1
|
Wen Z, Zheng K, Guo S, Liu Y, Wang K, Liu Q, Wu J, Wang S. The difference of functional MR imaging in evaluating outcome of patients with diffuse and compact brain arteriovenous malformation. Neurosurg Rev 2024; 47:347. [PMID: 39043982 DOI: 10.1007/s10143-024-02593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024]
Abstract
Microsurgical resection is an effective method to treat brain arteriovenous malformations (BAVMs). Functional magnetic resonance imaging (fMRI) can evaluate the spatial relationship of nidus and eloquent. Diffuse BAVMs are related to poor outcomes postoperatively. The role of fMRI in evaluating outcomes in patients with different nidus types remains unclear. BAVM patients received microsurgical resection were included from a prospective, multicenter cohort study. All patients underwent fMRI evaluation preoperatively and were regularly followed up postoperatively. Diffuse BAVM is radiologically identified as nidus containing normal brain tissue interspersing between malformed vessels. Lesion-to-eloquent distance (LED) was calculated based on the relationship between nidus and eloquent. The primary outcome was 180-day unfavorable neurological status postoperatively. The risk of primary outcome was investigated within different BAVM nidus types. The LED's performance to predict poor outcome was evaluated using area under curve (AUC). 346 BAVM patients were included in this study. 93 (26.9%) patients were found to have a 180-day unfavorable outcome. Multivariate logistic analysis demonstrated LED (odd ratio [OR], 0.44; 0.34-0.57; P < 0.001) and mRS at admission (OR, 2.59; 1.90-3.54; P < 0.001) as factors of unfavorable outcome. Subgroup analysis showed LED and mRS at admission as factors of unfavorable outcome for patients with compact BAVMs (all P < 0.05), but not for patients with diffuse BAVMs. Subsequent analysis showed that LED performed poorly to predict the unfavorable outcome for patients with diffuse BAVMs, compared with patients with compact BAVMs (AUC as 0.69 vs. 0.86, P < 0.05). A larger cutoff value of LED to unfavorable outcome was found in patients with diffuse BAVMs (15 mm) compared with patients with compact BAVMs (4.7 mm). Usage of LED to evaluate postoperative outcome of patients with diffuse BAVMs differs from its use in patients with compact BAVMs. Specific assessment strategy considering BAVM nidus types could help improve patients' outcome. MITASREAVM cohort (unique identifier: NCT02868008, https://clinicaltrials.gov/study/NCT02868008?term=NCT02868008&rank=1 ).
Collapse
Affiliation(s)
- Zheng Wen
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kaige Zheng
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuaiwei Guo
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yang Liu
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Kaiwen Wang
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
2
|
Tariq R, Siddiqui UA, Bajwa MH, Baig AN, Khan SA, Tariq A, Bakhshi SK. Feasibility of awake craniotomy for brain arteriovenous malformations: A scoping review. World Neurosurg X 2024; 22:100321. [PMID: 38440377 PMCID: PMC10911851 DOI: 10.1016/j.wnsx.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Background Brain Arteriovenous Malformations (AVMs) located in proximity to eloquent brain regions are associated with poor surgical outcomes, which may be due to higher rates of postoperative neurological deterioration. Current treatment protocols include stereotactic radiosurgery, transarterial embolization, and surgical resection under general anesthesia. Awake Craniotomy (AC) allows intraoperative mapping of eloquent areas to improve post-operative neurologic outcomes. Objectives We reviewed the current literature reporting surgical outcomes and assessed the feasibility of AC for AVM resection. Methods The PRISMA guidelines were utilized as a template for the review. Three databases including PubMed, Scopus, and Cochrane Library were searched using a predefined search strategy. After removing duplicates and screening, full texts were analyzed. Outcomes including the extent of resection, intra-operative and post-operative complications, and long-term neurologic outcomes were assessed. Results 12 studies were included with a total of 122 AVM cases. Spetzler-Martin grading was used for the classification of the AVMs. The asleep-awake-asleep protocol was most commonly used for AC. Complete resection was achieved in all cases except 5. Intraoperative complications included seizures (n = 2) and bleeding (n = 4). Short-term post-operative complications included hemorrhage (n = 3), neurologic dysfunctions including paresis (n = 3), hemiplegia (n = 10), dysphasia/aphasia (n = 6), cranial nerve dysfunction (n = 3), and pulmonary embolism (n = 1). Almost all neurological deficits after surgery gradually improved on subsequent follow-ups. Conclusion AVMs may shift the anatomical location of eloquent brain areas which may be mapped during AC. All studies recommended AC for the resection of AVMs in close proximity to eloquent areas as mapping during AC identifies the eloquent cortex thus promoting careful tissue handling which may preserve neurologic function and/or predict the postoperative functional status of the patients We, therefore, conclude that AC is a viable modality for AVMs resection near eloquent language and motor areas.
Collapse
Affiliation(s)
- Rabeet Tariq
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | | | | | - Ahmer Nasir Baig
- Department of Neurosurgery, Aga Khan University Hospital, Karachi, Pakistan
| | - Saad Akhtar Khan
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Areeba Tariq
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Saqib Kamran Bakhshi
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| |
Collapse
|
3
|
Li CR, Shen CC, Yang MY, Tsuei YS, Lee CH. Intraoperative Augmented Reality in Microsurgery for Intracranial Arteriovenous Malformation: A Case Report and Literature Review. Brain Sci 2023; 13:brainsci13040653. [PMID: 37190618 DOI: 10.3390/brainsci13040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Intracranial arteriovenous malformations (AVMs) are lesions containing complex vessels with a lack of buffering capillary architecture which might result in hemorrhagic cerebrovascular accidents (CVAs). Intraoperative navigation can improve resection rates and functional preservation in patients with lesions in eloquent areas, but current systems have limitations that can distract the operator. Augmented Reality (AR) surgical technology can reduce these distractions and provide real-time information regarding vascular morphology and location. METHODS In this case report, an adult patient was admitted to the emergency department after a fall, and diagnostic imaging revealed a Spetzler-Martin grade I AVM in the right parietal region with evidence of rupture. The patient underwent a stereotactic microsurgical resection with assistance from augmented reality technology, which allowed for a hologram of the angioarchitecture to be projected onto the cortical surface, aiding in the recognition of the angiographic anatomy during surgery. RESULTS The patient's postoperative recovery went smoothly. At 6-month follow-up, the patient had remained in stable condition, experiencing complete relief from his previous symptoms. The follow-up examination also revealed complete obliteration of the AVMs without any remaining pathological vascular structure. CONCLUSIONS AR-assisted microsurgery makes both the dissection and resection steps safer and more delicate. As several innovations are occurring in AR technology today, it is likely that this novel technique will be increasingly adopted in both surgical applications and education. Although certain limitations exist, this technique may still become more efficient and precise as this novel technology its continues to develop further.
Collapse
Affiliation(s)
- Chi-Ruei Li
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chiung-Chyi Shen
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Meng-Yin Yang
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Yuang-Seng Tsuei
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chung-Hsin Lee
- Department of Neurosurgery, Neurological Institute, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| |
Collapse
|
4
|
Li M, Jiang P, Guo R, Liu Q, Yang S, Wu J, Cao Y, Wang S. A Tractography-Based Grading Scale of Brain Arteriovenous Malformations Close to the Corticospinal Tract to Predict Motor Outcome After Surgery. Front Neurol 2019; 10:761. [PMID: 31379715 PMCID: PMC6650564 DOI: 10.3389/fneur.2019.00761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
Background: Surgical decision-making for brain arteriovenous malformations (AVMs) close to the corticospinal tract (CST) is always challenging. The purpose of this study was to develop a tractography-based grading scale to improve preoperative risk prediction and patient selection. Methods: We analyzed a consecutive, surgically treated series of 90 patients with AVMs within a 10-mm range from the CST demonstrated by preoperative diffusion tensor tractography. Poor motor outcome was defined as persistent postoperative limb weakness. We examined the predictive ability of nidus-to-CST distance (NCD), the closest CST level (CCL), deep perforating artery supply, as well as variables of the supplemented Spetzler-Martin grading system. Three logistic models were derived from different multivariable logistic regression analyses, of which the most predictive model was selected to construct a prediction grading scale. Receiver operating characteristic analysis was conducted to test the predictive accuracy of the grading scale. Results: Twenty-one (23.3%) patients experienced persistent postoperative limb weakness after a mean 2.7-year follow-up. The most predictive logistic model showed NCD (P = 0.001), CCL (P = 0.017), patient age (P = 0.004), and AVM diffuseness (P = 0.021) were independent predictors for poor motor outcome. We constructed the CLAD grading scale incorporating these predictors. The predictive accuracy of the CLAD grade was better compared with the supplemented Spetzler-Martin grade (area under curve = 0.84 vs. 0.68, P = 0.023). Conclusions: Both NCD and CCL predict motor outcome after resection of AVMs close to the CST. We propose the CLAD grading scale as an effective risk-prediction tool in surgical decision-making. Clinical Trial Registration:www.ClinicalTrials.gov, identifier: NCT01758211 and NCT02868008
Collapse
Affiliation(s)
- Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rui Guo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingyuan Liu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuzhe Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| |
Collapse
|
5
|
Feng S, Zhang Y, Sun Z, Wu C, Xue Z, Ma Y, Jiang J. Application of Multimodal Navigation together with Fluorescein Angiography in Microsurgical Treatment of Cerebral Arteriovenous Malformations. Sci Rep 2017; 7:14822. [PMID: 29093495 PMCID: PMC5665881 DOI: 10.1038/s41598-017-05913-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
This study aimed to explore the clinical applications of multimodal navigation combined with indocyanine green (ICG) fluorescein angiography in microsurgical treatment of cerebral arteriovenous malformations (AVMs). We retrospectively collected 52 patients with AVMs. Assisted by anatomic image, we reestablished three-dimensional structure using preoperative functional magnetic resonance imaging (fMRI) and Diffusion tensor imaging (DTI). The operation for lesion resection was finished under the assistance of neuro-navigation. ICG fluorescein angiography was performed for 16 of the study subjects, meanwhile, FLOW800 was used to rebuild blood vessel color visual image. Brain angiography was performed 1 week after the operation to check residual malformations. The patients’ status was estimated by Modified Rankin Scale score. Of the AVMs, 92.3% (48/52) were totally removed, without severe side events. Among the patients, fluorescein angiography was carried out up to 58 times for 16 cases. All of these 16 cases were confirmed with malformations and 14 of them had draining vein. The total resection rate of these 16 cases reached 100%, and the occurrence rate of postoperative complications was not significantly increased. During the operation of lesion resection, the application of multimodal navigation could effectively protect functional cortex and conduction pathway.
Collapse
Affiliation(s)
- Shiyu Feng
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Yanyang Zhang
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Zhenghui Sun
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Chen Wu
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Zhe Xue
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Yudong Ma
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China
| | - Jinli Jiang
- Department of Neurosurgery, PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
6
|
Wang LJ, Lin FX, Zhao B, Wu J, Cao Y, Wang S. Testing the Reliability of BOLD-fMRI Motor Mapping in Patients with Cerebral Arteriovenous Malformations by Electric Cortical Stimulation and Surgery Outcomes. World Neurosurg 2015; 92:386-396. [PMID: 26732959 DOI: 10.1016/j.wneu.2015.12.053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 12/15/2015] [Accepted: 12/16/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To test the reliability of blood oxygenation level-dependent functional magnetic resonance imaging (fMRI) in the primary hand motor cortex (M1) among patients with arteriovenous malformations (AVMs) by electric cortical stimulation (ECS) and surgery outcomes. METHODS Forty-three patients with AVMs involving/adjacent to M1 underwent blood oxygen level-dependent fMRI (BOLD-fMRI) with repetitive finger-to-thumb opposition movements. The generated image sets were processed on the iPlan 3.0 workstation. A site-by-site comparison between the fMRI and ECS maps was performed with the aid of neuronavigation. Surgical outcomes were analyzed as the change between preoperative and postoperative muscle strength (MS). Finally, fMRI sensitivity was calculated, and correlations of lesion-to-activation distances (LAD) and surgery outcomes were analyzed. RESULTS The highest activation location was found in the ipsilateral M1in 40 patients (93%). The highest activation relocated in the contralateral M1area in one patient (2.3%). No motor activation was found in the other 2 (4.7%) patients. ECS results were positive in 34 patients (85%, 34/40). The fMRI sensitivity was calculated as 85%. In total, 18 patients (41.9%) had worsened MS 1 week after surgery. Eight patients (18.6%) suffered from permanent muscle strength deterioration 6 months later. Moreover, an LAD ≤5 mm was significantly associated with permanent MS deterioration (P = 0.039). CONCLUSION BOLD-fMRI exhibits high sensitivity in motor mapping in patients with AVMs. LAD ≤5 mm may be associated with permanent MS deterioration in patients with AVM close to the motor cortex.
Collapse
Affiliation(s)
- Li Jun Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Neurosurgery, Hongqi Hospital, Mudanjiang Medical University, Aimin District, Mudanjiang, China
| | - Fu Xin Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bing Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Noell S, Feigl GC, Naros G, Barking S, Tatagiba M, Ritz R. Experiences in surgery of primary malignant brain tumours in the primary sensori-motor cortex practical recommendations and results of a single institution. Clin Neurol Neurosurg 2015; 136:41-50. [PMID: 26056811 DOI: 10.1016/j.clineuro.2015.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/16/2015] [Accepted: 05/18/2015] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Tumour resection in the Rolandic region is a challenge. Aim of this study is to review a series of patients malignant glioma surgery in the Rolandic region which was performed by combinations of neuronavigation, sonography, 5-aminolevulinic acid fluorescence guided (5-ALA) surgery and intraoperative electrophysiological monitoring (IOM). METHODS 29 patients suffering malignant gliomas in the motor cortex (17) and sensory cortex (12) were analyzed with respect to functional outcome and grade of resections. RESULTS Improvement of motor function was seen in 41.5% one week after surgery, 41.5% were stable, only 17% deteriorated. After three months patients had an improvement of motor function in 56%, of Karnofsky Score (KPS) 27% and sensory function was improved in 8%. Deterioration of motor function was seen in 16%, in sensory function 4% and in KPS 28% after three months. 25% showed no residual tumour in early post surgical contrast enhanced MRI. 10% had less than 2% residual tumour and 15% had 2-5% residual tumour. CONCLUSIONS Preoperative functional neuroimaging, neuronavigation for planning the surgical approach and resection margins, intraoperative sonography and 5-ALA guided surgery in combination with the application of IOM shows that functional outcome and total to subtotal resection of malignant glioma in the Rolandic region is feasible.
Collapse
Affiliation(s)
- Susan Noell
- Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Guenther C Feigl
- Department of Neurosurgery, Bamberg Hospital, Huger Straße 80, 96049 Bamberg, Germany
| | - Georgios Naros
- Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Susanne Barking
- Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany
| | - Rainer Ritz
- Department of Neurosurgery, Eberhard Karls University Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Department of Neurosurgery, Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany.
| |
Collapse
|
8
|
Mohr JP, Kejda-Scharler J, Pile-Spellman J. Diagnosis and Treatment of Arteriovenous Malformations. Curr Neurol Neurosci Rep 2013; 13:324. [DOI: 10.1007/s11910-012-0324-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
9
|
Functional reorganization oF the primary motor cortex in a patient with a large arteriovenous malFormation involving the precentral gyrus. Transl Neurosci 2013. [DOI: 10.2478/s13380-013-0122-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractIt is known that the brain can compensate for deficits induced by acquired and developmental lesions through functional reorganization of the remaining parenchyma. Arteriovenous malformations (AVM) usually appear prenatally before a functional regional organization of the brain is fully established and patients generally do not present with motor deficits even when the AVM is located in the primary motor area indicating the redistribution of functions in cortical areas that are not pathologically altered. Here we present reorganization of the motor cortex in a patient with a large AVM involving most of the left parietal lobe and the paramedian part of the left precentral gyrus that is responsible for controlling the muscles of the lower limbs. Functional MRI showed that movements of both the right and left feet activated only the primary motor cortex in the right hemisphere, while there was no activation in the left motor cortex. This suggests that complete ipsilateral control over the movements of the right foot had been established in this patient. A reconstruction of the corticospinal tract using diffusion tensor imaging showed a near-complete absence of corticospinal fibers from the part of the left precentral gyrus affected by the AVM. From this clinical presentation it can be concluded that full compensation of motor deficits had occurred by redistributing function to the corresponding motor area of the contralateral
Collapse
|