JD, Girgis F. Complications of Deep Brain Stimulation for Parkinson Disease and Relationship between Micro-electrode tracks and hemorrhage: Systematic Review and Meta-Analysis. World Neurosurg 2023; 171:e8-e23. [PMID: 36244666 DOI: 10.1016/j.wneu.2022.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Deep brain stimulation is a common treatment for Parkinson's disease (PD). Despite strong efficacy in well-selected patients, complications can occur. Intraoperative micro-electrode recording (MER) can enhance efficacy by improving lead accuracy. However, there is controversy as to whether MER increases risk of hemorrhage. OBJECTIVES To provide a comprehensive systematic review and meta-analysis reporting complication rates from deep brain stimulation in PD. We also interrogate the association between hemorrhage and MER. METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were implemented while querying the Pubmed, Embase, and Cochrane databases. All included studies were randomized controlled trials and prospective case series with 5 or more patients. Primary outcomes included rates of overall revision, infection, lead malposition, surgical site and wound complications, hardware-related complications, and seizure. The secondary outcome was the relationship between number of MER tracks and hemorrhage rate. RESULTS 262 articles with 21,261 patients were included in the analysis. Mean follow-up was 25.8 months (range 0-133). Complication rates were: revision 4.9%, infection 4.2%, lead malposition 3.3%, surgical site complications 2.8%, hemorrhage 2.4%, hardware-related complications 2.4%, and seizure 1.9%. While hemorrhage rate did not increase with single-track MER (odds ratio, 3.49; P = 0.29), there was a significant non-linear increase with each additional track. CONCLUSION Infection and lead malposition were the most common complications. Hemorrhage risk increases with more than one MER track. These results highlight the challenge of balancing surgical accuracy and perioperative risk.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Neurosurgery, Cumming School of Medicine, University of Calgary, Alberta, USA
| | - Romir Maheshwary
- Department of Neurosurgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Churl-Su Kwon
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Joshua D Bloomstein
- Department of Neurosurgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Fady Girgis
- Department of Neurosurgery, Cumming School of Medicine, University of Calgary, Alberta, USA.
| |
Collapse
|
7
|
Kumosa LS. Commonly Overlooked Factors in Biocompatibility Studies of Neural Implants. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205095. [PMID: 36596702 PMCID: PMC9951391 DOI: 10.1002/advs.202205095] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Biocompatibility of cutting-edge neural implants, surgical tools and techniques, and therapeutic technologies is a challenging concept that can be easily misjudged. For example, neural interfaces are routinely gauged on how effectively they determine active neurons near their recording sites. Tissue integration and toxicity of neural interfaces are frequently assessed histologically in animal models to determine tissue morphological and cellular changes in response to surgical implantation and chronic presence. A disconnect between histological and efficacious biocompatibility exists, however, as neuronal numbers frequently observed near electrodes do not match recorded neuronal spiking activity. The downstream effects of the myriad surgical and experimental factors involved in such studies are rarely examined when deciding whether a technology or surgical process is biocompatible. Such surgical factors as anesthesia, temperature excursions, bleed incidence, mechanical forces generated, and metabolic conditions are known to have strong systemic and thus local cellular and extracellular consequences. Many tissue markers are extremely sensitive to the physiological state of cells and tissues, thus significantly impacting histological accuracy. This review aims to shed light on commonly overlooked factors that can have a strong impact on the assessment of neural biocompatibility and to address the mismatch between results stemming from functional and histological methods.
Collapse
Affiliation(s)
- Lucas S. Kumosa
- Neuronano Research CenterDepartment of Experimental Medical ScienceMedical FacultyLund UniversityMedicon Village, Byggnad 404 A2, Scheelevägen 8Lund223 81Sweden
| |
Collapse
|
8
|
Gadot R, Vanegas Arroyave N, Dang H, Anand A, Najera RA, Taneff LY, Bellows S, Tarakad A, Jankovic J, Horn A, Shofty B, Viswanathan A, Sheth SA. Association of clinical outcomes and connectivity in awake versus asleep deep brain stimulation for Parkinson disease. J Neurosurg 2022; 138:1016-1027. [PMID: 35932263 DOI: 10.3171/2022.6.jns212904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 06/09/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) for Parkinson disease (PD) is traditionally performed with awake intraoperative testing and/or microelectrode recording. Recently, however, the procedure has been increasingly performed under general anesthesia with image-based verification. The authors sought to compare structural and functional networks engaged by awake and asleep PD-DBS of the subthalamic nucleus (STN) and correlate them with clinical outcomes. METHODS Levodopa equivalent daily dose (LEDD), pre- and postoperative motor scores on the Movement Disorders Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III), and total electrical energy delivered (TEED) at 6 months were retroactively assessed in patients with PD who received implants of bilateral DBS leads. In subset analysis, implanted electrodes were reconstructed using the Lead-DBS toolbox. Volumes of tissue activated (VTAs) were used as seed points in group volumetric and connectivity analysis. RESULTS The clinical courses of 122 patients (52 asleep, 70 awake) were reviewed. Operating room and procedure times were significantly shorter in asleep cases. LEDD reduction, MDS-UPDRS III score improvement, and TEED at the 6-month follow-up did not differ between groups. In subset analysis (n = 40), proximity of active contact, VTA overlap, and desired network fiber counts with motor STN correlated with lower DBS energy requirement and improved motor scores. Discriminative structural fiber tracts involving supplementary motor area, thalamus, and brainstem were associated with optimal clinical improvement. Areas of highest structural and functional connectivity with VTAs did not significantly differ between the two groups. CONCLUSIONS Compared to awake STN DBS, asleep procedures can achieve similarly optimal targeting-based on clinical outcomes, electrode placement, and connectivity estimates-in more efficient procedures and shorter operating room times.
Collapse
Affiliation(s)
- Ron Gadot
- 1Department of Neurosurgery, Baylor College of Medicine
| | - Nora Vanegas Arroyave
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Huy Dang
- 1Department of Neurosurgery, Baylor College of Medicine
| | - Adrish Anand
- 1Department of Neurosurgery, Baylor College of Medicine
| | | | - Lisa Yutong Taneff
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Steven Bellows
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Arjun Tarakad
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Joseph Jankovic
- 2Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, Texas; and
| | - Andreas Horn
- 3Department of Neurology, Movement Disorder and Neuromodulation Unit, Charité-Universitätsmedizin, Berlin, Germany
| | - Ben Shofty
- 1Department of Neurosurgery, Baylor College of Medicine
| | | | | |
Collapse
|
9
|
Runge J, Nagel JM, Cassini Ascencao L, Blahak C, Kinfe TM, Schrader C, Wolf ME, Saryyeva A, Krauss JK. Are Transventricular Approaches Associated With Increased Hemorrhage? A Comparative Study in a Series of 624 Deep Brain Stimulation Surgeries. Oper Neurosurg (Hagerstown) 2022; 23:e108-e113. [PMID: 35838461 DOI: 10.1227/ons.0000000000000275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 03/06/2022] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) surgery has advanced tremendously, for both clinical applications and technology. Although DBS surgery is an overall safe procedure, rare side effects, in particular, hemorrhage, may result in devastating consequences. Although there are certain advantages with transventricular trajectories, it has been reasoned that avoidance of such trajectories would likely reduce hemorrhage. OBJECTIVE To investigate the possible impact of a transventricular trajectory as compared with a transcerebral approach on the occurrence of symptomatic and asymptomatic hemorrhage after DBS electrode placement. METHODS Retrospective evaluation of 624 DBS surgeries in 582 patients, who underwent DBS surgery for movement disorders, chronic pain, or psychiatric disorders. A stereotactic guiding cannula was routinely used for DBS electrode insertion. All patients had postoperative computed tomography scans within 24 hours after surgery. RESULTS Transventricular transgression was identified in 404/624 DBS surgeries. The frequency of hemorrhage was slightly higher in transventricular than in transcerebral DBS surgeries (15/404, 3.7% vs 6/220, 2.7%). While 7/15 patients in the transventricular DBS surgery group had a hemorrhage located in the ventricle, 6 had an intracerebral hemorrhage along the electrode trajectory unrelated to transgression of the ventricle and 2 had a subdural hematoma. Among the 7 patients with a hemorrhage located in the ventricle, only one became symptomatic. Overall, a total of 7/404 patients in the transventricular DBS surgery group had a symptomatic hemorrhage, whereas the hemorrhage remained asymptomatic in all 6/220 patients in the transcerebral DBS surgery group. CONCLUSION Transventricular approaches in DBS surgery can be performed safely, in general, when special precautions such as using a guiding cannula are routinely applied.
Collapse
Affiliation(s)
- Joachim Runge
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Johanna M Nagel
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | | | - Christian Blahak
- Department of Neurology, Clinic Lahr, Lahr, Germany.,Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas M Kinfe
- Division of Functional Neurosurgery and Stereotaxy, Department of Neurosurgery, Friedrich-Alexander University, Erlangen-Nürnberg, Germany
| | | | - Marc E Wolf
- Department of Neurology, Universitätsmedizin Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Neurology, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
10
|
von Conta J, Kasten FH, Schellhorn K, Curcic-Blake B, Aleman A, Herrmann CS. Benchmarking the Effects of Transcranial Temporal Interference Stimulation (tTIS) in Humans. Cortex 2022; 154:299-310. [DOI: 10.1016/j.cortex.2022.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/07/2022] [Accepted: 05/23/2022] [Indexed: 11/03/2022]
|
11
|
Malvea A, Babaei F, Boulay C, Sachs A, Park J. Deep brain stimulation for Parkinson’s Disease: A Review and Future Outlook. Biomed Eng Lett 2022; 12:303-316. [PMID: 35892031 PMCID: PMC9308849 DOI: 10.1007/s13534-022-00226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 12/29/2021] [Accepted: 04/03/2022] [Indexed: 11/30/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disorder that manifests as an impairment of motor and non-motor abilities due to a loss of dopamine input to deep brain structures. While there is presently no cure for PD, a variety of pharmacological and surgical therapeutic interventions have been developed to manage PD symptoms. This review explores the past, present and future outlooks of PD treatment, with particular attention paid to deep brain stimulation (DBS), the surgical procedure to deliver DBS, and its limitations. Finally, our group's efforts with respect to brain mapping for DBS targeting will be discussed.
Collapse
Affiliation(s)
- Anahita Malvea
- Faculty of Medicine, University of Ottawa, K1H 8M5 Ottawa, ON Canada
| | - Farbod Babaei
- School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5 Ottawa, ON Canada
| | - Chadwick Boulay
- The Ottawa Hospital Research Institute, Ottawa, Ontario Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario Canada
| | - Adam Sachs
- The Ottawa Hospital Research Institute, Ottawa, Ontario Canada
- The University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario Canada
- Division of Neurosurgery, Department of Surgery, The Ottawa Hospital, Ottawa, Ontario Canada
| | - Jeongwon Park
- School of Electrical Engineering and Computer Science, University of Ottawa, K1N 6N5 Ottawa, ON Canada
- Department of Electrical and Biomedical Engineering, University of Nevada, 89557 Reno, NV USA
| |
Collapse
|
12
|
The risk factors of intracerebral hemorrhage in deep brain stimulation: does target matter? Acta Neurochir (Wien) 2022; 164:587-598. [PMID: 34997354 DOI: 10.1007/s00701-021-04977-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/16/2021] [Indexed: 11/01/2022]
Abstract
BACKGROUND Although deep brain stimulation (DBS) is a relatively safe and effective surgery compared with ablative surgeries, intracerebral hemorrhage (ICH) is a serious complication during DBS that could result in a fatal prognosis. We retrospectively investigated whether ICH incidence differed between patients who underwent DBS in the subthalamic nucleus (STN) and in the globus pallidus interna (GPi), together with previously identified risk factors for ICH. METHODS We retrospectively reviewed the medical records of 275 patients (527 DBS targets) who received DBS for Parkinson's disease or dystonia from April 2001 to December 2020. In cases that developed intra- or postoperative ICH, patients were classified as asymptomatic, symptomatic with temporary neurological deficit or symptomatic with permanent neurological deficit, according to patient clinical status. RESULTS ICH occurred in 12 procedures (2.3%) among the 527 DBS procedures (275 patients) evaluated. In multivariable logistic regression analysis, the risk factor for all cases of ICH was systolic blood pressure (BP) during surgery (cut-off value 129.4 mmHg) (OR = 1.05, 95% CI = 1.01-1.09, P = 0.023). In addition, for ICH with permanent neurological deficit, STN target site (P = 0.024) and systolic BP during surgery (cut-off value: 148.3 mmHg) (P = 0.004) were identified as risk factors in univariable analyses. CONCLUSION Even though the risk factor for all ICH in DBS was BP during surgery, when focused on ICH evoking permanent neurological deficit, the target location as well as systolic BP during surgery proved to be related.
Collapse
|
13
|
Mohammed M, Ivica N, Bjartmarz H, Thorbergsson PT, Pettersson LME, Thelin J, Schouenborg J. Microelectrode clusters enable therapeutic deep brain stimulation without noticeable side-effects in a rodent model of Parkinson's disease. J Neurosci Methods 2022; 365:109399. [PMID: 34695455 DOI: 10.1016/j.jneumeth.2021.109399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/01/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Deep Brain Stimulation (DBS) is an established treatment for motor symptoms in Parkinson's disease (PD). However, side effects often limit the usefulness of the treatment. NEW METHOD To mitigate this problem, we developed a novel cluster of ultrathin platinum-iridium microelectrodes (n = 16) embedded in a needle shaped gelatin vehicle. In an established rodent PD-model (6-OHDA unilateral lesion), the clusters were implanted in the subthalamic area for up to 8 weeks. In an open field setting, combinations of microelectrodes yielding therapeutic effects were identified using statistical methods. Immunofluorescence techniques were used for histological assessments of biocompatibility. RESULTS In all rats tested (n = 5), we found subsets of 3-4 microelectrodes which, upon stimulation (160 Hz, 60 μs pulse width, 25-40 μA/microelectrode), prompted normal movements without noticeable side effects. Other microelectrode subsets often caused side effects such as rotation, dyskinesia and tremor. The threshold (per microelectrode) to elicit normal movements strongly depended on the number of activated microelectrodes in the selected subset. The histological analysis revealed viable neurons close to the electrode contacts, minor microglial and astrocytic reactions and no major changes in the vasculature, indicating high biocompatibility. COMPARISON TO EXISTING METHODS AND CONCLUSION By contrast to the continuous and relatively large stimulation fields produced by existing DBS electrodes, the developed microelectrode cluster enables a fine-tuned granular and individualized microstimulation. This granular type of stimulation pattern provided powerful and specific therapeutic effects, free of noticeable side effects, in a PD animal model.
Collapse
Affiliation(s)
| | | | - Hjalmar Bjartmarz
- Neuronano Research Center, Lund University, Lund, Sweden; Department of Neurosurgery, Lund University and Skåne University Hospital in Lund, Lund, Sweden
| | | | - Lina M E Pettersson
- Neuronano Research Center, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden
| | - Jonas Thelin
- Neuronano Research Center, Lund University, Lund, Sweden
| | - Jens Schouenborg
- Neuronano Research Center, Lund University, Lund, Sweden; NanoLund, Lund University, Lund, Sweden.
| |
Collapse
|
14
|
Ko AL, Tong APS, Mossa-Basha M, Weaver KE, Ojemann JG, Miller JW, Hakimian S. Effects of laser interstitial thermal therapy for mesial temporal lobe epilepsy on the structural connectome and its relationship to seizure freedom. Epilepsia 2021; 63:176-189. [PMID: 34817885 DOI: 10.1111/epi.17059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Laser interstitial thermal therapy (LITT) is a minimally invasive surgery for mesial temporal lobe epilepsy (mTLE), but the effects of individual patient anatomy and location of ablation volumes affect seizure outcomes. The purpose of this study is to see if features of individual patient structural connectomes predict surgical outcomes after LITT for mTLE. METHODS This is a retrospective analysis of seizure outcomes of LITT for mTLE in 24 patients. We use preoperative diffusion tensor imaging (DTI) to simulate changes in structural connectivity after laser ablation. A two-step machine-learning algorithm is applied to predict seizure outcomes from the change in connectomic features after surgery. RESULTS Although node-based network features such as clustering coefficient and betweenness centrality have some predictive value, changes in connection strength between mesial temporal regions predict seizure outcomes significantly better. Changes in connection strength between the entorhinal cortex (EC), and the insula, hippocampus, and amygdala, as well as between the temporal pole and hippocampus, predict Engel Class I outcomes with an accuracy of 88%. Analysis of the ablation location, as well as simulated, alternative ablations, reveals that a more medial, anterior, and inferior ablation volume is associated with a greater effect on these connections, and potentially on seizure outcomes. SIGNIFICANCE Our results indicate (1) that seizure outcomes can be retrospectively predicted with excellent accuracy using changes in structural connectivity, and (2) that favorable connectomic changes are associated with an ablation volume involving relatively mesial, anterior, and inferior locations. These results may provide a framework whereby individual pre-operative structural connectomes can be used to optimize ablation volumes and improve outcomes in LITT for mTLE.
Collapse
Affiliation(s)
- Andrew L Ko
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - Ai Phuong S Tong
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Kurt E Weaver
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Jeffrey G Ojemann
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - John W Miller
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Shahin Hakimian
- Department of Neurology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Abdelbari S, Amer HA, Ayoub BM, Kamel R. Surgical Management of Parkinson’s Disease: The Role of Lesioning Procedures in Developing Countries in the Modern Era. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The known loss of dopaminergic cells in the pars-compacta of the substantia nigra that is the hallmark of PD. The cellular pathophysiology of the motor dysfunction is beginning to be better understood, thereby providing a stronger scientific rationale for surgical interventions. Yet, to date, there are no treatments that prevent, halt, or cure PD. Surgical strategies, offer symptomatic relief or control of motor complications associated with drug treatment.
Both pallidotomy and thalamotomy were extensively used in the treatment of PD in the1950’s and 1960’s. With the introduction of levodopa (L-dopa) in the1960’s and the realization of its striking benefits, surgery was almost abandoned and used only for patients with severe tremor. Surgical therapy is now being used earlier and more often. There are currently three brain regions being considered as targets for functional neurosurgery for PD (other than transplantation). Either CNS lesions (thalamotomy, pallidotomy or subthalamic nucleus lesions) or deep brain stimulation [DBS]. These targets are: The ventral intermediate nucleus of the thalamus (Vim), the internal segment of the Globus Pallidus (GPi) and the subthalamic nucleus (STN).
OBJECTIVE: To assess the outcome (3 months & 6 months) of lesioning procedures in parkinson’s disease (PD) patients meeting the inclusion criteria.
METHODS: A prospective clinical study conducted on 10 IPD patients during the period from October 2018 to March 2021 at Cairo University Hospitals. This study was concerned to improve the motor symptoms of IPD patients by stereotactic radiofrequency ablative procedures. Cases were restricted to 10 patients due to the Covid-19 pandemic and restriction of elective cases for chronic patients at Cairo University hospitals.
RESULTS: In our study we operated upon 10 IPD patients who were meeting our selection criteria by ablative procedures contralateral to parkinsonian symptoms.
Age of the patients ranged 17 – 70y with mean of 50.5 ± 16.35 y with predominance in males representing 6 patients. Mean duration of Parkinson`s disease according to history ranged from 2 to 12 y with mean of 8 ± 3.1 years. Patients were divided into three groups according to their presentation and the operation done for them. Thalamotomy group: Pre-operatively, the UPDRS III off & on respectively was 24.4/15.2 and post-operatively was 13/7.4 with improvement 47% / 51%. The tremor subscore was 5.4/2.8 pre-operatively and 1.4/0.8 post-operatively with average of 72% improvement. The UPDRS II pre was 17.2/11.6 and post it became 10.6/7 with 39% improvement. Modified H&Y 2.4/1.7 pre & post-operatively (29% improvement). Pallidotomy group: Pre-operatively, the UPDRS III off & on respectively was 38.5/23.5 and post-operatively was 28/16 with improvement 27% / 32%. The rigidity subscore was 5/2.5 pre-operatively and 2/1 post-operatively with average of 60% improvement. The bradykinesia subscore was 9/5.5 pre-operatively and 5.5/2.5 post-operatively with average of 47% improvement. The dyskinesia subscore was 4.5 pre-operatively and 1.2 post-operatively with average of 71% improvement. The UPDRS II pre was 22/12.5 and post it became 16/10 with 25% improvement. Modified H&Y 2.75/2.25 pre & post-operatively (18% improvement). Combined group: Pre-operatively, the UPDRS III off & on respectively was 41.33/28.67 and post-operatively was 15.67/11.33 with improvement 62% /60%. The rigidity subscore was 5/3.33 pre-operatively and 1.67/1 post-operatively with average of 68% improvement. The bradykinesia subscore was 10/6 pre-operatively and 4/1.33 post-operatively with average of 72% improvement. The UPDRS II pre was 28.33/19.33 and post it became 16.33/10.67 with 43% improvement. Modified H&Y 2.83/2 pre & post-operatively (29% improvement). Postoperatively, there was a high significant statistical finding in all clinical score and subscore of parkinsonian symptoms.
CONCLUSION: The study concludes that lesioning procedure should be revisited globally using the modern techniques of targeting and controlled thermal lesion protocols guided by capsular somatotopy and intraoperative macroelectrode stimulation, that will improve the outcome dramatically. Ablative procedures proved their efficacy in controlling motor symptoms of IPD and their cost-benefit in low & middle-income nations.
Collapse
|
16
|
Verhagen Metman L, Slavin KV, Rosenow JM, Vitek JL, van den Munckhof P. More Than Just the Level of Consciousness: Comparing Asleep and Awake Deep Brain Stimulation. Mov Disord 2021; 36:2763-2766. [PMID: 34585783 DOI: 10.1002/mds.28806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/11/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Leo Verhagen Metman
- Department of Neurological Sciences, Rush University, Chicago, Illinois, USA
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Joshua M Rosenow
- Departments of Neurosurgery, Neurology, and Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois, USA
| | - Jerrold L Vitek
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pepijn van den Munckhof
- Department of Neurosurgery, Amsterdam University Medical Centers, Amsterdam, North Holland, USA
| |
Collapse
|
17
|
Pearce P, Bulluss K, Xu SS, Kim B, Milicevic M, Perera T, Thevathasan W. How accurately are subthalamic nucleus electrodes implanted relative to the ideal stimulation location for Parkinson's disease? PLoS One 2021; 16:e0254504. [PMID: 34264988 PMCID: PMC8282046 DOI: 10.1371/journal.pone.0254504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/27/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION The efficacy of subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) depends on how closely electrodes are implanted relative to an individual's ideal stimulation location. Yet, previous studies have assessed how closely electrodes are implanted relative to the planned location, after homogenizing data to a reference. Thus here, we measured how accurately electrodes are implanted relative to an ideal, dorsal STN stimulation location, assessed on each individual's native imaging. This measure captures not only the technical error of stereotactic implantation but also constraints imposed by planning a suitable trajectory. METHODS This cross-sectional study assessed 226 electrodes in 113 consecutive PD patients implanted with bilateral STN-DBS by experienced clinicians utilizing awake, microelectrode guided, surgery. The error (Euclidean distance) between the actual electrode trajectory versus a nominated ideal, dorsal STN stimulation location was determined in each hemisphere on native imaging and predictive factors sought. RESULTS The median electrode location error was 1.62 mm (IQR = 1.23 mm). This error exceeded 3 mm in 28/226 electrodes (12.4%). Location error did not differ between hemispheres implanted first or second, suggesting brain shift was minimised. Location error did not differ between electrodes positioned with (48/226), or without, a preceding microelectrode trajectory shift (suggesting such shifts were beneficial). There was no relationship between location error and case order, arguing against a learning effect. DISCUSSION/CONCLUSION The proximity of STN-DBS electrodes to a nominated ideal, dorsal STN, stimulation location is highly variable, even when implanted by experienced clinicians with brain shift minimized, and without evidence of a learning effect. Using this measure, we found that assessments on awake patients (microelectrode recordings and clinical examination) likely yielded beneficial intraoperative decisions to improve positioning. In many patients the error is likely to have reduced therapeutic efficacy. More accurate methods to implant STN-DBS electrodes relative to the ideal stimulation location are needed.
Collapse
Affiliation(s)
- Patrick Pearce
- Bionics Institute, East Melbourne, Victoria, Australia
- Department of Neurosurgery, St Vincent’s Hospital Melbourne, Fitzroy, Victoria, Australia
| | - Kristian Bulluss
- Bionics Institute, East Melbourne, Victoria, Australia
- Department of Neurosurgery, St Vincent’s Hospital Melbourne, Fitzroy, Victoria, Australia
- Department of Neurosurgery, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Surgery, The University of Melbourne, Parkville, Victoria, Australia
| | - San San Xu
- Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, East Melbourne, Victoria, Australia
- Department of Neurology, Austin Hospital, Heidelberg, Victoria, Australia
| | - Boaz Kim
- Bionics Institute, East Melbourne, Victoria, Australia
- Department of Neurosurgery, St Vincent’s Hospital Melbourne, Fitzroy, Victoria, Australia
| | | | - Thushara Perera
- Bionics Institute, East Melbourne, Victoria, Australia
- Medical Bionics Department, The University of Melbourne, East Melbourne, Victoria, Australia
| | - Wesley Thevathasan
- Bionics Institute, East Melbourne, Victoria, Australia
- Department of Neurology, Austin Hospital, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia
- Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| |
Collapse
|
18
|
Labuschagne J. Response to letter to the editor regarding "Use of intra-operative stimulation of brainstem lesion target sites for frameless stereotactic biopsies.". Childs Nerv Syst 2021; 37:2137. [PMID: 34031724 DOI: 10.1007/s00381-021-05210-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/09/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Jason Labuschagne
- Department of Neurosurgery, University of the Witwatersrand, Johannesburg, South Africa. .,Department of Paediatric Neurosurgery, Nelson Mandela Children's Hospital, 6 Jubilee Rd, Parktown, Johannesburg, 2193, South Africa.
| |
Collapse
|
19
|
Mitchell KT, Younce JR, Norris SA, Tabbal SD, Dowling JL, Rich KM, Perlmutter JS, Ushe M. Bilateral Subthalamic Nucleus Deep Brain Stimulation in Elderly Patients With Parkinson Disease: A Case-Control Study. Oper Neurosurg (Hagerstown) 2021; 19:234-240. [PMID: 32259239 DOI: 10.1093/ons/opaa049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 01/12/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Subthalamic nucleus deep brain stimulation (STN DBS) is an effective adjunctive therapy for Parkinson disease. Studies have shown improvement of motor function but often exclude patients older than 75 yr. OBJECTIVE To determine the safety and effectiveness of STN DBS in patients 75 yr and older. METHODS A total of 104 patients (52 patients >75 yr old, 52 patients <75 yr old) with STN DBS were paired and retrospectively analyzed. The primary outcome was change in Unified Parkinson Disease Rating Scale (UPDRS) subscale III at 1 yr postoperatively, OFF medication. Secondary outcomes were changes in UPDRS I, II, and IV subscales and levodopa equivalents. Complications and all-cause mortality were assessed at 30 d and 1 yr. RESULTS Both cohorts had significant improvements in UPDRS III at 6 mo and 1 yr with no difference between cohorts. Change in UPDRS III was noninferior to the younger cohort. The cohorts had similar worsening in UPDRS I at 1 yr, no change in UPDRS II, similar improvement in UPDRS IV, and similar levodopa equivalent reduction. There were similar numbers of postoperative intracerebral hemorrhages (2/52 in each cohort, more severe in the older cohort) and surgical complications (4/52 in each cohort), and mortality in the older cohort was similar to an additional matched cohort not receiving DBS. CONCLUSION STN DBS provides substantial motor benefit and reduction in levodopa equivalents with a low rate of complications in older patients, which is also noninferior to the benefit in younger patients. STN DBS remains an effective therapy for those over 75 yr.
Collapse
Affiliation(s)
- Kyle T Mitchell
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - John R Younce
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Samer D Tabbal
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurology, American University of Beirut, Beirut, Lebanon
| | - Joshua L Dowling
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Keith M Rich
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joel S Perlmutter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri.,Program in Physical Therapy, Washington University School of Medicine, St. Louis, Missouri.,Program in Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri
| | - Mwiza Ushe
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
20
|
Horisawa S, Fukui A, Nonaka T, Kawamata T, Taira T. Radiofrequency Ablation for Movement Disorders: Risk Factors for Intracerebral Hemorrhage, a Retrospective Analysis. Oper Neurosurg (Hagerstown) 2021; 21:143-149. [PMID: 34098579 DOI: 10.1093/ons/opab169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 03/14/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND One of the greatest concerns associated with radiofrequency ablation is intracerebral hemorrhage (ICH). However, the majority of previous studies have mainly evaluated Parkinson disease patients with ablation of the globus pallidus internus (GPi). OBJECTIVE To investigate the hemorrhagic risk associated with radiofrequency ablation using ventro-oral (Vo) nucleus, ventral intermediate (Vim) nucleus, GPi, and pallidothalamic tract. METHODS Radiofrequency ablations for movement disorders from 2012 to 2019 at our institution were retrospectively analyzed. Multivariate analyses were performed to evaluate associations between potential risk factors and ICH. RESULTS A total of 558 patients underwent 721 stereotactic radiofrequency ablations for movement disorders. Among 558 patients, 356 had dystonia, 111 had essential tremor, and 51 had Parkinson disease. Among 721 procedures, the stereotactic targets used in this study were as follows: Vo: 230; Vim: 199; GPi: 172; pallidothalamic tract: 102; Vim/Vo: 18. ICH occurred in 37 patients (5.1%, 33 with dystonia and 4 with essential tremor). Symptomatic ICH developed in 3 Vo nuclei (1.3%), 3 Vim nuclei (1.5%), and 2 GPi (1.2%). Hypertension (odds ratio = 2.69, P = .0013), higher number of lesions (odds ratio = 1.23, P = .0221), and younger age (odds ratio = 1.04, P = .0055) were significant risk factors for ICH associated with radiofrequency ablation. CONCLUSION The present study revealed that younger age, higher number of lesions, and history of hypertension were independent risk factors for ICH associated with stereotactic radiofrequency ablation.
Collapse
Affiliation(s)
- Shiro Horisawa
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Atsushi Fukui
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Taku Nonaka
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Takakazu Kawamata
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| | - Takaomi Taira
- Department of Neurosurgery, Neurological Institute, TokyoWomen's Medical University, Tokyo, Japan
| |
Collapse
|
21
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
22
|
Use of intra-operative stimulation of brainstem lesion target sites for frameless stereotactic biopsies. Childs Nerv Syst 2021; 37:1515-1523. [PMID: 33683422 DOI: 10.1007/s00381-021-05101-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/24/2021] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Frameless stereotactic navigation is used to direct the trajectory and biopsy site of target lesions. We report on a novel intra-operative stimulating (IOS) probe that is integrated into a commercially available stereotactic biopsy needle with the rationale that stimulation of the intended biopsy site should predict functional tissue thus preventing inadvertent biopsy of eloquent tissue. METHODS Patients undergoing brainstem biopsies for atypical lesions were offered the additional stimulation procedure. The IOS probe was used to deliver stimulation in an attempt to determine the proximity of eloquent tissue. Once the desired location of the biopsy needle was achieved, the IOS probe was inserted down the centre of the biopsy needle and the stimulus applied. If no action potential was recorded, biopsies from four quadrants of the lesion were taken. If however a compound action potential was recorded, a new target was selected. RESULTS Nine patients had the biopsy and stimulation procedure performed. The median age was 36 months. A minimum of 8 samples were obtained from each patient. Biopsy material was adequate to obtain a diagnosis in all 9 patients. In 2 cases use of the device influenced the insertion trajectory or biopsy site. No patients experienced any complications directly attributable to either the biopsy procedure or application of the stimulation. CONCLUSIONS Use of the IOS probe for intra-operative stimulation of the intended brainstem biopsy site was found to be safe and feasible. The addition of stimulation using the IOS probe can be done with minimal change in workflow.
Collapse
|
23
|
Endovascular deep brain stimulation: Investigating the relationship between vascular structures and deep brain stimulation targets. Brain Stimul 2020; 13:1668-1677. [PMID: 33035721 DOI: 10.1016/j.brs.2020.09.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/29/2020] [Accepted: 09/25/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Endovascular delivery of current using 'stentrodes' - electrode bearing stents - constitutes a potential alternative to conventional deep brain stimulation (DBS). The precise neuroanatomical relationships between DBS targets and the vascular system, however, are poorly characterized to date. OBJECTIVE To establish the relationships between cerebrovascular system and DBS targets and investigate the feasibility of endovascular stimulation as an alternative to DBS. METHODS Neuroanatomical targets as employed during deep brain stimulation (anterior limb of the internal capsule, dentatorubrothalamic tract, fornix, globus pallidus pars interna, medial forebrain bundle, nucleus accumbens, pedunculopontine nucleus, subcallosal cingulate cortex, subthalamic nucleus, and ventral intermediate nucleus) were superimposed onto probabilistic vascular atlases obtained from 42 healthy individuals. Euclidian distances between targets and associated vessels were measured. To determine the electrical currents necessary to encapsulate the predefined neurosurgical targets and identify potentially side-effect inducing substrates, a preliminary volume of tissue activated (VTA) analysis was performed. RESULTS Six out of ten DBS targets were deemed suitable for endovascular stimulation: medial forebrain bundle (vascular site: P1 segment of posterior cerebral artery), nucleus accumbens (vascular site: A1 segment of anterior cerebral artery), dentatorubrothalamic tract (vascular site: s2 segment of superior cerebellar artery), fornix (vascular site: internal cerebral vein), pedunculopontine nucleus (vascular site: lateral mesencephalic vein), and subcallosal cingulate cortex (vascular site: A2 segment of anterior cerebral artery). While VTAs effectively encapsulated mfb and NA at current thresholds of 3.5 V and 4.5 V respectively, incremental amplitude increases were required to effectively cover fornix, PPN and SCC target (mean voltage: 8.2 ± 4.8 V, range: 3.0-17.0 V). The side-effect profile associated with endovascular stimulation seems to be comparable to conventional lead implantation. Tailoring of targets towards vascular sites, however, may allow to reduce adverse effects, while maintaining the efficacy of neural entrainment within the target tissue. CONCLUSIONS While several challenges remain at present, endovascular stimulation of select DBS targets seems feasible offering novel and exciting opportunities in the neuromodulation armamentarium.
Collapse
|
24
|
Raza SA, Opie NL, Morokoff A, Sharma RP, Mitchell PJ, Oxley TJ. Endovascular Neuromodulation: Safety Profile and Future Directions. Front Neurol 2020; 11:351. [PMID: 32390937 PMCID: PMC7193719 DOI: 10.3389/fneur.2020.00351] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
Endovascular neuromodulation is an emerging technology that represents a synthesis between interventional neurology and neural engineering. The prototypical endovascular neural interface is the StentrodeTM, a stent-electrode array which can be implanted into the superior sagittal sinus via percutaneous catheter venography, and transmits signals through a transvenous lead to a receiver located subcutaneously in the chest. Whilst the StentrodeTM has been conceptually validated in ovine models, questions remain about the long term viability and safety of this device in human recipients. Although technical precedence for venous sinus stenting already exists in the setting of idiopathic intracranial hypertension, long term implantation of a lead within the intracranial veins has never been previously achieved. Contrastingly, transvenous leads have been successfully employed for decades in the setting of implantable cardiac pacemakers and defibrillators. In the current absence of human data on the StentrodeTM, the literature on these structurally comparable devices provides valuable lessons that can be translated to the setting of endovascular neuromodulation. This review will explore this literature in order to understand the potential risks of the StentrodeTM and define avenues where further research and development are necessary in order to optimize this device for human application.
Collapse
Affiliation(s)
- Samad A Raza
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Nicholas L Opie
- Department of Medicine, Vascular Bionics Laboratory, Melbourne Brain Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Morokoff
- Department of Neurosurgery, Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Rahul P Sharma
- Interventional Cardiology, Stanford Health Care, Palo Alto, CA, United States
| | - Peter J Mitchell
- Department of Radiology, The University of Melbourne & The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Thomas J Oxley
- Department of Medicine, Vascular Bionics Laboratory, Melbourne Brain Centre, The University of Melbourne, Melbourne, VIC, Australia.,Departments of Medicine and Neurology, Melbourne Brain Centre at The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia.,Department of Neurosurgery, Mount Sinai Hospital, New York, NY, United States
| |
Collapse
|
25
|
Abstract
Surgery in Parkinson disease is effective for a select group of patients when optimal medical management is not sufficient. Functional neurosurgery can be used as either a salvage therapy in patients with disabling symptoms or to maintain quality of life and independence before progression to severe disability in high-functioning patients. With recent technological advancements in imaging and targeting as well as novel neuromodulation paradigms, there are numerous options for targeted brain lesions and deep brain stimulation. Surgical decision making and postoperative management in Parkinson disease therefore often requires a multidisciplinary team effort with neurology, neurosurgery, neuropsychology, and psychiatry.
Collapse
Affiliation(s)
- Kyle T Mitchell
- Duke University Movement Disorders Center, DUMC 3333, 932 Morreene Road, Durham, NC 27705, USA.
| | - Jill L Ostrem
- UCSF Movement Disorders and Neuromodulation Center, 1635 Divisadero Street Suite 520, Box 1838, San Francisco, CA 94115, USA
| |
Collapse
|
26
|
Principles of Safe Stereotactic Trajectories. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Hamzaoğlu V, Özalp H, Doğu O, Öksüz N, Aydın S, Akbıyık T, Dağtekin A, Avcı E, Bağdatoğlu C. Management of hardware infections in deep-brain stimulation: A 4-year, single-center experience. NEUROL SCI NEUROPHYS 2020. [DOI: 10.4103/nsn.nsn_43_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Yang C, Qiu Y, Wang J, Wu Y, Hu X, Wu X. Intracranial hemorrhage risk factors of deep brain stimulation for Parkinson's disease: a 2-year follow-up study. J Int Med Res 2019; 48:300060519856747. [PMID: 31885350 PMCID: PMC7251548 DOI: 10.1177/0300060519856747] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Objective This study aimed to analyze the risk factors of intracranial hemorrhage (ICH) after deep brain stimulation (DBS) for idiopathic Parkinson’s disease (PD). Methods Patients who received DBS from March 2014 to December 2016 were retrospectively analyzed. The hemorrhage index was derived by combining the hemorrhagic volume and clinical manifestations of ICH. All patients with IHC were followed up for 2 years. Results Computed tomography showed 13 events of ICH in 11 patients (nine cases in the subthalamic nucleus), including eight cases with symptomatic hemorrhage (seven cases in the subthalamic nucleus). Hemorrhage was characterized by intracranial hematoma in the electrode puncture tract. Male sex and hypertension were significant risk factors for ICH. Hemorrhage in the preferred puncture side was significantly higher than that in the non-preferred puncture side. The mean hemorrhage index was 2.23 ± 0.83 in 11 patients, and no permanent neurological impairment was found during the 2-year follow-up. The effect of DBS on motor symptoms was similar in patients with and without ICH. Conclusion Male sex and hypertension are risk factors of ICH after DBS in PD. The risk of hemorrhage on the first puncture site is significantly higher than that on the second puncture site.
Collapse
Affiliation(s)
- Chunhui Yang
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Yiqing Qiu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Jiali Wang
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Yina Wu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Xiaowu Hu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| | - Xi Wu
- Department of Neurosurgery, Changhai Hospital, Shanghai, China
| |
Collapse
|
29
|
Bullard AJ, Hutchison BC, Lee J, Chestek CA, Patil PG. Estimating Risk for Future Intracranial, Fully Implanted, Modular Neuroprosthetic Systems: A Systematic Review of Hardware Complications in Clinical Deep Brain Stimulation and Experimental Human Intracortical Arrays. Neuromodulation 2019; 23:411-426. [DOI: 10.1111/ner.13069] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/05/2019] [Accepted: 09/10/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Autumn J. Bullard
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | | | - Jiseon Lee
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
| | - Cynthia A. Chestek
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Electrical Engineering and Computer Science University of Michigan Ann Arbor MI USA
| | - Parag G. Patil
- Department of Biomedical Engineering University of Michigan Ann Arbor MI USA
- Department of Neurosurgery University of Michigan Medical School Ann Arbor MI USA
| |
Collapse
|
30
|
Fernandez-Garcia C, Alonso-Frech F, Monje MHG, Matias-Guiu J. Role of deep brain stimulation therapy in the magnetic resonance-guided high-frequency focused ultrasound era: current situation and future prospects. Expert Rev Neurother 2019; 20:7-21. [PMID: 31623494 DOI: 10.1080/14737175.2020.1677465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Deep brain stimulation (DBS) is a well-established treatment of movement disorders; but recently there has been an increasing trend toward the ablative procedure magnetic resonance-guided focused ultrasound (MRgFU). DBS is an efficient neuromodulatory technique but associated with surgical complications. MRIgFUS is an incision-free method that allows thermal lesioning, with fewer surgical complications but irreversible effects.Areas covered: We look at current and prospective aspects of both techniques. In DBS, appropriate patient selection, improvement in surgical expertise, target accuracy (preoperative and intraoperative imaging), neurophysiological recordings, and novel segmented leads need to be considered. However, increased number of older patients with higher comorbidities and risk of DBS complications (mainly intracranial hemorrhage, but also infections, hardware complications) make them not eligible for surgery. With MRgFUS, hemorrhage risks are virtually nonexistent, infection or hardware malfunction are eliminated, while irreversible side effects can appear.Expert commentary: Comparison of the efficacy and risks associated with these techniques, in combination with a growing aged population in developed countries with higher comorbidities and a preference for less invasive treatments, necessitates a review of the indications for movement disorders and the most appropriate treatment modalities.
Collapse
Affiliation(s)
- C Fernandez-Garcia
- Department of Neurosurgery, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Madrid, Spain.,Medicine Department, Universidad Complutense, Madrid, Spain
| | - F Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain.,HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - M H G Monje
- HM CINAC, Hospital Universitario HM Puerta del Sur, Universidad CEU-San Pablo, Móstoles, Madrid, Spain
| | - J Matias-Guiu
- Medicine Department, Universidad Complutense, Madrid, Spain.,Department of Neurology, Hospital Clínico San Carlos, San Carlos Research Health Institute (IdISSC), Universidad Complutense, Madrid, Spain
| |
Collapse
|
31
|
Ray K, Krel M, Bernstein J, Kashyap S, Ananda A. Safety of the transventricular approach to deep brain stimulation: A retrospective review. Surg Neurol Int 2019; 10:192. [PMID: 31637093 PMCID: PMC6800288 DOI: 10.25259/sni_244_2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/17/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Anatomically, deep brain stimulation (DBS) targets such as the ventral intermediate and subthalamic nucleus are positioned such that the long axis of the nucleus is often most accessible through a transventricular trajectory. We hypothesize that using this trajectory does not place patients at increased risk of neurologic complications. Methods: A series of 206 patients at a single institution between 2000 and 2017 were reviewed. All patients had a confirmed transventricular trajectory and their clinical course was reviewed to assess neurologic complication rates in the postoperative period. Results: The average length of hospital stay was 2.4 days. The most common neurologic complication was altered mental status in 1.2% of cases (four patients). This was followed by seizure in 0.6% of cases (two patients). No patients had ischemic stroke or postoperative hemiparesis. There were two mortalities in this series, one with lobar hemorrhage contralateral from the surgical site and one with a thalamic hemorrhage. There was only one confirmed intraventricular hemorrhage postoperatively; however, this was clinically asymptomatic. Conclusion: Although the total incidence of intraventricular or intracerebral hemorrhage cannot be reliably assessed from this data set, the low incidence of neurologic complications challenges the notion that DBS electrode trajectories that transgress the ventricle significantly increase the risk of complications.
Collapse
Affiliation(s)
- Kevin Ray
- Department of Neurosurgery, Riverside University Health System, Riverside, California, United States
| | - Mark Krel
- Department of Neurosurgery, Riverside University Health System, Riverside, California, United States
| | - Jacob Bernstein
- Department of Neurosurgery, Riverside University Health System, Riverside, California, United States
| | - Samir Kashyap
- Department of Neurosurgery, Riverside University Health System, Riverside, California, United States
| | - Ajay Ananda
- Department of Neurosurgery, Riverside University Health System, Riverside, California, United States
| |
Collapse
|
32
|
Intraoperative microelectrode recording in Parkinson's disease subthalamic deep brain stimulation: Analysis of clinical utility. J Clin Neurosci 2019; 69:104-108. [PMID: 31416732 DOI: 10.1016/j.jocn.2019.08.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/04/2019] [Indexed: 11/21/2022]
Abstract
This retrospective study aims to explore the clinical utility of microelectrode recording (MER) during subthalamic deep brain stimulation (DBS) surgery in patients with Parkinson's disease (PD). We analyzed the data from 103 PD patients, who consecutively received bilateral subthalamic nucleus (STN) DBS at an experienced academic medical center. We collected demographic, clinical, and DBS related data, including intraoperative microelectrode recording data, electrode positioning, and clinical effects provided by intraoperative microstimulation. The 2 brain sides were independently analyzed and are described as first and second side (to be operated on); the first side is contralateral to motor symptoms onset. Patients were mostly men (64.1%). In both sides of the brain, percentage of agreement with the electrode final position was higher with clinical results than with intraoperative microelectrode recordings (98% vs 57% on the first implantation side, and 97% vs 58% on the second implantation side, respectively). Regarding electrode final implantation depth, 86% of electrodes were implanted between 0 mm and +2 mm in relation to anatomical target, and 95% of electrodes were implanted from -2 mm to +2 mm. Our study suggests that MER might not be necessary to achieve good clinical outcomes in PD patients undergoing STN DBS. These results support and inform the design of future prospective controlled research studies.
Collapse
|
33
|
Early detection of cerebral ischemic events on intraoperative magnetic resonance imaging during surgical procedures for deep brain stimulation. Acta Neurochir (Wien) 2019; 161:1545-1558. [PMID: 31053908 DOI: 10.1007/s00701-019-03929-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Although intracerebral hemorrhage is the most feared complication of deep brain stimulation (DBS) surgery, cerebral ischemic events in association with DBS surgery have only rarely been described. We therefore evaluated the role of intraoperative MRI (iMRI) for early identification of cerebral ischemic events during DBS procedures and determined how ischemic infarctions affect patients over acute and long-term periods. METHODS Between January 2010 and December 2017, 1160 DBS electrodes were implanted in 595 patients at Chinese People's Liberation Army General Hospital, with the help of iMRI. The iMRI was performed in all patients after implantation, to define the accuracy of lead placement and detect complications. A CT scan was performed on postoperative days 1 to 7. RESULTS The iMRI showed that cerebral ischemic changes happened in nine (1.51% of patients, 0.78% of leads) patients. Only two (0.34%) of nine patients had an ischemic infarction in the basal ganglia, while seven (1.18%) had cortical ischemia. Six (67%) of the nine patients had long-term complications, two with mild hemiparesis, two with seizures, one with language dysfunction, and one with memory loss. Of those with a cortical ischemic infarction, only three (42.86%) of seven patients had no long-term complications. Long-term follow-up imaging showed that not all the patients recovered normal morphological structure in the area of ischemic foci. The factors of sex, age, target, and anesthesia were not related to ischemic events. In six (66.7%) cases, the entry point on the cortex or the path was not ideal. CONCLUSIONS Intraoperative ischemic events are not uncommon in DBS surgery. Ischemia can cause serious permanent complications, and regions subject to severe ischemia cannot be restored; it is therefore necessary to pay careful attention to any signs of ischemia. iMRI objectively provides the basis for early diagnosis of intraoperative ischemic infarction, providing guidance for follow-up treatment. The deviation in the entry point on the cortex or in the path resulted in vascular injury; it may be the key cause of ischemic events during DBS procedures.
Collapse
|
34
|
Cui ZQ, Song HF, Zhang XF, Pan LS, Mao ZQ, Xu X, Liang SL, Yu XG, Ling ZP. Intracerebral Hemorrhage and Venous Infarction after Deep Brain Stimulation Lead Placement. Chin Med J (Engl) 2019; 131:2232-2234. [PMID: 30203800 PMCID: PMC6144835 DOI: 10.4103/0366-6999.240809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Affiliation(s)
- Zhi-Qiang Cui
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Hui-Fang Song
- Department of Neurology, Beijing Sport University Hospital, Beijing 100084, China
| | - Xiu-Feng Zhang
- Department of Neurosurgery, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030012, China
| | - Long-Sheng Pan
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Zhi-Qi Mao
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Xin Xu
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Shu-Li Liang
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Xin-Guang Yu
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| | - Zhi-Pei Ling
- Department of Neurosurgery, People's Liberation Army General Hospital, People's Liberation Army Postgraduate Medical School, Beijing 100853, China
| |
Collapse
|
35
|
Zekaj E, Saleh C, Servello D. Hydrocephalus after Deep Brain Stimulation for Parkinson's Disease. Asian J Neurosurg 2019; 14:538-540. [PMID: 31143277 PMCID: PMC6516014 DOI: 10.4103/ajns.ajns_136_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A fearsome complication of deep brain stimulation (DBS) constitutes intracranial hemorrhage. Incidence rates vary between 0.5% and 5%, with 1.1% of cases resulting in permanent deficit or death. Intracranial hemorrhage can present asymptomatically or result in fatal outcome. A rare complication in this setting is acute hydrocephalus due to obstruction of the cerebrospinal fluid flow. This complication might have catastrophic consequences resulting in death in a few hours if not an external ventricular drainage promptly is placed. We report a patient with acute hydrocephalus due to intraventricular hemorrhage after the DBS procedure. Patients should be warned of this complication when informed consent is obtained.
Collapse
Affiliation(s)
- Edvin Zekaj
- Department of Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Christian Saleh
- Department of Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Domenico Servello
- Department of Neurosurgery, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
36
|
Wang YC, Grewal SS, Middlebrooks EH, Worrell GA, Stead M, Lundstrom BN, Britton JW, Wu MH, Van Gompel JJ. Targeting analysis of a novel parietal approach for deep brain stimulation of the anterior nucleus of the thalamus for epilepsy. Epilepsy Res 2019; 153:1-6. [PMID: 30913474 DOI: 10.1016/j.eplepsyres.2019.03.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 02/02/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
Abstract
PURPOSE Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a promising treatment for refractory epilepsy; however, it remains challenging to successfully target the ANT. The results of Medtronic Registry for Epilepsy (MORE) supported a frontal transventricular(TV) compared to frontal extraventricular (EV) lead trajectory for ANT DBS may have better coverage of the ANT. Here we report the safety and targeting efficacy of a novel, posterior parietal extraventricular (PEV) approach to the ANT. METHODS We conducted a retrospective analysis of ten patients who underwent bilateral ANT DBS (20 total trajectories) for medically-refractory epilepsy. Similar targeting methodology as the MORE trial was used, and the DBS Intrinsic Template Atlas (DISTAL) was utilized for ANT localization and contact position relative to ANT. Clinical data were assessed for DBS targeting efficacy and surgical complications. RESULTS The demonstrated PEV trajectory showed a successful ANT targeting rate of 90% bilaterally. Two or more contacts within ANT were presented in 75% of all leads. Mean contact number in ANT was 2.2+ 1.2. There were no intracranial hemorrhages, cerebrospinal fluid leakage, or permanent neurologic deficits. CONCLUSION In this small series, the novel PEV for ANT DBS is feasible with good targeting accuracy and potential safety advantages. The high accuracy of the PEV trajectory suggests that it is a reasonable alternative trajectory for ANT DBS. Larger studies will be needed to assess this trajectory on clinical outcome of DBS treatment to epilepsy.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Department of Neurosurgery, Chang Gung Memorial Hospital in Linkou, Chang Gung University, Taiwan; Program of Biomedical Engineering, Graduate Institute of Biomedical Engineering, Chang Gung University, Taiwan
| | | | - Erik H Middlebrooks
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA; Department of Radiology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Matt Stead
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Min-Hsien Wu
- Program of Biomedical Engineering, Graduate Institute of Biomedical Engineering, Chang Gung University, Taiwan
| | | |
Collapse
|
37
|
Sobstyl M, Aleksandrowicz M, Ząbek M, Pasterski T. Hemorrhagic complications seen on immediate intraprocedural stereotactic computed tomography imaging during deep brain stimulation implantation. J Neurol Sci 2019; 400:97-103. [PMID: 30909114 DOI: 10.1016/j.jns.2019.01.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/08/2018] [Accepted: 01/21/2019] [Indexed: 11/15/2022]
Abstract
BACKGROUND We present our operative experience of patients with movement disorders who developed intracerebral hemorrhage (ICH), which was identified on intraprocedural stereotactic computed tomography (CT) imaging performed immediately after deep brain stimulation (DBS) lead placement and prior to the implantation of further components of the DBS hardware. METHODS Patients who underwent DBS lead implantation from January 2009 through December 2017 were included in the present study. Most of the surgeries were performed in a staged fashion. All patients were operated using identical surgical and intraprocedural imaging techniques, and no microelectrode recordings were done. Leksell Stereotactic G frame and neuronavigation software was utilized for all surgeries. Intraprocedural stereotactic CT was performed to confirm the precise position of the implanted DBS lead and to rule out any hemorrhagic complications. RESULTS Overall, 222 patients underwent 322 DBS lead implantations during 316 stereotactic procedures. Six patients exhibited early ICH recognized on intraprocedural stereotactic CT performed immediately after DBS lead placement; in addition, two patients developed delayed ICH due to large venous infarction. Four patients with ICH were asymptomatic. The ICH rate was 2.5% per electrode and 3.6% per patient; the permanent deficit rate was 1.2% per electrode and 1.8% per patient. The death rate due to ICH in our cohort was 0.6% per electrode and 0.9% per patient. CONCLUSIONS Intraprocedural stereotactic CT can not only visualize the implanted DBS lead in the stereotactic space but also rule out early ICH. Identified predisposing factors for development of ICH include patient's age, hypertension, and previous antiplatelet therapy. Careful planning of stereotactic trajectories plays a paramount role in reducing the rate of ICH in DBS surgery.
Collapse
Affiliation(s)
- Michał Sobstyl
- Department of Neurosurgery, Institute of Psychiatry and Neurology, Sobieskiego 9 Street, 02-957 Warsaw, Poland.
| | - Marta Aleksandrowicz
- Department of Neurosurgery, Bródno Mazovia Hospital, Warsaw, Poland, Kondratowicza 8 Street, 03-242 Warsaw, Poland
| | - Mirosław Ząbek
- Department of Neurosurgery, Bródno Mazovia Hospital, Warsaw, Poland, Kondratowicza 8 Street, 03-242 Warsaw, Poland
| | - Tomasz Pasterski
- Department of Neurosurgery, Bródno Mazovia Hospital, Warsaw, Poland, Kondratowicza 8 Street, 03-242 Warsaw, Poland
| |
Collapse
|
38
|
Focal stimulation of the sheep motor cortex with a chronically implanted minimally invasive electrode array mounted on an endovascular stent. Nat Biomed Eng 2018; 2:907-914. [DOI: 10.1038/s41551-018-0321-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
|
39
|
Xu C, Mao G, Williamson R, Whiting D. Delayed intracerebral hemorrhage: A rare complication of deep brain stimulation surgery. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2018. [DOI: 10.1016/j.inat.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Krauss P, Marahori NA, Oertel MF, Barth F, Stieglitz LH. Better Hemodynamics and Less Antihypertensive Medication: Comparison of Scalp Block and Local Infiltration Anesthesia for Skull-Pin Placement in Awake Deep Brain Stimulation Surgery. World Neurosurg 2018; 120:e991-e999. [DOI: 10.1016/j.wneu.2018.08.210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 11/26/2022]
|
41
|
Ramakonar H, Quirk BC, Kirk RW, Li J, Jacques A, Lind CRP, McLaughlin RA. Intraoperative detection of blood vessels with an imaging needle during neurosurgery in humans. SCIENCE ADVANCES 2018; 4:eaav4992. [PMID: 30585293 PMCID: PMC6300404 DOI: 10.1126/sciadv.aav4992] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/20/2018] [Indexed: 05/05/2023]
Abstract
Intracranial hemorrhage can be a devastating complication associated with needle biopsies of the brain. Hemorrhage can occur to vessels located adjacent to the biopsy needle as tissue is aspirated into the needle and removed. No intraoperative technology exists to reliably identify blood vessels that are at risk of damage. To address this problem, we developed an "imaging needle" that can visualize nearby blood vessels in real time. The imaging needle contains a miniaturized optical coherence tomography probe that allows differentiation of blood flow and tissue. In 11 patients, we were able to intraoperatively detect blood vessels (diameter, >500 μm) with a sensitivity of 91.2% and a specificity of 97.7%. This is the first reported use of an optical coherence tomography needle probe in human brain in vivo. These results suggest that imaging needles may serve as a valuable tool in a range of neurosurgical needle interventions.
Collapse
Affiliation(s)
- Hari Ramakonar
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
| | - Bryden C. Quirk
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Rodney W. Kirk
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Jiawen Li
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
| | - Angela Jacques
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Institute for Health Research, University of Notre Dame, Fremantle, Western Australia, Australia
| | - Christopher R. P. Lind
- Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Surgery, University of Western Australia, Crawley, Western Australia, Australia
| | - Robert A. McLaughlin
- ARC Centre of Excellence for Nanoscale Biophotonics, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- Institute for Photonics and Advanced Sensing, University of Adelaide, Adelaide, South Australia, Australia
- Corresponding author.
| |
Collapse
|
42
|
de Quintana-Schmidt C, Leidinger A, Teixidó JM, Bertrán GC. Application of a Thrombin-Gelatin Matrix in the Management of Intractable Hemorrhage During Stereotactic Biopsy. World Neurosurg 2018; 121:180-185. [PMID: 30326309 DOI: 10.1016/j.wneu.2018.10.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Few studies have been published about percutaneous techniques for management of surgical bed hemorrhage during a stereotactic biopsy, a serious complication that may affect patient outcome. We describe the injection of a thrombin-gelatin matrix through the biopsy cannula as an effective method to arrest surgical bed bleeding that does not respond to conventional methods of hemostasis. METHODS We prospectively documented image-guided stereotactic brain biopsy procedures in 30 awake patients between July 2014 and July 2017 at our center. Among patients presenting with intractable surgical bed bleeding, a thrombin-gelatin matrix injection through the biopsy cannula was performed. Details of the injection technique, surgical outcome, and complications were recorded. RESULTS Among 30 documented stereotactic brain biopsies, 3 (10%) had intractable surgical bed bleeding during the procedure. In all 3 cases, thrombin-gelatin matrix was injected, and an immediate arrest of hemorrhage was achieved. None of the patients required a craniotomy or further invasive measure to achieve hemostasis. No postoperative complications were recorded. CONCLUSIONS Our preliminary results suggest that thrombin-gelatin matrix injection is a simple, safe, and effective stereotactic practice to manage persistent surgical bed bleeding that cannot be arrested by standard, conventional hemostatic methods.
Collapse
Affiliation(s)
| | - Andreas Leidinger
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Joan Molet Teixidó
- Department of Neurosurgery, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | | |
Collapse
|
43
|
Bus S, Pal G, Ouyang B, van den Munckhof P, Bot M, Sani S, Verhagen Metman L. Accuracy of Microelectrode Trajectory Adjustments during DBS Assessed by Intraoperative CT. Stereotact Funct Neurosurg 2018; 96:231-238. [PMID: 30145596 DOI: 10.1159/000489945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Microelectrode recording (MER)-guided deep brain stimulation (DBS) aims to place the DBS lead in the optimal electrophysiological target. When single-track MER or test stimulation yields suboptimal results, trajectory adjustments are made. The accuracy of these trajectory adjustments is unknown. Intraoperative computed tomography can visualize the microelectrode (ME) and verify ME adjustments. We aimed to determine the accuracy of ME movements in patients undergoing MER-guided DBS. METHODS Coordinates following three methods of adjustment were compared: (1) those within the default "+" configuration of the ME holder; (2) those involving rotation of the default "+" to the "x" configuration; and (3) those involving head stage adjustments. Radial error and absolute differences between coordinates were determined. RESULTS 87 ME movements in 59 patients were analyzed. Median (IQR) radial error was 0.59 (0.64) mm. Median (IQR) absolute x and y coordinate errors were 0.29 (0.52) and 0.38 (0.44) mm, respectively. Errors were largest after rotating the multielectrode holder to its "x"-shaped setup. CONCLUSION ME trajectory adjustments can be made accurately. In a considerable number of cases, errors exceeding 1 mm were found. Adjustments from the "+" setup to the "x" setup are most prone to inaccuracies.
Collapse
Affiliation(s)
- Sander Bus
- Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gian Pal
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | | | - Maarten Bot
- Department of Neurosurgery, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Leo Verhagen Metman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
44
|
Krüger MT, Coenen VA, Jenkner C, Urbach H, Egger K, Reinacher PC. Combination of CT angiography and MRI in surgical planning of deep brain stimulation. Neuroradiology 2018; 60:1151-1158. [DOI: 10.1007/s00234-018-2079-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
|
45
|
Towards unambiguous reporting of complications related to deep brain stimulation surgery: A retrospective single-center analysis and systematic review of the literature. PLoS One 2018; 13:e0198529. [PMID: 30071021 PMCID: PMC6071984 DOI: 10.1371/journal.pone.0198529] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 05/21/2018] [Indexed: 02/04/2023] Open
Abstract
Background and objective To determine rates of adverse events (AEs) related to deep brain stimulation (DBS) surgery or implanted devices from a large series from a single institution. Sound comparisons with the literature require the definition of unambiguous categories, since there is no consensus on the reporting of such AEs. Patients and methods 123 consecutive patients (median age 63 yrs; female 45.5%) treated with DBS in the subthalamic nucleus (78 patients), ventrolateral thalamus (24), internal pallidum (20), and centre médian-parafascicular nucleus (1) were analyzed retrospectively. Both mean and median follow-up time was 4.7 years (578 patient-years). AEs were assessed according to three unambiguous categories: (i) hemorrhages including other intracranial complications because these might lead to neurological deficits or death, (ii) infections and similar AEs necessitating the explantation of hardware components as this results in the interruption of DBS therapy, and (iii) lead revisions for various reasons since this involves an additional intracranial procedure. For a systematic review of the literature AE rates were calculated based on primary data presented in 103 publications. Heterogeneity between studies was assessed with the I2 statistic and analyzed further by a random effects meta-regression. Publication bias was analyzed with funnel plots. Results Surgery- or hardware-related AEs (23) affected 18 of 123 patients (14.6%) and resolved without permanent sequelae in all instances. In 2 patients (1.6%), small hemorrhages in the striatum were associated with transient neurological deficits. In 4 patients (3.3%; 0.7% per patient-year) impulse generators were removed due to infection. In 2 patients electrodes were revised (1.6%; 0.3% per patient-year). There was no lead migration or surgical revision because of lead misplacement. Age was not statistically significant different (p>0.05) between patients affected by AEs or not. AE rates did not decline over time and similar incidences were found among all patients (423) implanted with DBS systems at our institution until December 2016. A systematic literature review revealed that exact AE rates could not be determined from many studies, which could not be attributed to study designs. Average rates for intracranial complications were 3.8% among studies (per-study analysis) and 3.4% for pooled analysis of patients from different studies (per-patient analysis). Annual hardware removal rates were 3.6 and 2.4% for per-study and per-patient analysis, respectively, and lead revision rates were 4.1 and 2.6%, respectively. There was significant heterogeneity between studies (I2 ranged between 77% and 91% for the three categories; p< 0.0001). For hardware removal heterogeneity (I2 = 87.4%) was reduced by taking study size (p< 0.0001) and publication year (p< 0.01) into account, although a significant degree of heterogeneity remained (I2 = 80.0%; p< 0.0001). Based on comparisons with health care-related databases there appears to be publication bias with lower rates for hardware-related AEs in published patient cohorts. Conclusions The proposed categories are suited for an unequivocal assessment of AEs even in a retrospective manner and useful for benchmarking. AE rates in the present cohorts from our institution compare favorable with the literature.
Collapse
|
46
|
Bittlinger M, Müller S. Opening the debate on deep brain stimulation for Alzheimer disease - a critical evaluation of rationale, shortcomings, and ethical justification. BMC Med Ethics 2018; 19:41. [PMID: 29886845 PMCID: PMC5994654 DOI: 10.1186/s12910-018-0275-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 05/01/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Deep brain stimulation (DBS) as investigational intervention for symptomatic relief from Alzheimer disease (AD) has generated big expectations. Our aim is to discuss the ethical justification of this research agenda by examining the underlying research rationale as well as potential methodological pitfalls. The shortcomings we address are of high ethical importance because only scientifically valid research has the potential to be ethical. METHOD We performed a systematic search on MEDLINE and EMBASE. We included 166 publications about DBS for AD into the analysis of research rationale, risks and ethical aspects. Fifty-eight patients were reported in peer-reviewed journals with very mixed results. A grey literature search revealed hints for 75 yet to be published, potentially enrolled patients. RESULTS The results of our systematic review indicate methodological shortcomings in the literature that are both scientific and ethical in nature. According to our analysis, research with human subjects was performed before decisive preclinical research was published examining the specific research question at stake. We also raise the concern that conclusions on the potential safety and efficacy have been reported in the literature that seem premature given the design of the feasibility studies from which they were drawn. In addition, some publications report that DBS for AD was performed without written informed consent from some patients, but from surrogates only. Furthermore, registered ongoing trials plan to enroll severely demented patients. We provide reasons that this would violate Art. 28 of the Declaration of Helsinki, because DBS for AD involves more than minimal risks and burdens, and because its efficacy and safety are not yet empirically established to be likely. CONCLUSION Based on our empirical analysis, we argue that clinical research on interventions of risk class III (Food and Drug Administration and European Medicines Agency) should not be exploratory but grounded on sound, preclinically tested, and disease-specific a posteriori hypotheses. This also applies to DBS for dementia as long as therapeutic benefits are uncertain, and especially when research subjects with cognitive deficits are involved, who may foreseeably progress to full incapacity to provide informed consent during the required follow-up period.
Collapse
Affiliation(s)
- Merlin Bittlinger
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Psychiatry and Psychotherapy, CCM, Division of Mind and Brain Research, Charitéplatz 1, 10117 Berlin, Germany
| | - Sabine Müller
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department for Psychiatry and Psychotherapy, CCM, Division of Mind and Brain Research, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
47
|
Bjerknes S, Toft M, Konglund AE, Pham U, Waage TR, Pedersen L, Skjelland M, Haraldsen I, Andersson S, Dietrichs E, Skogseid IM. Multiple Microelectrode Recordings in STN-DBS Surgery for Parkinson's Disease: A Randomized Study. Mov Disord Clin Pract 2018; 5:296-305. [PMID: 30009214 PMCID: PMC6033169 DOI: 10.1002/mdc3.12621] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 03/20/2018] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
Background Subthalamic nucleus deep brain stimulation improves motor symptoms and fluctuations in advanced Parkinson's disease, but the degree of clinical improvement depends on accurate anatomical electrode placement. Methods used to localize the sensory‐motor part of the nucleus vary substantially. Using microelectrode recordings, at least three inserted microelectrodes are needed to obtain a three‐dimensional map. Therefore, multiple simultaneously inserted microelectrodes should provide better guidance than single sequential microelectrodes. We aimed to compare the use of multiple simultaneous versus single sequential microelectrode recordings on efficacy and safety of subthalamic nucleus stimulation. Methods Sixty patients were included in this double‐blind, randomized study, 30 in each group. Primary outcome measures were the difference from baseline to 12 months in the MDS‐UPDRS motor score (part III) in the off‐medication state and quality of life using the Parkinson's Disease Questionnaire‐39 (PDQ‐39) scores. Results The mean reduction of the MDS‐UPDRS III off score was 35 (SD 12) in the group investigated with multiple simultaneous microelectrodes compared to 26 (SD 10) in the single sequential microelectrode group (p = 0.004). The PDQ‐39 Summary Index did not differ between the groups, but the domain scores activities of daily living and bodily discomfort improved significantly more in the multiple microelectrodes group. The frequency of serious adverse events did not differ significantly. Conclusions After 12 months of subthalamic nucleus stimulation, the multiple microelectrodes group had a significantly greater improvement both in MDS‐UPDRS III off score and in two PDQ‐39 domains. Our results may support the use of multiple simultaneous microelectrode recordings. Trial registration http://ClinicalTrials.gov Identifier: NCT00855621 (first received March 3, 2009).
Collapse
Affiliation(s)
- Silje Bjerknes
- Department of Neurology Oslo University Hospital Oslo Norway.,Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Mathias Toft
- Department of Neurology Oslo University Hospital Oslo Norway.,Institute of Clinical Medicine University of Oslo Oslo Norway
| | - Ane E Konglund
- Department of Neurosurgery Oslo University Hospital Oslo Norway
| | - Uyen Pham
- Department of Neuropsychiatry and Psychosomatic Medicine Oslo University Hospital Oslo Norway
| | | | - Lena Pedersen
- Department of Neurology Oslo University Hospital Oslo Norway
| | - Mona Skjelland
- Department of Neurology Oslo University Hospital Oslo Norway
| | - Ira Haraldsen
- Department of Neuropsychiatry and Psychosomatic Medicine Oslo University Hospital Oslo Norway
| | | | - Espen Dietrichs
- Department of Neurology Oslo University Hospital Oslo Norway.,Institute of Clinical Medicine University of Oslo Oslo Norway
| | | |
Collapse
|
48
|
Son BC, Choi JG, Ha SW. Cerebrospinal Fluid Egress from the Quadripolar Deep Brain Stimulation Electrode for Anterior Nucleus of the Thalamus for Refractory Epilepsy. Asian J Neurosurg 2018; 13:407-410. [PMID: 29682045 PMCID: PMC5898116 DOI: 10.4103/ajns.ajns_148_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is an effective treatment for refractory epilepsy. Due to the unique location of ANT in the thalamus facing the lateral and third ventricles, transventricular DBS lead placement is an essential part of ANT DBS. However, there is no report regarding hardware problems including impedance variability in transventricular ANT DBS due to limited experience. A 45-year-old male patient with previously effective, bilateral ANT DBS presented with increasing seizure frequency and a shortened battery longevity within 2 years. Magnetic resonance imaging showed that the left-sided DBS lead was in the third ventricle leaning on the medial wall of ANT. Electrode revision was performed. Upon disconnecting the proximal lead from the extension connection, cerebrospinal fluid egress through fine gaps between the metallic electrode contacts, and electrode spacing was observed. This case raises a concern about the transventricular approach for ANT lead placement because the currently available DBS electrode lead is not waterproofed. A careful, longitudinal follow-up of DBS impedance for ANT DBS is warranted.
Collapse
Affiliation(s)
- Byung-Chul Son
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.,Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Gyu Choi
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Woo Ha
- Department of Neurosurgery, Chosun University Hospital, College of Medicine, Chosun University, Gwangju, Republic of Korea
| |
Collapse
|
49
|
Liu X, Zhang J, Fu K, Gong R, Chen J, Zhang J. Microelectrode Recording–Guided Versus Intraoperative Magnetic Resonance Imaging–Guided Subthalamic Nucleus Deep Brain Stimulation Surgery for Parkinson Disease: A 1-Year Follow-Up Study. World Neurosurg 2017; 107:900-905. [DOI: 10.1016/j.wneu.2017.08.077] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 11/29/2022]
|
50
|
Martin AJ, Starr PA, Ostrem JL, Larson PS. Hemorrhage Detection and Incidence during Magnetic Resonance-Guided Deep Brain Stimulator Implantations. Stereotact Funct Neurosurg 2017; 95:307-314. [DOI: 10.1159/000479287] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 07/05/2017] [Indexed: 11/19/2022]
|