1
|
Lee SH, Kim TG, Ryu KH, Kim SH, Kim YZ. CDKN2A Homozygous Deletion Is a Stronger Predictor of Outcome than IDH1/2-Mutation in CNS WHO Grade 4 Gliomas. Biomedicines 2024; 12:2256. [PMID: 39457569 PMCID: PMC11505494 DOI: 10.3390/biomedicines12102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024] Open
Abstract
Background: We primarily investigated the prognostic role of CDKN2A homozygous deletion in CNS WHO grade 4 gliomas. Additionally, we plan to examine traditional prognostic factors for grade 4 gliomas and validate the findings. Materials: We conducted a retrospective analysis of the glioma cohorts at our institute. We reviewed medical records spanning a 15-year period and examined pathological slides for an updated diagnosis according to the 2021 WHO classification of CNS tumors. We examined the IDH1/2 mutation and CDKN2A deletion using NGS analysis with ONCOaccuPanel®. Further, we examined traditional prognostic factors, including age, WHO performance status, extent of resection, and MGMT promoter methylation status. Results: The mean follow-up duration was 27.5 months (range: 4.1-43.5 months) and mean overall survival (OS) was 20.7 months (SD, ±1.759). After the exclusion of six patients with a poor status of pathologic samples, a total of 136 glioblastoma cases diagnosed by previous WHO classification criteria were newly classified into 29 (21.3%) astrocytoma, IDH-mutant, and CNS WHO grade 4 cases, and 107 (78.7%) glioblastoma, IDH-wildtype, and CNS WHO grade 4 cases. Among them, 61 (56.0%) had CDKN2A deletions. The high-risk group with CDKN2A deletion regardless of IDH1/2 mutation had a mean OS of 16.65 months (SD, ±1.554), the intermediate-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 21.85 months (SD, ±2.082), and the low-risk group without CDKN2A deletion and with IDH1/2 mutation had a mean OS of 33.38 months (SD, ±2.946). Multifactor analysis showed that age (≥50 years vs. <50 years; HR 4.645), WHO performance (0, 1 vs. 2; HR 5.002), extent of resection (gross total resection vs. others; HR 5.528), MGMT promoter methylation, (methylated vs. unmethylated; HR 5.078), IDH1/2 mutation (mutant vs. wildtype; HR 6.352), and CDKN2A deletion (absence vs. presence; HR 13.454) were associated with OS independently. Conclusions: The present study suggests that CDKN2A deletion plays a powerful prognostic role in CNS WHO grade 4 gliomas. Even if CNS WHO grade 4 gliomas have mutant IDH1/2, they may have poor clinical outcomes because of CDKN2A deletion.
Collapse
Affiliation(s)
- Sang Hyuk Lee
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Tae Gyu Kim
- Department of Radiation Oncology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Kyeong Hwa Ryu
- Department of Radiology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Seok Hyun Kim
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| | - Young Zoon Kim
- Division of Neuro Oncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea;
| |
Collapse
|
2
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
3
|
Díaz Méndez AB, Tremante E, Regazzo G, Brandner S, Rizzo MG. Time to focus on circulating nucleic acids for diagnosis and monitoring of gliomas: A systematic review of their role as biomarkers. Neuropathol Appl Neurobiol 2021; 47:471-487. [PMID: 33403678 DOI: 10.1111/nan.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/30/2022]
Abstract
Gliomas are diffusely growing tumours arising from progenitors within the central nervous system. They encompass a range of different molecular types and subtypes, many of which have a well-defined profile of driver mutations, copy number changes and DNA methylation patterns. A majority of gliomas will require surgical intervention to relieve raised intracranial pressure and reduce tumour burden. A proportion of tumours, however, are located in neurologically sensitive areas and a biopsy poses a significant risk of a deficit. A majority of gliomas recur after surgery, and monitoring tumour burden of the recurrence is currently achieved by imaging. However, most imaging modalities have limitations in assessing tumour burden and infiltration into adjacent brain, and sometimes imaging is unable to discriminate between tumour recurrence and pseudo-progression. Liquid biopsies, obtained from body fluids such as cerebrospinal fluid or blood, contain circulating nucleic acids or extracellular vesicles containing tumour-derived components. The studies for this systematic review were selected according to PRISMA criteria, and suggest that the detection of circulating tumour-derived nucleic acids holds great promises as biomarker to aid diagnosis and prognostication by monitoring tumour progression, and thus can be considered a pathway towards personalized medicine.
Collapse
Affiliation(s)
- Ana Belén Díaz Méndez
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Elisa Tremante
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Maria G Rizzo
- Department of Research, Advanced Diagnostics and Technological Innovation, Genomic and Epigenetic Unit, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
4
|
Kang Y, Lin X, Kang D. Diagnostic value of circulating tumor DNA in molecular characterization of glioma: A meta-analysis. Medicine (Baltimore) 2020; 99:e21196. [PMID: 32871983 PMCID: PMC7437834 DOI: 10.1097/md.0000000000021196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/11/2020] [Accepted: 06/08/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Circulating tumor DNA (ctDNA) has provided a minimally invasive approach for the detection of genetic mutations in glioma. However, the diagnostic value of ctDNA in glioma remains unclear. This meta-analysis was designed to investigate the diagnostic value of ctDNA, compared with the current "criterion standard" tumor tissues. MATERIALS AND METHODS The included studies were collected by searching PubMed, Web of Science, Cochrane Library, and Embase databases. All statistical analyses were performed using the STATA12.0 and Meta-DiSc1.4 software. RESULT A total of 11 studies comprising 522 glioma patients met our inclusion criteria. The pooled sensitivity and specificity were 0.69 (95% confidence interval [CI] 0.66-0.73) and 0.98 (95% CI 0.96-0.99), respectively. The pooled diagnostic odds ratio was 23.27 (95% CI 13.69-39.53) and the area under the curve of the summary receiver operating characteristics curve was 0.90 (95% CI 0.89-0.92). CONCLUSIONS ctDNA analysis is an effective method to detect the genetic mutation status in glioma patients with high specificity and relatively moderate sensitivity. The application of high-throughput technologies, the detection of patients with high-grade glioma, and sampling from cerebrospinal fluid could have higher diagnostic accuracy. The improvement of detection methods and more large-sample case-control studies are required in the future.
Collapse
Affiliation(s)
| | - Xiaohua Lin
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | | |
Collapse
|
5
|
Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet 2020; 11:844. [PMID: 32849827 PMCID: PMC7431953 DOI: 10.3389/fgene.2020.00844] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/13/2020] [Indexed: 12/20/2022] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) are a mixture of single- or double-stranded nucleic acids, released into the blood plasma/serum by different tissues via apoptosis, necrosis, and secretions. Under healthy conditions, ccfNAs originate from the hematopoietic system, whereas under various clinical scenarios, the concomitant tissues release ccfNAs into the bloodstream. These ccfNAs include DNA, RNA, microRNA (miRNA), long non-coding RNA (lncRNA), fetal DNA/RNA, and mitochondrial DNA/RNA, and act as potential biomarkers in various clinical conditions. These are associated with different epigenetic modifications, which show disease-related variations and so finding their role as epigenetic biomarkers in clinical settings. This field has recently emerged as the latest advance in precision medicine because of its clinical relevance in diagnostic, prognostic, and predictive values. DNA methylation detected in ccfDNA has been widely used in personalized clinical diagnosis; furthermore, there is also the emerging role of ccfRNAs like miRNA and lncRNA as epigenetic biomarkers. This review focuses on the novel approaches for exploring ccfNAs as epigenetic biomarkers in personalized clinical diagnosis and prognosis, their potential as therapeutic targets and disease progression monitors, and reveals the tremendous potential that epigenetic biomarkers present to improve precision medicine. We explore the latest techniques for both quantitative and qualitative detection of epigenetic modifications in ccfNAs. The data on epigenetic modifications on ccfNAs are complex and often milieu-specific posing challenges for its understanding. Artificial intelligence and deep networks are the novel approaches for decoding complex data and providing insight into the decision-making in precision medicine.
Collapse
Affiliation(s)
- Beenish Rahat
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Taqveema Ali
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Divika Sapehia
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Barciszewska AM. Total DNA methylation as a biomarker of DNA damage and tumor malignancy in intracranial meningiomas. BMC Cancer 2020; 20:509. [PMID: 32493231 PMCID: PMC7268775 DOI: 10.1186/s12885-020-06982-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 05/20/2020] [Indexed: 12/29/2022] Open
Abstract
Background Meningiomas are the most common primary intracranial tumors in adults. They are initially detected with neuroimaging techniques, but definite histological diagnosis requires tumor surgery to collect tumor tissue. Gross total resection is an optimal and final treatment for the majority of patients, followed by radiotherapy in malignant or refractory cases. However, there are a lot of uncertainties about i.a. the need for intervention in incidental cases, estimation of growth kinetics, risk of malignant transformation, or response to radiotherapy. Therefore a new diagnostic approach is needed. It has already been shown that epigenetics plays a crucial role in cancer biology, development, and progression. DNA methylation, the presence of 5-methylcytosine in DNA, is one of the main elements of a broad epigenetic program in a eukaryotic cell, with superior regulatory significance. Therefore, we decided to look at meningioma through changes of 5-methylcytosine. Methods We performed an analysis of the total amount of 5-methylcytosine in DNA isolated from intracranial meningioma tissues and peripheral blood samples of the same patients. The separation and identification of radioactively labeled nucleotides were performed using thin-layer chromatography. Results We found that the 5-methylcytosine level in DNA from intracranial meningiomas is inversely proportional to the malignancy grade. The higher the tumor WHO grade is, the lower the total DNA methylation. The amount of 5-methylcytosine in tumor tissue and peripheral blood is almost identical. Conclusions We conclude that the total DNA methylation can be a useful marker for brain meningioma detection, differentiation, and monitoring. It correlates with tumor WHO grade, and the 5-methylcytosine level in peripheral blood reflects that in tumor tissue. Therefore it’s applicable for liquid biopsy. Our study creates a scope for further research on epigenetic mechanisms in neurooncology and can lead to the development of new diagnostic methods in clinical practice.
Collapse
Affiliation(s)
- Anna-Maria Barciszewska
- Intraoperative Imaging Unit, Chair and Department of Neurosurgery and Neurotraumatology, Karol Marcinkowski University of Medical Sciences, Przybyszewskiego 49, 60-355, Poznan, Poland. .,Department of Neurosurgery and Neurotraumatology, Heliodor Swiecicki Clinical Hospital, Przybyszewskiego 49, 60-355, Poznan, Poland.
| |
Collapse
|
7
|
Ahmed KI, Govardhan HB, Roy M, Naveen T, Siddanna P, Sridhar P, Suma MN, Nelson N. Cell-free circulating tumor DNA in patients with high-grade glioma as diagnostic biomarker - A guide to future directive. Indian J Cancer 2019; 56:65-69. [PMID: 30950448 DOI: 10.4103/ijc.ijc_551_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Owing to the aggressive nature of high-grade gliomas (HGGs), its early diagnosis holds the key to a favorable prognosis. Currently, tissue biopsy is the gold standard to verify HGG's initial diagnosis and can be challenging due to its invasive nature. In this study, our objective was a noninvasive panel for timely detection of HGG and its progression using cell-free circulating tumor DNA (cfTDNA). MATERIALS AND METHODS Twenty-seven patients with HGG were tested with a 50-gene tumor panel. cfTDNA isolated from serum was checked for single-nucleotide variations (SNVs) or copy number alterations using targeted next-generation sequencing, with further validation of results by checking respective formalin-fixed paraffin-embedded tumor tissues for the same genetic alterations. RESULTS About 88.8% of the patients were detected with HGG-associated cfTDNA. Around 25% patients were detected with one, 25% patients had three, 25% patients had four, and 12.5% patients each had five and six genetic alterations. About 12 of 50 genes were detected in the serum samples. The SNVs detected included TP53 in 87.5% of patients; PIK3CA and EGFR in 50% of patients; PTEN in 37.5%; KIT and VHL in each 25% of patients; and RB1, NF2, MET, ATRX, CDK2A, and CTNNB1 each in 8.3%-16.6%. On combining EGFR, KIT, PTEN, PIK3CA, TP53, and VHL genes (Govardhan Diagnostic Genetic Module for high-grade glioma), at least one of the genetic alterations was found in 100% of patients. Conclusion These findings illustrate that cfTDNA is easily demonstrable and can be used as a surrogate to tissue biopsy in brain tumor.
Collapse
Affiliation(s)
- Khaleel Ibrahim Ahmed
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - H B Govardhan
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Manisha Roy
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - T Naveen
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - P Siddanna
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - P Sridhar
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - M N Suma
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| | - Noopur Nelson
- Department of Radiation Oncology, Kidwai Memorial Institute of Oncology, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Bertero L, Siravegna G, Rudà R, Soffietti R, Bardelli A, Cassoni P. Review: Peering through a keyhole: liquid biopsy in primary and metastatic central nervous system tumours. Neuropathol Appl Neurobiol 2019; 45:655-670. [PMID: 30977933 PMCID: PMC6899864 DOI: 10.1111/nan.12553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/18/2019] [Indexed: 12/20/2022]
Abstract
Tumour molecular profiling by liquid biopsy is being investigated for a wide range of research and clinical purposes. The possibility of repeatedly interrogating the tumour profile using minimally invasive procedures is helping to understand spatial and temporal tumour heterogeneity, and to shed a light on mechanisms of resistance to targeted therapies. Moreover, this approach has been already implemented in clinical practice to address specific decisions regarding patients’ follow‐up and therapeutic management. For central nervous system (CNS) tumours, molecular profiling is particularly relevant for the proper characterization of primary neoplasms, while CNS metastases can significantly diverge from primary disease or extra‐CNS metastases, thus compelling a dedicated assessment. Based on these considerations, effective liquid biopsy tools for CNS tumours are highly warranted and a significant amount of data have been accrued over the last few years. These results have shown that liquid biopsy can provide clinically meaningful information about both primary and metastatic CNS tumours, but specific considerations must be taken into account, for example, when choosing the source of liquid biopsy. Nevertheless, this approach is especially attractive for CNS tumours, as repeated tumour sampling is not feasible. The aim of our review was to thoroughly report the state‐of‐the‐art regarding the opportunities and challenges posed by liquid biopsy in both primary and secondary CNS tumours.
Collapse
Affiliation(s)
- L Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Torino, Italy.,Pathology Unit, Città della Salute e della Scienza University Hospital, Turin, Torino, Italy
| | - G Siravegna
- Department of Oncology, University of Turin, Candiolo (Turin), Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo (Turin), Italy
| | - R Rudà
- Neuro-oncology Unit, Department of Neurosciences, University of Turin, Italy.,Neuro-oncology Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - R Soffietti
- Neuro-oncology Unit, Department of Neurosciences, University of Turin, Italy.,Neuro-oncology Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - A Bardelli
- Department of Oncology, University of Turin, Candiolo (Turin), Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo (Turin), Italy
| | - P Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, Torino, Italy.,Pathology Unit, Città della Salute e della Scienza University Hospital, Turin, Torino, Italy
| |
Collapse
|
9
|
Hallal S, Ebrahimkhani S, Shivalingam B, Graeber MB, Kaufman KL, Buckland ME. The emerging clinical potential of circulating extracellular vesicles for non-invasive glioma diagnosis and disease monitoring. Brain Tumor Pathol 2019; 36:29-39. [PMID: 30859343 DOI: 10.1007/s10014-019-00335-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 02/27/2019] [Indexed: 12/25/2022]
Abstract
Diffuse gliomas (grades II-IV) are amongst the most frequent and devastating primary brain tumours of adults. Currently, patients are monitored by clinical examination and radiographic imaging, which can be challenging to interpret and insensitive to early signs of treatment failure and tumour relapse. While brain biopsy and histologic analysis can evaluate disease progression, serial biopsies are invasive and impractical given the cumulative surgical risk, and may not capture the complete molecular landscape of an evolving tumour. The availability of a minimally invasive 'liquid biopsy' that could assess tumour activity and molecular phenotype in situ has the potential to greatly enhance patient care. Circulating extracellular vesicles (EVs) hold significant promise as robust disease-specific biomarkers accessible in the blood of patients with glioblastoma and other diffuse gliomas. EVs are membrane-bound nanoparticles shed from most if not all cells of the body, and carry DNA, RNA, protein, and lipids that reflect the identity and molecular state of their cell-of-origin. EVs can cross the blood-brain barrier and their release is upregulated in neoplasia. In this review, we describe the current knowledge of EV biology, the role of EVs in glioma biology and the current experience and challenges in profiling glioma-EVs from the circulation.
Collapse
Affiliation(s)
- Susannah Hallal
- Brainstorm Brain Cancer Research, Brain Tumour Research Laboratories, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - Saeideh Ebrahimkhani
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Brain and Mind Centre, Camperdown, NSW, Australia
| | - Brindha Shivalingam
- Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Manuel B Graeber
- Brain Tumour Research Laboratories, Brain and Mind Centre, Charles Perkins Centre, Bosch Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia
| | - Kimberley L Kaufman
- Brainstorm Brain Cancer Research, Brain Tumour Research Laboratories, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia.,Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia.,Department of Neurosurgery, Chris O'Brien Lifehouse, Camperdown, NSW, Australia
| | - Michael E Buckland
- Brainstorm Brain Cancer Research, Brain Tumour Research Laboratories, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia. .,Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia. .,Department of Neuropathology, Royal Prince Alfred Hospital, Brain and Mind Centre, Camperdown, NSW, Australia.
| |
Collapse
|
10
|
Gong M, Shi W, Qi J, Shao G, Shi Z, Wang J, Chen J, Chu R. Alu hypomethylation and MGMT hypermethylation in serum as biomarkers of glioma. Oncotarget 2017; 8:76797-76806. [PMID: 29100349 PMCID: PMC5652743 DOI: 10.18632/oncotarget.20012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 06/12/2017] [Indexed: 02/05/2023] Open
Abstract
In order to improve prognosis of glioma patients, better tools are required for early diagnosis and treatment. Serum cell-free DNA methylation levels of Alu, MGMT, P16, RASSF1A from 124 glioma patients and 58 healthy controls were detected by the bisulfite sequencing. The median methylation level of Alu was 46.15% (IQR, 36.57%-54.00%) and 60.85% (IQR, 57.23%-65.68%) in glioma patients and healthy controls respectively. The median methylation level of MGMT in glioma samples was 64.65% (IQR, 54.87%-74.37%) compared to 38.30% (IQR, 34.13%-45.45%) in healthy controls, and all revealed significant differences including P16. However, the median methylation level of RASSF1A was not significantly altered in glioma patients. Furthermore, the methylation levels of Alu and MGMT in serum had a good diagnostic value, and was higher than P16. Interestingly, combination of Alu and MGMT identified additional patients, which were missed by either diagnosis alone. In the Alu group, the patients with high levels were associated with an increased survival rate compared to those who with low levels, with similar results observed in the MGMT group. In the present study, we demonstrated that the methylation level of Alu and MGMT in serum had a better diagnostic value than P16. Moreover, combined analysis of Alu and MGMT showed higher sensitivity for glioma diagnosis. Therefore, both serum Alu and MGMT methylation levels may represent a novel prognostic factor for glioma patients.
Collapse
Affiliation(s)
- Mingjie Gong
- Department of Neurosurgery, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu Province, China
| | - Wei Shi
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jing Qi
- Comprehensive Surgical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Guoping Shao
- Department of Neurosurgery, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu Province, China
| | - Zhenghua Shi
- Department of Neurosurgery, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu Province, China
| | - Junxiang Wang
- Department of Neurosurgery, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu Province, China
| | - Jian Chen
- Department of Neurosurgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Rongtao Chu
- Department of Neurosurgery, Changshu No. 2 People's Hospital (The 5th Clinical Medical College of Yangzhou University), Changshu, Jiangsu Province, China
| |
Collapse
|
11
|
Ghasemi A, Fallah S, Ansari M. MicroRNA-149 is epigenetically silenced tumor-suppressive microRNA, involved in cell proliferation and downregulation of AKT1 and cyclin D1 in human glioblastoma multiforme. Biochem Cell Biol 2016; 94:569-576. [DOI: 10.1139/bcb-2015-0064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aberrant DNA methylation has been shown to inactivate tumor suppressor genes during carcinogenesis. MicroRNA-149 (miR-149) was recently demonstrated to function as a tumor suppressor gene in glioblastoma multiforme (GBM). However, the potential linkage of miR-149 levels and the underlying epigenetic regulatory mechanism in human GBM has not been studied. We used quantitative real-time polymerase chain reaction to investigate the levels of miR-149 in GBM tissues, their matched adjacent normal tissues, and glioblastoma U87MG cell line. Using bisulfite genomic sequencing technology, DNA methylation status of upstream region of miR-149 was evaluated in study population groups and the U87MG cell line. After treatment of cells with 5-aza-2′-deoxycitidine (5-aza-dC), the DNA methylation status, gene expression, and target protein levels of miR-149 were investigated. Our studies revealed that methylation and expression levels of miR-149 were significantly increased and decreased, respectively in GBM patients relative to the adjacent normal tissues (P < 0.01). MiR-149 suppressed the expression of AKT1 and cyclin D1 and reduced the proliferative activities of the U87MG cell line. Treatment of U87MG cells with 5-aza-dC reversed the hypermethylation status of miR-149, enhanced the expression of its gene, and decreased target mRNA and proteins levels (P < 0.01). These findings suggest that the methylation mechanism is associated with decreased expression levels of miR-149, which may in turn lead to the increased levels of its oncogenic target proteins.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soudabeh Fallah
- Department of Clinical Biochemistry, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Research Center of Pediatric Infection Disease, Hazrat Rasol Akram Hospital of Iran University of Medical Sciences
| | - Mohammad Ansari
- Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ponnampalam SN, Kamaluddin NR, Zakaria Z, Matheneswaran V, Ganesan D, Haspani MS, Ryten M, Hardy JA. A blood-based gene expression and signaling pathway analysis to differentiate between high and low grade gliomas. Oncol Rep 2016; 37:10-22. [PMID: 28004117 PMCID: PMC5355666 DOI: 10.3892/or.2016.5285] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/15/2016] [Indexed: 01/05/2023] Open
Abstract
The aims of the present study were to undertake gene expression profiling of the blood of glioma patients to determine key genetic components of signaling pathways and to develop a panel of genes that could be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples. In this study, blood samples were obtained from glioma patients, non-glioma and control subjects. Ten samples each were obtained from patients with high and low grade tumours, respectively, ten samples from non-glioma patients and twenty samples from control subjects. Total RNA was isolated from each sample after which first and second strand synthesis was performed. The resulting cRNA was then hybridized with the Agilent Whole Human Genome (4×44K) microarray chip according to the manufacturer's instructions. Universal Human Reference RNA and samples were labeled with Cy3 CTP and Cy5 CTP, respectively. Microarray data were analyzed by the Agilent Gene Spring 12.1V software using stringent criteria which included at least a 2-fold difference in gene expression between samples. Statistical analysis was performed using the unpaired Student's t-test with a P<0.01. Pathway enrichment was also performed, with key genes selected for validation using droplet digital polymerase chain reaction (ddPCR). The gene expression profiling indicated that were a substantial number of genes that were differentially expressed with more than a 2-fold change (P<0.01) between each of the four different conditions. We selected key genes within significant pathways that were analyzed through pathway enrichment. These key genes included regulators of cell proliferation, transcription factors, cytokines and tumour suppressor genes. In the present study, we showed that key genes involved in significant and well established pathways, could possibly be used as a potential blood-based biomarker to differentiate between high and low grade gliomas, non-gliomas and control samples.
Collapse
Affiliation(s)
- Stephen N Ponnampalam
- Cancer Research Center, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Nor Rizan Kamaluddin
- Cancer Research Center, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Zubaidah Zakaria
- Cancer Research Center, Institute for Medical Research, Jalan Pahang, 50588 Kuala Lumpur, Malaysia
| | - Vickneswaran Matheneswaran
- Department of Neurosurgery, University Malaya Medical Centre, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | - Dharmendra Ganesan
- Department of Neurosurgery, University Malaya Medical Centre, Jalan Universiti, 50603 Kuala Lumpur, Malaysia
| | | | - Mina Ryten
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| | - John A Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
13
|
Wang J, Bettegowda C. Applications of DNA-Based Liquid Biopsy for Central Nervous System Neoplasms. J Mol Diagn 2016; 19:24-34. [PMID: 27863260 DOI: 10.1016/j.jmoldx.2016.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/04/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022] Open
Abstract
The management of central nervous system malignancies remains reliant on histopathological analysis and neuroimaging, despite their complex genetic profile. The intratumoral heterogeneity displayed by these tumors necessitates a more sophisticated method of tumor analysis and monitoring, with the ability to assess tumors over space and time. Circulating biomarkers, including circulating tumor cells, circulating tumor DNA, and extracellular vesicles, hold promise as a type of real-time liquid biopsy able to provide dynamic information not only regarding tumor burden to monitor disease progression and treatment response, but also regarding genetic profile to enable changes in management to match a constantly evolving tumor. In numerous cancer types, including glioma, they have demonstrated their clinical utility as a minimally invasive means for diagnosis, prognostication, and prediction. In addition, they can be used in the laboratory to probe mechanisms of acquired drug resistance and tumor invasion and dissemination.
Collapse
Affiliation(s)
- Joanna Wang
- Department of Internal Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
14
|
Touat M, Duran-Peña A, Alentorn A, Lacroix L, Massard C, Idbaih A. Emerging circulating biomarkers in glioblastoma: promises and challenges. Expert Rev Mol Diagn 2016; 15:1311-23. [PMID: 26394701 DOI: 10.1586/14737159.2015.1087315] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glioblastoma (GBM) is the most common and devastating primary malignant brain tumor in adults. The past few years have seen major progress in our understanding of the molecular basis of GBM. These advances, which have contributed to the development of novel targeted therapies, will change the paradigms in GBM therapy from disease-based to individually tailored molecular target-based treatment. No validated circulating biomarkers have yet been integrated into clinical practice for GBM. There is thus a critical need to implement minimally invasive clinical tests enabling molecular stratification and prognosis assessment, as well as the prediction and monitoring of treatment response. After examination of data from recent studies exploring several categories of tumor-associated biomarkers (circulating tumor cells, extracellular vesicles, nucleic acids and oncometabolites) identified in the blood, cerebrospinal fluid and urine, this article discusses the challenges and prospects for the development of circulating biomarkers in GBM.
Collapse
Affiliation(s)
- Mehdi Touat
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Alberto Duran-Peña
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France
| | - Agusti Alentorn
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| | - Ludovic Lacroix
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,e 5 Département de biologie médicale et de pathologie, Gustave Roussy, F-94805 Villejuif, France.,f 6 Laboratoire de recherche translationnelle et centre de ressources biologiques, Gustave Roussy, F-94805 Villejuif, France
| | - Christophe Massard
- a 1 Inserm U981, Université Paris Sud, Gustave Roussy, F-94805 Villejuif, France.,b 2 Département d'innovations thérapeutiques précoces, Gustave Roussy, F-94805 Villejuif, France
| | - Ahmed Idbaih
- c 3 AP-HP, Hôpital Universitaire la Pitié Salpêtrière, Service de Neurologie 2-Mazarin, F-75013, Paris, France.,d 4 Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06, Institut du Cerveau et de la Moelle épinière, ICM, F-75013, Paris, France
| |
Collapse
|
15
|
Progress in the application of molecular biomarkers in gliomas. Biochem Biophys Res Commun 2015; 465:1-4. [PMID: 26253473 DOI: 10.1016/j.bbrc.2015.07.148] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 12/18/2022]
Abstract
Gliomas are a common adult central nervous system tumor, and glioblastoma (GBM), which has a poor prognosis, is the most lethal of all gliomas. The overall survival of GBM patients is only 12-14 months after diagnosis. With progress in the precision of personal medication, therapeutic options for various tumors have become gradually dependent on the molecular profiles of patients. GBM is one of the tumors in which treatment response relies largely on the molecular characteristics of the tumor. Therefore, awareness of the genetic background of each patient will help decision-making regarding the best treatment strategy to use. In this review, a novel molecular classification of gliomas based on recent findings of their genetic characteristics is introduced. Representative molecular markers, such as IDH1 mutation, 1p19q co-deletion, MGMT promoter methylation and EGFRvIII amplification, are described. Furthermore, the development of non-coding RNAs and omics studies of GBM are briefly discussed. Finally, a novel concept for non-invasive detection that could facilitate both diagnosis and treatment monitoring is presented. There is no doubt that the use of molecular profiling by biomarkers will indeed improve the overall survival and quality of life of GBM patients.
Collapse
|
16
|
Applicable advances in the molecular pathology of glioblastoma. Brain Tumor Pathol 2015; 32:153-62. [PMID: 26078107 DOI: 10.1007/s10014-015-0224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022]
Abstract
Comprising more than 80% of malignant brain tumors, glioma has proven to be a daunting cause of mortality in a vast majority of the human population. Progressive and extensive research on malignant glioma has substantially enhanced our understanding of glioma cell biology and molecular pathology. Subtypes of glioma such as astrocytoma and oligodendroglioma are currently grouped together into one pathological class, where they show many differences in histology and molecular etiology. This indicates that it may be beneficial to consider a new and radical subclassification. Thus, we summarize recent developments in glioblastoma multiforme (GBM) subtypes, immunohistochemical analyses useful for diagnoses and the biological evaluation and therapeutic implications of gliomas in this review.
Collapse
|
17
|
Liquid biopsies in patients with diffuse glioma. Acta Neuropathol 2015; 129:849-65. [PMID: 25720744 PMCID: PMC4436687 DOI: 10.1007/s00401-015-1399-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/11/2015] [Accepted: 02/13/2015] [Indexed: 12/18/2022]
Abstract
Diffuse gliomas are the most common malignant primary tumors of the central nervous system. Like other neoplasms, these gliomas release molecular information into the circulation. Tumor-derived biomarkers include proteins, nucleic acids, and tumor-derived extracellular vesicles that accumulate in plasma, serum, blood platelets, urine and/or cerebrospinal fluid. Recently, also circulating tumor cells have been identified in the blood of glioma patients. Circulating molecules, vesicles, platelets, and cells may be useful as easily accessible diagnostic, prognostic and/or predictive biomarkers to guide patient management. Thereby, this approach may help to circumvent problems related to tumor heterogeneity and sampling error at the time of diagnosis. Also, liquid biopsies may allow for serial monitoring of treatment responses and of changes in the molecular characteristics of gliomas over time. In this review, we summarize the literature on blood-based biomarkers and their potential value for improving the management of patients with a diffuse glioma. Incorporation of the study of circulating molecular biomarkers in clinical trials is essential for further assessment of the potential of liquid biopsies in this context.
Collapse
|
18
|
Wang JY, Bettegowda C. Genetics and immunotherapy: using the genetic landscape of gliomas to inform management strategies. J Neurooncol 2015; 123:373-83. [PMID: 25697584 DOI: 10.1007/s11060-015-1730-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/01/2015] [Indexed: 02/07/2023]
Abstract
Recent work in genetics has identified essential driver mutations in gliomas and has profoundly changed our understanding of tumorigenesis. New insights into the molecular basis of glioma has informed the development of therapies demonstrating considerable potential, including immunotherapeutic approaches such as peptide and dendritic cell vaccines against EGFRvIII. However, the selective targeting of one component of a dysregulated pathway may be inadequate for a durable clinical response, given the intratumoral heterogeneity of glioblastoma (GBM) and hypermutated profiles displayed by tumor recurrences. Immune checkpoint blockade with anti-cytotoxic T lymphocyte antigen-4 (CTLA) and anti-programmed cell death 1 (PD-1) have demonstrated encouraging results in clinical trials with other solid tumors, and recent data suggest that this type of therapy may be particularly useful for tumors with high mutational burdens. Although the survival for patients with GBM has remains grim, the use of immunotherapy may finally change patient outcomes.
Collapse
Affiliation(s)
- Joanna Y Wang
- Department of Neurosurgery, The Johns Hopkins Hospital, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 118, Baltimore, MD, 21287, USA
| | | |
Collapse
|
19
|
Majchrzak-Celińska A, Paluszczak J, Szalata M, Barciszewska AM, Nowak S, Kleszcz R, Sherba A, Baer-Dubowska W. The methylation of a panel of genes differentiates low-grade from high-grade gliomas. Tumour Biol 2015; 36:3831-41. [PMID: 25563195 DOI: 10.1007/s13277-014-3025-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 12/26/2014] [Indexed: 12/29/2022] Open
Abstract
Epigenetic changes play an important role in the pathogenesis of gliomas and have the potential to become clinically useful biomarkers. The aim of this study was the evaluation of the profile of promoter methylation of 13 genes selected based on their anticipated diagnostic and/or prognostic value. Methylation-specific PCR (MSP) was used to assess the methylation status of MGMT, ERCC1, hMLH1, ATM, CDKN2B (p15INK4B), p14ARF, CDKN2A (p16INK4A), RASSF1A, RUNX3, GATA6, NDRG2, PTEN, and RARβ in a subset of 95 gliomas of different grades. Additionally, the methylation status of MGMT and NDRG2 was analyzed using pyrosequencing (PSQ). The results revealed that the methylation index of individual glioma patients correlates with World Health Organization (WHO) tumor grade and patient's age. RASSF1A, RUNX3, GATA6, and MGMT were most frequently methylated, whereas the INK4B-ARF-INK4A locus, PTEN, RARβ, and ATM were methylated to a lesser extent. ERCC1, hMLH1, and NDRG2 were unmethylated. RUNX3 methylation correlated with WHO tumor grade and patient's age. PSQ confirmed significantly higher methylation levels of MGMT and NDRG2 as compared with normal, non-cancerous brain tissue. To conclude, DNA methylation of a whole panel of selected genes can serve as a tool for glioma aggressiveness prediction.
Collapse
Affiliation(s)
- Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, ul. Święcickiego 4, 60-781, Poznań, Poland
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Misuraca KL, Barton KL, Chung A, Diaz AK, Conway SJ, Corcoran DL, Baker SJ, Becher OJ. Pax3 expression enhances PDGF-B-induced brainstem gliomagenesis and characterizes a subset of brainstem glioma. Acta Neuropathol Commun 2014; 2:134. [PMID: 25330836 PMCID: PMC4210596 DOI: 10.1186/s40478-014-0134-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 02/07/2023] Open
Abstract
High-grade Brainstem Glioma (BSG), also known as Diffuse Intrinsic Pontine Glioma (DIPG), is an incurable pediatric brain cancer. Increasing evidence supports the existence of regional differences in gliomagenesis such that BSG is considered a distinct disease from glioma of the cerebral cortex (CG). In an effort to elucidate unique characteristics of BSG, we conducted expression analysis of mouse PDGF-B-driven BSG and CG initiated in Nestin progenitor cells and identified a short list of expression changes specific to the brainstem gliomagenesis process, including abnormal upregulation of paired box 3 (Pax3). In the neonatal mouse brain, Pax3 expression marks a subset of brainstem progenitor cells, while it is absent from the cerebral cortex, mirroring its regional expression in glioma. Ectopic expression of Pax3 in normal brainstem progenitors in vitro shows that Pax3 inhibits apoptosis. Pax3-induced inhibition of apoptosis is p53-dependent, however, and in the absence of p53, Pax3 promotes proliferation of brainstem progenitors. In vivo, Pax3 enhances PDGF-B-driven gliomagenesis by shortening tumor latency and increasing tumor penetrance and grade, in a region-specific manner, while loss of Pax3 function extends survival of PDGF-B-driven;p53-deficient BSG-bearing mice by 33%. Importantly, Pax3 is regionally expressed in human glioma as well, with high PAX3 mRNA characterizing 40% of human BSG, revealing a subset of tumors that significantly associates with PDGFRA alterations, amplifications of cell cycle regulatory genes, and is exclusive of ACVR1 mutations. Collectively, these data suggest that regional Pax3 expression not only marks a novel subset of BSG but also contributes to PDGF-B-induced brainstem gliomagenesis.
Collapse
|
21
|
Kros JM, Mustafa DM, Dekker LJM, Sillevis Smitt PAE, Luider TM, Zheng PP. Circulating glioma biomarkers. Neuro Oncol 2014; 17:343-60. [PMID: 25253418 DOI: 10.1093/neuonc/nou207] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 07/13/2014] [Indexed: 02/06/2023] Open
Abstract
Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers.
Collapse
Affiliation(s)
- Johan M Kros
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Dana M Mustafa
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Lennard J M Dekker
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Peter A E Sillevis Smitt
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Theo M Luider
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| | - Ping-Pin Zheng
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., P.-P.Z.); Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands (L.J.M.D., P.A.E.S.S., T.M.L.); Brain Tumor Center Rotterdam, Erasmus Medical Center, Rotterdam, The Netherlands (J.M.K., D.M.M., L.J.M.D., P.A.E.S.S., T.M.L., P.-P.Z.)
| |
Collapse
|
22
|
Fu HY, Wu DS, Zhou HR, Shen JZ. CpG island methylator phenotype and its relationship with prognosis in adult acute leukemia patients. ACTA ACUST UNITED AC 2013; 19:329-37. [PMID: 24164743 DOI: 10.1179/1607845413y.0000000137] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE To investigated the relationship between CpG island methylator phenotype (CIMP) and prognosis in adults with acute leukemia. METHODS Bone marrow samples from 53 acute myeloid leukemia and 50 acute lymphoblastic leukemia patients were collected. The methylation status of 18 tumor suppressor genes was determined using methylation-specific polymerase chain reaction. RESULTS Greater than 30% of acute leukemia patients had methylated p15, p16, CDH1, CDH13, RUNX3, sFRP1, ID4, and DLC-1 genes; methylation of ≥4 were defined as CIMP positive. Age, type of leukemia, white blood cell count, and CIMP status were significantly associated with recurrence-free survival (RFS) and overall survival (OS) (P < 0.05). CIMP status was an independent prognostic factor for OS (hazard ratio: 2.07, 95% confidence interval: 1.03-4.15, P = 0.040). CIMP-negative patients had significantly improved RFS and OS (P < 0.05). p16 and DLC1 methylation was significantly associated with RFS and OS (P < 0.05). CONCLUSIONS CIMP may serve as an independent risk factor for evaluating the prognosis of patients with acute leukemia.
Collapse
|
23
|
Alves MKS, Faria MHG, Neves Filho EHC, Ferrasi AC, Pardini MIDMC, de Moraes Filho MO, Rabenhorst SHB. CDKN2A promoter hypermethylation in astrocytomas is associated with age and sex. Int J Surg 2013; 11:549-53. [PMID: 23721661 DOI: 10.1016/j.ijsu.2013.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/24/2013] [Accepted: 05/17/2013] [Indexed: 11/16/2022]
Abstract
CDKN2A promoter hypermethylation has been widely related to many cancers. In astrocytomas, although CDKN2A (p16(INK4A) protein) is often inactivated, there are still some controversial issues regarding the mechanism by which this alteration occurs. Thus, we analyzed a series of astrocytomas to assess the association between CDKN2A expression and methylation of grade I-IV tumors (WHO) and clinicopathological parameters. DNA extracted from formalin-fixed paraffin-embedded material of 93 astrocytic tumors was available for CDKN2A promoter methylation analysis and p16(INK4A) expression by methylation-specific PCR and immunohistochemistry, respectively. A strong negative correlation between nuclear and cytoplasmic immunostaining and CDKN2A promoter methylation was found. Additionally, a significant negative correlation between CDKN2A promoter methylation and age was observed; also, female patients had statistically more CDKN2A methylated promoters (p = 0.036) than men. In conclusion, CDKN2A inactivation by promoter methylation is a frequent event in astrocytomas and it is related to the age and sex of patients.
Collapse
Affiliation(s)
- Markênia Kélia Santos Alves
- Universidade Federal do Ceará, Department of Pathology and Forensic Medicine, Rua Alexandre Baraúna, 949, Porangabussu, CEP 60183-630 Fortaleza, Brazil.
| | | | | | | | | | | | | |
Collapse
|
24
|
Blood-based biomarkers for malignant gliomas. J Neurooncol 2013; 113:345-352. [PMID: 23670054 DOI: 10.1007/s11060-013-1144-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 04/27/2013] [Indexed: 02/07/2023]
Abstract
Malignant gliomas remain incurable and present unique challenges to clinicians, radiologists and clinical and translational investigators. One of the major problems in treatment of these tumors is our limited ability to reliably assess tumor response or progression. The most frequently used neuro-imaging studies (contrast-enhanced MRI and CT) rely on changes of blood-brain barrier (BBB) integrity, providing only an indirect assessment of tumor burden. In addition, the BBB can be altered by commonly used interventions including radiation, glucocorticoids and vascular endothelial growth factor inhibitors, further complicating the interpretation of scans. Newer radiologic techniques including PET and magnetic resonance spectroscopy are theoretically promising but thus far have not meaningfully changed the assessment of patients with malignant gliomas. A tumor-specific, blood-based biomarker would be of immediate use to clinicians and investigators if sufficiently sensitive and specific. This review discusses the potential utility of such a biomarker, the general classes of tumor-derived blood-based biomarkers and it summarizes the currently available data on circulating tumor cells, circulating nucleic acids and circulating proteins in patients with malignant gliomas. It is unclear which marker or marker class appears to be the most promising for these tumors. This article provides thoughts on how novel candidate blood-based markers could be discovered and tested in a more comprehensive way and why these efforts should be among the top priorities in neuro-oncologic research in the coming years.
Collapse
|
25
|
Majchrzak-Celińska A, Paluszczak J, Kleszcz R, Magiera M, Barciszewska AM, Nowak S, Baer-Dubowska W. Detection of MGMT, RASSF1A, p15INK4B, and p14ARF promoter methylation in circulating tumor-derived DNA of central nervous system cancer patients. J Appl Genet 2013; 54:335-44. [PMID: 23661397 PMCID: PMC3720989 DOI: 10.1007/s13353-013-0149-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/10/2013] [Accepted: 04/15/2013] [Indexed: 12/17/2022]
Abstract
Despite the growing understanding of the mechanisms of carcinogenesis, cancers of the central nervous system are usually associated with unfavorable prognosis. The use of an appropriate molecular marker may improve the treatment outcome by allowing early diagnosis and treatment susceptibility monitoring. Since methylation of tumor-derived DNA can be detected in the serum of cancer patients, this makes DNA methylation-based biomarkers one of the most promising diagnostic strategies. In this study, the methylation profiles of MGMT, RASSF1A, p15INK4B, and p14ARF genes were evaluated in serum free-circulating DNA and the corresponding tumor tissue in a group of 33 primary or metastatic central nervous system cancer patients. Gene promoter methylation was assessed using methylation-specific polymerase chain reaction (PCR). All the tested genes were found to be methylated to a different extent in both serum and tumor samples. In comparison to metastatic brain tumor patients, the patients with glial tumors were characterized by a higher frequency of gene hypermethylation. The hypermethylation of RASSF1A differentiated primary from metastatic brain cancers. Moreover, the gene methylation profiles observed in serum, in most cases, matched the methylation profiles detected in paired tumor samples.
Collapse
Affiliation(s)
- Aleksandra Majchrzak-Celińska
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Jarosław Paluszczak
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Robert Kleszcz
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Marta Magiera
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| | - Anna-Maria Barciszewska
- Department of Neurosurgery and Neurotraumatology, Poznań University of Medical Sciences, ul. Przybyszewskiego 49, Poznań, Poland
| | - Stanisław Nowak
- Department of Neurosurgery and Neurotraumatology, Poznań University of Medical Sciences, ul. Przybyszewskiego 49, Poznań, Poland
| | - Wanda Baer-Dubowska
- Department of Pharmaceutical Biochemistry, Poznań University of Medical Sciences, ul. Święcickiego 4, 60-781 Poznań, Poland
| |
Collapse
|
26
|
Ilhan-Mutlu A, Wagner L, Preusser M. Circulating biomarkers of CNS tumors: an update. Biomark Med 2013; 7:267-85. [DOI: 10.2217/bmm.13.12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
CNS tumors comprise approximately 120 histological subtypes. Advances of surgical resection, radiation and systemic therapy have increased the survival rates of distinct types of CNS tumor patients. There is growing interest in identification of diagnostic, prognostic or predictive blood biomarkers in CNS tumor patients, and emerging studies indicate that certain brain tumors are indeed associated with distinct profiles of circulating factors such as proteins (e.g., glial fibrillary acidic protein), DNA fragments (e.g., containing mutated IDH) or miRNAs (e.g., miRNA-21). However, blood biomarker research in neurooncology is, for the most part, at an exploratory level, and adequately powered and well-designed studies are needed to translate the available interesting but preliminary findings into actual clinical use. In this review, the current knowledge on circulating biomarkers of CNS tumors is briefly summarized.
Collapse
Affiliation(s)
- Aysegül Ilhan-Mutlu
- Department of Medicine I/Oncology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
| | - Ludwig Wagner
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Department of Nephrology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
| | - Matthias Preusser
- Comprehensive Cancer Center Vienna, Central Nervous System Tumours Unit, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria
- Department of Medicine I/Oncology, Medical University of Vienna, WaehringerGuertel 18–20, 1090 Vienna, Austria.
| |
Collapse
|
27
|
Aydemir F, Yurtcu E, Balci TB, Sahin FI, Gulsen S, Altinors N. Identification of Promoter Region Methylation Patterns of MGMT, CDKN2A, GSTP1, and THBS1 Genes in Intracranial Meningioma Patients. Genet Test Mol Biomarkers 2012; 16:335-40. [DOI: 10.1089/gtmb.2011.0245] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Fatih Aydemir
- Department of Neurosurgery, Baskent University, Ankara, Turkey
| | - Erkan Yurtcu
- Department of Medical Genetics, Baskent University, Ankara, Turkey
| | | | | | - Salih Gulsen
- Department of Neurosurgery, Baskent University, Ankara, Turkey
| | - Nur Altinors
- Department of Neurosurgery, Baskent University, Ankara, Turkey
| |
Collapse
|
28
|
Oka H, Utsuki S, Tanizaki Y, Hagiwara H, Miyajima Y, Sato K, Kusumi M, Kijima C, Fujii K. Clinicopathological features of human brainstem gliomas. Brain Tumor Pathol 2012; 30:1-7. [PMID: 22484454 DOI: 10.1007/s10014-012-0099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 03/19/2012] [Indexed: 01/13/2023]
Abstract
We describe the clinicopathological features of 25 brainstem gliomas (BSGs). Twenty BSGs located in the pons and were all in children. Four BSGs located in the medulla oblongata were in 2 children and 2 adults. One (in a child) was located in the midbrain. Radiological findings on MR images were low-intensity on T1 weighted images and high-intensity on T2 weighted images. Mean survival when pontine glioma was treated by radiotherapy and/or use of temozolomide was 14 months, although 4 patients (3 cervicomedullary types and one focal type arising from midbrain) are alive. Follow up was from 5 months to 6 years. Histopathological features of 10 cases of the diffuse type were: 4 grade II astrocytomas, 4 grade III astrocytomas, and 2 glioblastomas. MIB-1 index was from 0.8 to 38 %. P53 was positive for 80 % of 15 tumors and there were no negative results. MGMT was positive in 60 % of 15 tumors and negative in 12.4 %. IDH1 was negative in 61.6 %. There was no positive result for IDH1 in this study. Thus, our histopathological results were indicative of high p53 immunoreactivity and no IDH1 immunoreactivity related to secondary malignant change.
Collapse
Affiliation(s)
- Hidehiro Oka
- Department of Neurosurgery, Kitasato University School of Medicine, 1-15-1 Kitasato, Minimi-ku, Sagamihara, Kanagawa 225-318, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Egger G, Wielscher M, Pulverer W, Kriegner A, Weinhäusel A. DNA methylation testing and marker validation using PCR: diagnostic applications. Expert Rev Mol Diagn 2012; 12:75-92. [PMID: 22133121 DOI: 10.1586/erm.11.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
DNA methylation provides a fundamental epigenetic mechanism to establish and promote cell-specific gene-expression patterns, which are inherited by subsequent cell generations. Thus, the epigenome determines the differentiation into a cell lineage but can also program cells to become abnormal or malignant. In humans, different germline and somatic diseases have been linked to faulty DNA methylation. In this article, we will discuss the available PCR-based technologies to assess differences in DNA methylation levels mainly affecting 5-methylcytosine in the CpG dinucleotide context in hereditary syndromal and somatic pathological conditions. We will discuss some of the current diagnostic applications and provide an outlook on how DNA methylation-based biomarkers might provide novel tools for diagnosis, prognosis or patient stratification for diseases such as cancer.
Collapse
Affiliation(s)
- Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, Austria
| | | | | | | | | |
Collapse
|
30
|
Rusiecki JA, Chen L, Srikantan V, Zhang L, Yan L, Polin ML, Baccarelli A. DNA methylation in repetitive elements and post-traumatic stress disorder: a case-control study of US military service members. Epigenomics 2012; 4:29-40. [PMID: 22332656 PMCID: PMC3809831 DOI: 10.2217/epi.11.116] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM We investigated serum DNA methylation patterns in genomic repetitive elements, LINE-1 and Alu, for post-traumatic stress disorder (PTSD) cases and controls who were US military service members recently deployed to Afghanistan or Iraq. METHODS Cases (n = 75) had a postdeployment diagnosis of PTSD. Controls (n = 75) were randomly selected service members with no postdeployment PTSD diagnosis. Pre- and post-deployment sera were accessed, DNA was extracted and DNA methylation (percentage 5-methyl cytosine) was quantified via pyrosequencing. Conditional and unconditional logistic regressions were used to compare: cases post- to pre-deployment; controls post- to pre-deployment; cases to controls predeployment; cases to controls postdeployment. RESULTS LINE-1 was hypermethylated in controls post- versus pre-deployment (odds ratio [OR]: 1.33; 95% CI: 1.06-1.65) and hypomethylated in cases versus controls postdeployment (OR: 0.82; 95% CI: 0.67-1.01). Alu was hypermethylated for cases versus controls predeployment (OR: 1.46; 95% CI: 1.08-1.97). CONCLUSION Patterns of hypermethylation of LINE-1 in controls postdeployment and of Alu in cases postdeployment are intriguing and may suggest resilience or vulnerability factors.
Collapse
Affiliation(s)
- Jennifer A Rusiecki
- Department of Preventive Medicine, Uniformed Services University, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Balañá C, Carrato C, Ramírez JL, Cardona AF, Berdiel M, Sánchez JJ, Tarón M, Hostalot C, Musulen E, Ariza A, Rosell R. Tumour and serum MGMT promoter methylation and protein expression in glioblastoma patients. Clin Transl Oncol 2011; 13:677-85. [DOI: 10.1007/s12094-011-0714-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Diffuse intrinsic pontine glioma-current status and future strategies. Childs Nerv Syst 2011; 27:1391-7. [PMID: 21533575 DOI: 10.1007/s00381-011-1468-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 04/15/2011] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Diffuse intrinsic pontine gliomas which constitute 15% of all childhood brain tumors are inoperable and response to radiation and chemotherapy has not improved long-term survival. Due to lack of newer effective therapies, mean survival after diagnosis has remained less than 12 months. Trials investigating chemotherapy and/or radiation have proven disappointing. As biopsy of these tumors are rarely performed due to the high eloquence of the brain stem, information about the pathology and biology remains elusive hindering development of novel biologic agents. Poor access of most chemotherapeutic agents to these tumors due to the blood-brain barrier continues to undermine therapeutic efficacy. Thus, to date, we remain at a virtual standstill in our attempts to improve the prognosis of children with these tumors. METHODS An extensive review of the literature was performed concerning children with diffuse brain stem gliomas including clinical trials, evolving molecular biology, and newer therapeutic endeavors. CONCLUSION A pivotal approach in improving the prognosis of these tumors should include the initiation of biopsy and encouraging families to consider autopsy to study the molecular biology. This will help in redefining this tumor by its molecular signature and profiling targeted therapy. Continued advances should be pursued in neuroimaging technology including identifying surrogate markers of early disease progression. Defining strategies to enhance local delivery of drugs into tumors with the help of newer surgical techniques are important. Exhaustive research in all these aspects as a multidisciplinary approach could provide hope to children with these fatal tumors.
Collapse
|
33
|
Weller M, Wick W, Hegi ME, Stupp R, Tabatabai G. Should biomarkers be used to design personalized medicine for the treatment of glioblastoma? Future Oncol 2011; 6:1407-14. [PMID: 20919826 DOI: 10.2217/fon.10.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Significant progress has been made in understanding the molecular pathogenesis of gliomas and in predicting general outcome depending on a limited set of clinical parameters and molecular markers. However, methylation of the O⁶-methylguanine DNA methyltransferase (MGMT) gene promoter is the only molecular marker linked to sensitivity of a specific treatment, that is, alkylating agent chemotherapy, and this predictive value may be limited to glioblastoma. Moreover, in the absence of potent alternative drugs, temozolomide chemotherapy should not be withheld from patients with newly diagnosed glioblastoma without MGMT promoter methylation in general practice. In the context of clinical trials, however, irrespective of whether classical cytotoxic drugs, tyrosine kinase inhibitors or antiangiogenic agents are used, tissue should be centrally collected. Appropriate research programs should seek to define enriched patient populations for future trials and ultimately facilitate individualized cancer treatments.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, Zurich, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Becher OJ, Hambardzumyan D, Walker TR, Helmy K, Nazarian J, Albrecht S, Hiner RL, Gall S, Huse JT, Jabado N, MacDonald TJ, Holland EC. Preclinical evaluation of radiation and perifosine in a genetically and histologically accurate model of brainstem glioma. Cancer Res 2010; 70:2548-57. [PMID: 20197468 DOI: 10.1158/0008-5472.can-09-2503] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Brainstem gliomas (BSG) are a rare group of central nervous system tumors that arise mostly in children and usually portend a particularly poor prognosis. We report the development of a genetically engineered mouse model of BSG using the RCAS/tv-a system and its implementation in preclinical trials. Using immunohistochemistry, we found that platelet-derived growth factor (PDGF) receptor alpha is overexpressed in 67% of pediatric BSGs. Based on this observation, we induced low-grade BSGs by overexpressing PDGF-B in the posterior fossa of neonatal nestin tv-a mice. To generate high-grade BSGs, we overexpressed PDGF-B in combination with Ink4a-ARF loss, given that this locus is commonly lost in high-grade pediatric BSGs. We show that the likely cells of origin for these mouse BSGs exist on the floor of the fourth ventricle and cerebral aqueduct. Irradiation of these high-grade BSGs shows that although single doses of 2, 6, and 10 Gy significantly increased the percent of terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-positive nuclei, only 6 and 10 Gy significantly induce cell cycle arrest. Perifosine, an inhibitor of AKT signaling, significantly induced TUNEL-positive nuclei in this high-grade BSG model, but in combination with 10 Gy, it did not significantly increase the percent of TUNEL-positive nuclei relative to 10 Gy alone at 6, 24, and 72 hours. Survival analysis showed that a single dose of 10 Gy significantly prolonged survival by 27% (P = 0.0002) but perifosine did not (P = 0.92). Perifosine + 10 Gy did not result in a significantly increased survival relative to 10 Gy alone (P = 0.23). This PDGF-induced BSG model can serve as a preclinical tool for the testing of novel agents.
Collapse
Affiliation(s)
- Oren J Becher
- Departments of Cancer Biology and Genetics, Brain Tumor Center, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang Y, Zhou L, Chen XQ, Zhang W, Wang L. Detection of p16 and MGMT promoter methylation in gastric carcinomas by nested methylation-specific polymerase chain reaction. Shijie Huaren Xiaohua Zazhi 2010; 18:384-387. [DOI: 10.11569/wcjd.v18.i4.384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To analyze aberrant promoter methylation of the p16 and O-6-methylguanine-DNA methyltransferase (MGMT) genes in serum DNA samples from patients with gastric carcinoma.
METHODS: Nested methylation-specific polymerase chain reaction (nMSP) was adopted to detect the promoter methylation of the p16 and MGMT genes in serum DNA samples from 69 patients with gastric carcinoma. Serum DNA samples from 16 healthy individuals were used as normal controls.
RESULTS: The frequencies of p16 and MGMT promoter methylation in patients with gastric carcinoma were 30.4% and 17.4%, respectively. In contrast, no p16 and MGMT promoter methylation was detected in normal controls. The frequencies of p16 and MGMT promoter methylation were significantly higher in patients with gastric carcinoma than in normal controls (both P < 0.05).
CONCLUSION: Detection of p16 and MGMT promoter methylation in serum DNA samples can provide valuable information for molecular diagnosis of early gastric carcinoma.
Collapse
|
36
|
|