1
|
Carlson AP, Jones T, Zhu Y, Desai M, Alsarah A, Shuttleworth CW. Oxygen-based autoregulation indices associated with clinical outcomes and spreading depolarization in aSAH. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.17.24307563. [PMID: 38798620 PMCID: PMC11118627 DOI: 10.1101/2024.05.17.24307563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Background Impairment in cerebral autoregulation has been proposed as a potentially targetable factor in patients with aneurysmal subarachnoid hemorrhage (aSAH), however there are different continuous measures that can be used to calculate the state of autoregulation. In addition, it has previously been proposed that there may be an association of impaired autoregulation with the occurrence of spreading depolarization (SD) events. Methods Subjects with invasive multimodal monitoring and aSAH were enrolled in an observational study. Autoregulation indices were prospectively calculated from this database as a 10 second moving correlation coefficient between various cerebral blood flow (CBF) surrogates and mean arterial pressure (MAP). In subjects with subdural ECoG (electrocorticography) monitoring, SD was also scored. Associations between clinical outcomes using the mRS (modified Rankin Scale) and occurrence of either isolated or clustered SD was assessed. Results 320 subjects were included, 47 of whom also had ECoG SD monitoring. As expected, baseline severity factors such as mFS and WFNS (World Federation of Neurosurgical Societies scale) were strongly associated with the clinical outcome. SD probability was related to blood pressure in a triphasic pattern with a linear increase in probability below MAP of ∼100mmHg.Autoregulation indices were available for intracranial pressure (ICP) measurements (PRx), PbtO2 from Licox (ORx), perfusion from the Bowman perfusion probe (CBFRx), and cerebral oxygen saturation measured by near infrared spectroscopy (OSRx). Only worse ORx and OSRx were associated with worse clinical outcomes. ORx and OSRx also were found to both increase in the hour prior to SD for both sporadic and clustered SD. Conclusions Impairment in autoregulation in aSAH is associated with worse clinical outcomes and occurrence of SD when using ORx and OSRx. Impaired autoregulation precedes SD occurrence. Targeting the optimal MAP or cerebral perfusion pressure in patients with aSAH should use ORx and/or OSRx as the input function rather than intracranial pressure.
Collapse
|
2
|
Al-Mufti F, Lander M, Smith B, Morris NA, Nuoman R, Gupta R, Lissauer ME, Gupta G, Lee K. Multimodality Monitoring in Neurocritical Care: Decision-Making Utilizing Direct And Indirect Surrogate Markers. J Intensive Care Med 2018; 34:449-463. [PMID: 30205730 DOI: 10.1177/0885066618788022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Substantial progress has been made to create innovative technology that can monitor the different physiological characteristics that precede the onset of secondary brain injury, with the ultimate goal of intervening prior to the onset of irreversible neurological damage. One of the goals of neurocritical care is to recognize and preemptively manage secondary neurological injury by analyzing physiologic markers of ischemia and brain injury prior to the development of irreversible damage. This is helpful in a multitude of neurological conditions, whereby secondary neurological injury could present including but not limited to traumatic intracranial hemorrhage and, specifically, subarachnoid hemorrhage, which has the potential of progressing to delayed cerebral ischemia and monitoring postneurosurgical interventions. In this study, we examine the utilization of direct and indirect surrogate physiologic markers of ongoing neurologic injury, including intracranial pressure, cerebral blood flow, and brain metabolism.
Collapse
Affiliation(s)
- Fawaz Al-Mufti
- 1 Division of Neuroendovascular Surgery and Neurocritical Care, Department of Neurology, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,2 Department of Neurosurgery, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Megan Lander
- 3 Division of Surgical Critical Care, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Brendan Smith
- 4 Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Nicholas A Morris
- 5 Department of Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Rolla Nuoman
- 6 Department of Neurology, Rutgers University, New Jersey Medical School, Newark, NJ, USA
| | - Rajan Gupta
- 3 Division of Surgical Critical Care, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Matthew E Lissauer
- 3 Division of Surgical Critical Care, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Gaurav Gupta
- 7 Division of Neurosurgery, Department of Surgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Kiwon Lee
- 1 Division of Neuroendovascular Surgery and Neurocritical Care, Department of Neurology, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
4
|
Berlin T, Murray-Krezan C, Yonas H. Comparison of parenchymal and ventricular intracranial pressure readings utilizing a novel multi-parameter intracranial access system. SPRINGERPLUS 2015; 4:10. [PMID: 25674495 PMCID: PMC4320187 DOI: 10.1186/2193-1801-4-10] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 12/17/2014] [Indexed: 11/16/2022]
Abstract
Introduction Both ventricular and parenchymal devices are available for measurement of intracranial pressure (ICP). The Hummingbird® Synergy Ventricular System is a novel device allowing multi-parametric neurological monitoring, including both ventricular and parenchymal ICP. The purpose of this study is to compare the congruence of the device’s ventricular and parenchymal ICP readings. Methods This single-center, quantitative, interventional study compared parenchymal and ventricular ICP readings from 35 patients with the Hummingbird® System. If a difference of > ± 3 mmHg existed between an individual patient’s parenchymal and ventricular values, progressive intervention strategies were applied to correct identified issues. Results From a total of 2,259 observations, statistical analysis revealed congruence (within ±0-3 mmHg) of 93% of readings comparing parenchymal and ventricular ICP. Of the observations requiring intervention, 58% involved the parenchymal component, 30% involved the ventricular component, and 12% involved both components. Following prescribed interventions, 98% of readings became congruent (within ±0-3 mmHg). The adjusted mean difference between the two methods was -0.95 (95% CI: -0.97,-0.93) mmHg and all mean ICP readings fell between -2 and 2 mmHg. Conclusion The Hummingbird® Synergy Ventricular System demonstrates congruence between ventricular and parenchymal ICP measurements within accepted parameters. Interventions required to realign parenchymal and ventricular readings serve as reminders to clinicians to be vigilant with catheter/cable connections and to maintain appropriate positioning of the ventricular drainage system. The results of this study support the recommendation to use the parenchymal ICP component for routine ICP monitoring, allowing dedication of the ventricular catheter to drainage of cerebrospinal fluid (CSF).
Collapse
Affiliation(s)
- Tracey Berlin
- Department of Neurosurgery, University of New Mexico Hospital, MSC10 5615, 1 University of New Mexico, Albuquerque, NM 87131-0001 USA
| | - Cristina Murray-Krezan
- Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, MSC10 5550, 1 University of New Mexico, Albuquerque, NM 87131-0001 USA
| | - Howard Yonas
- Department of Neurosurgery, University of New Mexico School of Medicine, MSC10 5615, 1 University of New Mexico, Albuquerque, NM 87131-0001 USA
| |
Collapse
|