1
|
Mohd Helmi I, Lehn A. Sink or Swim: Using Remote Programming to Manage a Very Australian Problem. Mov Disord Clin Pract 2024. [PMID: 39446024 DOI: 10.1002/mdc3.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 09/10/2024] [Accepted: 10/06/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Izyan Mohd Helmi
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Alexander Lehn
- Department of Neurology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
2
|
Vilkhu G, Goas C, Miller JA, Kelly SM, McDonald KJ, Tsai AJ, Dviwedi A, Dalm BD, Merola A. Clinician vs. imaging-based subthalamic nucleus deep brain stimulation programming. Parkinsonism Relat Disord 2023; 106:105241. [PMID: 36525899 DOI: 10.1016/j.parkreldis.2022.105241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION We sought to explore whether electrode visualization tools (EVT) can accurately predict the selection of optimal Deep Brain Stimulation (DBS) electrode contacts. METHODS Twelve patients with Parkinson's disease (PD) undergoing STN-DBS at The Ohio State University were enrolled in a prospective analysis to evaluate the accuracy of EVT-based vs. standard DBS programming. EVTs were generated by the Surgical Information Sciences (SIS) system to develop a 3D model showing the implanted lead location relative to the STN. Then, imaging-based data were compared to the results of a standard monopolar review to evaluate concordance with clinical data and time spent selecting useable, non-useable, and borderline electrode contacts. RESULTS A total of 18 DBS leads (n = 68 electrode contacts) were analyzed. The concordance between EVT and standard clinical programming expressed as the kappa coefficient was 0.65 (82.35% raw agreement) for non-useable, 0.52 for useable (64.71% raw agreement), and 0.52 for borderline (58.82% raw agreement). The average time spent determining whether an electrode contact was useable, non-useable, or borderline was 1.46 ± 0.76 min with EVT vs. 61.25 ± 17.47 with standard monopolar review. Eight different categories of side effects were identified, with facial pulling and speech difficulties being observed with the most frequency. The type of side effect observed was accurately predicted using EVT 90% of the time. CONCLUSIONS This study demonstrates that next-generation EVT-based programming can be implemented into STN-DBS programming workflows with a considerable saving of time and effort spent in testing combinations of stimulation settings, particularly for the identification of non-useable electrode contacts.
Collapse
Affiliation(s)
- Gurleen Vilkhu
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA
| | - Clarisse Goas
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA
| | - Jacob A Miller
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA
| | - Scott M Kelly
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA
| | - Kelsey J McDonald
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA
| | - Anna J Tsai
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA
| | - Alok Dviwedi
- Department of Molecular and Translational Medicine, Division of Biostatistics and Epidemiology, Texas Tech University Health Sciences Center El Paso, 5001 El Paso Drive, Texas, 79905, USA
| | - Brian D Dalm
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA
| | - Aristide Merola
- Department of Neurology, Wexner Medical Center, Ohio State University, 395 W. 12th Ave. Columbus, OH, 43210, USA.
| |
Collapse
|
3
|
Kim MJ, Chang KW, Park SH, Chang WS, Jung HH, Chang JW. Stimulation-Induced Side Effects of Deep Brain Stimulation in the Ventralis Intermedius and Posterior Subthalamic Area for Essential Tremor. Front Neurol 2021; 12:678592. [PMID: 34177784 PMCID: PMC8220085 DOI: 10.3389/fneur.2021.678592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation (DBS) targeting the ventralis intermedius (VIM) nucleus of the thalamus and the posterior subthalamic area (PSA) has been shown to be an effective treatment for essential tremor (ET). The aim of this study was to compare the stimulation-induced side effects of DBS targeting the VIM and PSA using a single electrode. Patients with medication-refractory ET who underwent DBS electrode implantation between July 2011 and October 2020 using a surgical technique that simultaneously targets the VIM and PSA with a single electrode were enrolled in this study. A total of 93 patients with ET who had 115 implanted DBS electrodes (71 unilateral and 22 bilateral) were enrolled. The Clinical Rating Scale for Tremor (CRST) subscores improved from 20.0 preoperatively to 4.3 (78.5% reduction) at 6 months, 6.3 (68.5% reduction) at 1 year, and 6.5 (67.5% reduction) at 2 years postoperation. The best clinical effect was achieved in the PSA at significantly lower stimulation amplitudes. Gait disturbance and clumsiness in the leg was found in 13 patients (14.0%) upon stimulation of the PSA and in significantly few patients upon stimulation of the VIM (p = 0.0002). Fourteen patients (15.1%) experienced dysarthria when the VIM was stimulated; this number was significantly more than that with PSA stimulation (p = 0.0233). Transient paresthesia occurred in 13 patients (14.0%) after PSA stimulation and in six patients (6.5%) after VIM stimulation. Gait disturbance and dysarthria were significantly more prevalent in patients undergoing bilateral DBS than in those undergoing unilateral DBS (p = 0.00112 and p = 0.0011, respectively). Paresthesia resolved either after reducing the amplitude or switching to bipolar stimulation. However, to control gait disturbance and dysarthria, some loss of optimal tremor control was necessary at that particular electrode contact. In the present study, the most common stimulation-induced side effect associated with VIM DBS was dysarthria, while that associated with PSA DBS was gait disturbance. Significantly, more side effects were associated with bilateral DBS than with unilateral DBS. Therefore, changing active DBS contacts to simultaneous targeting of the VIM and PSA may be especially helpful for ameliorating stimulation-induced side effects.
Collapse
Affiliation(s)
- Myung Ji Kim
- Department of Neurosurgery, Korea University Medical Center, Korea University College of Medicine, Ansan Hospital, Ansan-si, South Korea
| | - Kyung Won Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - So Hee Park
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Won Seok Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
4
|
Liu J, Ding H, Xu K, Liu R, Wang D, Ouyang J, Liu Z, Miao Z. Pallidal versus subthalamic deep-brain stimulation for meige syndrome: a retrospective study. Sci Rep 2021; 11:8742. [PMID: 33888857 PMCID: PMC8062505 DOI: 10.1038/s41598-021-88384-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/12/2021] [Indexed: 11/09/2022] Open
Abstract
Deep-brain stimulation (DBS) is an effective treatment for patients with Meige syndrome. The globus pallidus interna (GPi) and the subthalamic nucleus (STN) are accepted targets for this treatment. We compared 12-month outcomes for patients who had undergone bilateral stimulation of the GPi or STN. Forty-two Asian patients with primary Meige syndrome who underwent GPi or STN neurostimulation were recruited between September 2017 and September 2019 at the Department of Neurosurgery, Peking University People's Hospital. The primary outcome was the change in motor function, including the Burke-Fahn-Marsden Dystonia Rating Scale movement (BFMDRS-M) and disability subscale (BFMDRS-D) at 3 days before DBS (baseline) surgery and 1, 3, 6, and 12 months after surgery. Secondary outcomes included health-related quality of life, sleep quality status, depression severity, and anxiety severity at 3 days before and 12 months after DBS surgery. Adverse events during the 12 months were also recorded. Changes in BFMDRS-M and BFMDRS-D scores at 1, 3, 6, and 12 months with DBS and without medication did not significantly differ based on the stimulation target. There were also no significant differences in the changes in health-related quality of life (36-Item Short-Form General Health Survey) and sleep quality status (Pittsburgh Sleep Quality Index) at 12 months. However, there were larger improvements in the STN than the GPi group in mean score changes on the 17-item Hamilton depression rating scale (- 3.38 vs. - 0.33 points; P = 0.014) and 14-item Hamilton anxiety rating scale (- 3.43 vs. - 0.19 points; P < 0.001). There were no significant between-group differences in the frequency or type of serious adverse events. Patients with Meige syndrome had similar improvements in motor function, quality of life and sleep after either pallidal or subthalamic stimulation. Depression and anxiety factors may reasonably be included during the selection of DBS targets for Meige syndrome.
Collapse
Affiliation(s)
- Jiayu Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Hu Ding
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Ke Xu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Ruen Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China.
| | - Dongliang Wang
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Jia Ouyang
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Zhi Liu
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| | - Zeyu Miao
- Department of Neurosurgery, Peking University People's Hospital, 11th Xizhimen South St., Beijing, 100044, China
| |
Collapse
|
5
|
Schaper FLWVJ, Plantinga BR, Colon AJ, Wagner GL, Boon P, Blom N, Gommer ED, Hoogland G, Ackermans L, Rouhl RPW, Temel Y. Deep Brain Stimulation in Epilepsy: A Role for Modulation of the Mammillothalamic Tract in Seizure Control? Neurosurgery 2021; 87:602-610. [PMID: 32421806 PMCID: PMC8210468 DOI: 10.1093/neuros/nyaa141] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 02/16/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Deep brain stimulation of the anterior nucleus of the thalamus (ANT-DBS) can improve seizure control for patients with drug-resistant epilepsy (DRE). Yet, one cannot overlook the high discrepancy in efficacy among patients, possibly resulting from differences in stimulation site. OBJECTIVE To test the hypothesis that stimulation at the junction of the ANT and mammillothalamic tract (ANT-MTT junction) increases seizure control. METHODS The relationship between seizure control and the location of the active contacts to the ANT-MTT junction was investigated in 20 patients treated with ANT-DBS for DRE. Coordinates and Euclidean distance of the active contacts relative to the ANT-MTT junction were calculated and related to seizure control. Stimulation sites were mapped by modelling the volume of tissue activation (VTA) and generating stimulation heat maps. RESULTS After 1 yr of stimulation, patients had a median 46% reduction in total seizure frequency, 50% were responders, and 20% of patients were seizure-free. The Euclidean distance of the active contacts to the ANT-MTT junction correlates to change in seizure frequency (r2 = 0.24, P = .01) and is ∼30% smaller (P = .015) in responders than in non-responders. VTA models and stimulation heat maps indicate a hot-spot at the ANT-MTT junction for responders, whereas non-responders had no evident hot-spot. CONCLUSION Stimulation at the ANT-MTT junction correlates to increased seizure control. Our findings suggest a relationship between the stimulation site and therapy response in ANT-DBS for epilepsy with a potential role for the MTT. DBS directed at white matter merits further exploration for the treatment of epilepsy.
Collapse
Affiliation(s)
- Frédéric L W V J Schaper
- Department of Neurology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Birgit R Plantinga
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Albert J Colon
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Heeze, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - G Louis Wagner
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Heeze, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - Paul Boon
- Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Heeze, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Neurology, University Hospital Ghent, Ghent, Belgium
| | - Nadia Blom
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Erik D Gommer
- Department of Clinical Neurophysiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Govert Hoogland
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands
| | - Rob P W Rouhl
- Department of Neurology, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands.,Academic Center for Epileptology Kempenhaeghe/ Maastricht University Medical Center, Maastricht, The Netherlands
| | - Yasin Temel
- Department of Neurosurgery, Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands.,School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
6
|
Zhang C, Pan Y, Wang L, Wang T, Zhang J, Zhou H, Hu W, Sun B, Ramirez-Zamora A, Li D. Globus pallidus internus deep brain stimulation improves axial symptoms of Parkinson patients after long-term subthalamic nucleus stimulation: A case series study. INTERDISCIPLINARY NEUROSURGERY 2019. [DOI: 10.1016/j.inat.2019.100516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
7
|
Floden DP, Matias CM, Wathen CA, Ozinga GE, Hogue O, Machado AG. Contact Location and Neuropsychological Outcomes in Subthalamic Deep Brain Stimulation. Neurosurgery 2019; 83:666-674. [PMID: 29048606 DOI: 10.1093/neuros/nyx475] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 08/18/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A host of influences contribute to cognitive and behavioral changes following deep brain stimulation. The location of the active cathode is likely an important variable but it has received little attention. OBJECTIVE To determine whether active contact location relative to the subthalamic nucleus and other neighboring structures is related to nonmotor outcomes. METHODS We identified a retrospective, cross-sectional sample of 46 patients who underwent subthalamic nucleus deep brain stimulation for treatment of idiopathic Parkinson's disease. T-tests or nonparametric equivalents were used to detect baseline differences between unilateral left, unilateral right, and bilateral surgical groups. Correlation and partial correlational analyses identified relationships between contact location variables and alterations in cognitive, mood, quality of life, motor, and disease variables. RESULTS Medial contact locations within the left subthalamic nucleus were correlated with improvements in self-reported mood (r12 = -0.78, P = .001; 95% confidence interval [CI] = -0.43 to -0.93) but worsening semantic fluency (r26 = -0.38, P = .048; 95% CI = -0.01 to -0.66). Phonemic fluency worsened with more posterior left placement (r34 = 0.35, P = .036; 95% CI = 0.03 to 0.61). Memory outcome was related to right hemisphere stimulation voltage (r29 = -0.40, P = .022; 95% CI = -0.05 to -0.66), which is likely a proxy for variable electrode location. CONCLUSION Location of the active contact is related to nonmotor outcomes, even in electrodes that are adequately placed. This is relevant to clinical care as there appears to be a trade-off between mood and fluency abilities that should be considered during surgical planning according to preoperative patient characteristics.
Collapse
Affiliation(s)
- Darlene P Floden
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Caio M Matias
- Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Connor A Wathen
- Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| | - Grace E Ozinga
- Psychology Department, Cleveland State University, Cleveland, Ohio
| | - Olivia Hogue
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio
| | - Andre G Machado
- Center for Neurological Restoration, Cleveland Clinic, Cleveland, Ohio.,Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio
| |
Collapse
|
8
|
Romeo A, Dubuc DM, Gonzalez CL, Patel ND, Cutter G, Delk H, Guthrie BL, Walker HC. Cortical Activation Elicited by Subthalamic Deep Brain Stimulation Predicts Postoperative Motor Side Effects. Neuromodulation 2019; 22:456-464. [PMID: 30844131 DOI: 10.1111/ner.12901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 08/25/2018] [Accepted: 09/27/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Although deep brain stimulation (DBS) is an effective treatment for movement disorders, improvement varies substantially in individuals, across clinical trials, and over time. Noninvasive biomarkers that predict the individual response to DBS could be used to optimize outcomes and drive technological innovation in neuromodulation. We sought to evaluate whether noninvasive event related potentials elicited by subthalamic DBS during surgical targeting predict the tolerability of a given stimulation site in patients with advanced Parkinson's disease. METHODS Using electroencephalography, we measured event related potentials elicited by 20 Hz DBS over a range of stimulus intensities across the spatial extent of the implanted electrode array in 11 patients. We correlated event related potential timing and morphology with the stimulus amplitude thresholds for motor side effects during postoperative programming at ≥130 Hz. RESULTS During surgical targeting, DBS at 20 Hz elicits large amplitude, high frequency activity (evoked HFA) with mean onset latency of 9.0 ± 0.3 msec and a mean frequency of 175.8 ± 7.8 Hz. The lowest DBS amplitude that elicits the HFA predicts thresholds for motor side effects during postoperative stimulation at ≥130 Hz (p < 0.001, ANOVA). CONCLUSION Event related potentials elicited by DBS can predict clinically relevant corticospinal activation by stimulation after surgery. Noninvasive scalp physiology requires no patient interaction and could serve as a biomarker to guide targeting, postoperative programming, and emerging technologies such as directional and closed-loop stimulation.
Collapse
Affiliation(s)
- Andrew Romeo
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Darcy M Dubuc
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Naishal D Patel
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Haley Delk
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.,Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
9
|
Matias CM, Frizon LA, Asfahan F, Uribe JD, Machado AG. Brain Shift and Pneumocephalus Assessment During Frame-Based Deep Brain Stimulation Implantation With Intraoperative Magnetic Resonance Imaging. Oper Neurosurg (Hagerstown) 2018; 14:668-674. [PMID: 28973421 DOI: 10.1093/ons/opx170] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 07/04/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Brain shift and pneumocephalus are major concerns regarding deep brain stimulation (DBS). OBJECTIVE To report the extent of brain shift in deep structures and pneumocephalus in intraoperative magnetic resonance imaging (MRI). METHODS Twenty patients underwent bilateral DBS implantation in an MRI suite. Volume of pneumocephalus, duration of procedure, and 6 anatomic landmarks (anterior commissure, posterior commissure, right fornix [RF], left fornix [LF], right putaminal point, and left putaminal point) were measured. RESULTS Pneumocephalus varied from 0 to 32 mL (median = 0.6 mL). Duration of the procedure was on average 195.5 min (118-268 min) and was not correlated with the amount of pneumocephalus. There was a significant posterior displacement of the anterior commissure (mean = -1.1 mm, P < .001), RF (mean = -0.6 mm, P < .001), LF (mean = -0.7 mm, P < .001), right putaminal point (mean = -0.9 mm, P = .001), and left putaminal point (mean = -1.0 mm, P = .001), but not of the posterior commissure (mean = 0.0 mm, P = .85). Both RF (mean = -.7 mm, P < .001) and LF (mean = -0.5 mm, P < .001) were posteriorly displaced after a right-sided burr hole. There was a correlation between anatomic landmarks displacement and pneumocephalus after 2 burr holes (rho = 0.61, P = .007), but not after 1 burr hole (rho = 0.16, P = .60). CONCLUSION Better understanding of how pneumocephalus displaces subcortical structures can significantly enhance our intraoperative decision making and overall targeting strategy.
Collapse
Affiliation(s)
- Caio M Matias
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leonardo A Frizon
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio
| | - Fadi Asfahan
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio
| | - Juan D Uribe
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio
| | - Andre G Machado
- Center for Neurological Restoration, Cleveland Clinic Neurological Institute, Cleveland, Ohio
| |
Collapse
|
10
|
Baumgarten C, Zhao Y, Sauleau P, Malrain C, Jannin P, Haegelen C. Improvement of Pyramidal Tract Side Effect Prediction Using a Data-Driven Method in Subthalamic Stimulation. IEEE Trans Biomed Eng 2016; 64:2134-2141. [PMID: 27959795 DOI: 10.1109/tbme.2016.2638018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE subthalamic nucleus deep brain stimulation (STN DBS) is limited by the occurrence of a pyramidal tract side effect (PTSE) induced by electrical activation of the pyramidal tract. Predictive models are needed to assist the surgeon during the electrode trajectory preplanning. The objective of the study was to compare two methods of PTSE prediction based on clinical assessment of PTSE induced by STN DBS in patients with Parkinson's disease. METHODS two clinicians assessed PTSE postoperatively in 20 patients implanted for at least three months in the STN. The resulting dataset of electroclinical tests was used to evaluate two methods of PTSE prediction. The first method was based on the volume of tissue activated (VTA) modeling and the second one was a data-driven-based method named Pyramidal tract side effect Model based on Artificial Neural network (PyMAN) developed in our laboratory. This method was based on the nonlinear correlation between the PTSE current threshold and the 3-D electrode coordinates. PTSE prediction from both methods was compared using Mann-Whitney U test. RESULTS 1696 electroclinical tests were used to design and compare the two methods. Sensitivity, specificity, positive- and negative-predictive values were significantly higher with the PyMAN method than with the VTA-based method (P < 0.05). CONCLUSION the PyMAN method was more effective than the VTA-based method to predict PTSE. SIGNIFICANCE this data-driven tool could help the neurosurgeon in predicting adverse side effects induced by DBS during the electrode trajectory preplanning.
Collapse
|
11
|
Baumgarten C, Zhao Y, Sauleau P, Malrain C, Jannin P, Haegelen C. Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation: proof of concept and application to the pyramidal tract side effect induced by pallidal stimulation. J Med Imaging (Bellingham) 2016; 3:025001. [PMID: 27413769 DOI: 10.1117/1.jmi.3.2.025001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 06/13/2016] [Indexed: 11/14/2022] Open
Abstract
Deep brain stimulation of the medial globus pallidus (GPm) is a surgical procedure for treating patients suffering from Parkinson's disease. Its therapeutic effect may be limited by the presence of pyramidal tract side effect (PTSE). PTSE is a contraction time-locked to the stimulation when the current spreading reaches the motor fibers of the pyramidal tract within the internal capsule. The objective of the study was to propose a preoperative predictive model of PTSE. A machine learning-based method called PyMAN (PTSE model based on artificial neural network) accounting for the current used in stimulation, the three-dimensional electrode coordinates and the angle of the trajectory, was designed to predict the occurrence of PTSE. Ten patients implanted in the GPm have been tested by a clinician to create a labeled dataset of the stimulation parameters that trigger PTSE. The kappa index value between the data predicted by PyMAN and the labeled data was 0.78. Further evaluation studies are desirable to confirm whether PyMAN could be a reliable tool for assisting the surgeon to prevent PTSE during the preoperative planning.
Collapse
Affiliation(s)
- Clement Baumgarten
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France
| | - Yulong Zhao
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France
| | - Paul Sauleau
- Rennes University Hospital , Department of Neurology, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
| | - Cecile Malrain
- Rennes University Hospital , Department of Neurology, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
| | - Pierre Jannin
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France
| | - Claire Haegelen
- French Institute of Health and Medical Research, UMR 1099, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; University of Rennes 1, Treatment of Signal and Imaging Laboratory, 2 avenue du Pr. Léon Bernard, Rennes Cedex 35043, France; Rennes University Hospital, Department of Neurosurgery, 2 rue Henri Le Guilloux, 35033 Rennes Cedex 9, France
| |
Collapse
|